NCBI Taxonomy: 152359
Pachygone laurifolia (ncbi_taxid: 152359)
found 124 associated metabolites at species taxonomy rank level.
Ancestor: Pachygone
Child Taxonomies: none taxonomy data.
Tetrahydropalmatine
Tetrahydropalmatine is a berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. It has a role as an adrenergic agent, a non-narcotic analgesic and a dopaminergic antagonist. It is a berberine alkaloid, an organic heterotetracyclic compound and an an (S)-7,8,13,14-tetrahydroprotoberberine. It is functionally related to a palmatine. Tetrahydropalmatine is under investigation in clinical trial NCT02118610 (Treatment of Schizophrenia With L-tetrahydropalmatine (l-THP): a Novel Dopamine Antagonist With Anti-inflammatory and Antiprotozoal Activity). Tetrahydropalmatine is a natural product found in Corydalis heterocarpa, Ceratocapnos heterocarpa, and other organisms with data available. A berberine alkaloid obtained by formal addition of two molecules of hydrogen to the pyridine ring of palmatine. Tetrahydropalmatine (THP) is an isoquinoline alkaloid found in several different plant species, mainly in the genus Corydalis (Yan Hu Suo),[1][2] but also in other plants such as Stephania rotunda.[3] These plants have traditional uses in Chinese herbal medicine. The pharmaceutical industry has synthetically produced the more potent enantiomer Levo-tetrahydropalmatine (Levo-THP), which has been marketed worldwide under different brand names as an alternative to anxiolytic and sedative drugs of the benzodiazepine group and analgesics such as opiates. It is also sold as a dietary supplement. In 1940, a Vietnamese scientist Sang Dinh Bui extracted an alkaloid from the root of Stephania rotunda with the yield of 1.2–1.5\\\\\\\% and he named this compound rotundine. From 1950 to 1952, two Indian scientists studied and extracted from Stephania glabra another alkaloid named hyndanrine. In 1965, the structure of rotundine and hyndarin was proved to be the same as tetrahydropalmatine. Tetrahydropalmatine has been demonstrated to possess analgesic effects and may be beneficial in the treatment of heart disease and liver damage.[5][6] It is a blocker of voltage-activated L-type calcium channel active potassium channels.[citation needed] It is a potent muscle relaxant.[citation needed] It has also shown potential in the treatment of drug addiction to both cocaine and opiates, and preliminary human studies have shown promising results.[7][8][9] The pharmacological profile of l-THP includes antagonism of dopamine D1, and D2 receptors as well as actions at dopamine D3, alpha adrenergic and serotonin receptors. The Ki values for l-THP at D1 and D2 dopamine receptors are approximately 124 nM (D1) and 388 nM (D2). In addition to the antagonism of post-synaptic dopamine receptors, the blockade of pre-synaptic autoreceptors by l-THP results in increased dopamine release, and it has been suggested that lower affinity of l-THP for D2 receptors may confer some degree of autoreceptor selectivity. Along with dopamine receptors, l-THP has been reported to interact with a number of other receptor types, including alpha-1 adrenergic receptors, at which it functions as an antagonist, and GABA-A receptors, through positive allosteric modulation. Additionally, l-THP displays significant binding to 5-HT1A and alpha-2 adrenergic receptors. In the case of 5-HT1A receptors, l-THP binds with a Ki of approximately 340 nM.[10] Animal experiments have shown that the sedative effect of THP results from blocking dopaminergic neurons in the brain. Dopamine is an important neurotransmitter in the central nervous system where it occurs in several important signaling systems that regulate muscular activity and attention, as well as feelings of joy, enthusiasm, and creativity. Therefore, THP causes no feelings of euphoria, and has been seen as an alternative to addictive drugs for people suffering from anxiety and pain, and as a possibility for relief for people not helped by existing drugs.[citation needed] Several cases of poisoning related to THP have been reported.[11] These cases involved negative effects on respiration, cardiac activity, and the nervous system. In addition, chronic hepatitis has been reported, caused by THP production in East Asia under conditions that were insufficiently sterile. Fatalities started to be reported in 1999 in cases where THP had been used in combination with other drugs having analgesic and anti-anxiety effects. All 1999 deaths could be tied to a single THP-based supplement, sold under the name "Jin Bu Huan Anodyne Tablets". Toxicity with even Jin Bu Huan has been reported.[12] This product was therefore blacklisted by US and European health authorities. In some other countries, such as Singapore, THP is treated as a controlled substance, and license is required to sell it.[citation needed] Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1]. Tetrahydropalmatine possesses analgesic effects. Tetrahydropalmatine acts through inhibition of amygdaloid release of dopamine to inhibit an epileptic attack in rats[1].
4-Hydroxybenzoic acid
4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in Açaí oil, obtained from the fruit of the açaí palm (Euterpe oleracea), at relatively high concetrations (892±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843).
Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid
Coclaurine
C17H19NO3 (285.13648639999997)
(S)-coclaurine is the (S)-enantiomer of coclaurine. It is a conjugate base of a (S)-coclaurinium. It is an enantiomer of a (R)-coclaurine. Coclaurine is a natural product found in Delphinium pentagynum, Damburneya salicifolia, and other organisms with data available. Coclaurine, also known as (r,s)-coclaurine or machiline, is a member of the class of compounds known as benzylisoquinolines. Benzylisoquinolines are organic compounds containing an isoquinoline to which a benzyl group is attached. Coclaurine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Coclaurine can be found in custard apple and soursop, which makes coclaurine a potential biomarker for the consumption of these food products. Coclaurine is a nicotinic acetylcholine receptor antagonist which has been isolated from a variety of plant sources including Nelumbo nucifera, Sarcopetalum harveyanum, Ocotea duckei, and others. It belongs to the class of tetrahydroisoquinoline alkaloids. Dimerization of coclaurine leads to the biscoclaurine alkaloids such as cepharanthine .
Glaucine
(S)-glaucine is an aporphine alkaloid that is (S)-1,2,9,10-tetrahydroxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline in which the four phenolic hydrogens have been replaced by methyl groups. It has a role as a platelet aggregation inhibitor, a NF-kappaB inhibitor, an antitussive, an antibacterial agent, a muscle relaxant, an antineoplastic agent, a plant metabolite and a rat metabolite. It is an aporphine alkaloid, a polyether, an organic heterotetracyclic compound and a tertiary amino compound. It is a conjugate base of a (S)-glaucine(1+). Glaucine is a natural product found in Sarcocapnos baetica, Sarcocapnos saetabensis, and other organisms with data available. An aporphine alkaloid that is (S)-1,2,9,10-tetrahydroxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline in which the four phenolic hydrogens have been replaced by methyl groups. D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D019141 - Respiratory System Agents > D000996 - Antitussive Agents D020011 - Protective Agents > D000975 - Antioxidants D002491 - Central Nervous System Agents Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Aporphine alkaloids Glaucine (O,O-Dimethylisoboldine) is an alkaloid isolated from Glaucium flavum with antitussive, bronchodilation and anti-inflammatory properties. Glaucine is a selective and orally active phosphodiesterase 4 (PDE4) inhibitor with Kis of 3.4 μM in human bronchus and polymorphonuclear leukocytes. Glaucine is also a non-selective α-adrenoceptor antagonist, a Ca2+ entry blocker, and a weak dopamine D1 and D2 receptor antagonist. Glaucine has antioxidative and antiviral activities[1][2][3]. Glaucine (O,O-Dimethylisoboldine) is an alkaloid isolated from Glaucium flavum with antitussive, bronchodilation and anti-inflammatory properties. Glaucine is a selective and orally active phosphodiesterase 4 (PDE4) inhibitor with Kis of 3.4 μM in human bronchus and polymorphonuclear leukocytes. Glaucine is also a non-selective α-adrenoceptor antagonist, a Ca2+ entry blocker, and a weak dopamine D1 and D2 receptor antagonist. Glaucine has antioxidative and antiviral activities[1][2][3]. Glaucine (O,O-Dimethylisoboldine) is an alkaloid isolated from Glaucium flavum with antitussive, bronchodilation and anti-inflammatory properties. Glaucine is a selective and orally active phosphodiesterase 4 (PDE4) inhibitor with Kis of 3.4 μM in human bronchus and polymorphonuclear leukocytes. Glaucine is also a non-selective α-adrenoceptor antagonist, a Ca2+ entry blocker, and a weak dopamine D1 and D2 receptor antagonist. Glaucine has antioxidative and antiviral activities[1][2][3].
Isoteolin
C19H21NO4 (327.14705060000006)
Isoboldine is an aporphine alkaloid. (+)-Isoboldine is a natural product found in Fumaria capreolata, Thalictrum foetidum, and other organisms with data available. See also: Peumus boldus leaf (part of).
(S)-N-Methylcoclaurine
This compound belongs to the family of Benzylisoquinolines. These are organic compounds containing an isoquinoline to which a benzyl group is attached.
(R)-Pronuciferine
C19H21NO3 (311.15213560000007)
Alkaloid from Nelumbo nucifera (East India lotus). (R)-Pronuciferine is found in many foods, some of which are poppy, coffee and coffee products, sacred lotus, and cherimoya. (R)-Pronuciferine is found in cherimoya. (R)-Pronuciferine is an alkaloid from Nelumbo nucifera (East India lotus
Coreximine
C19H21NO4 (327.14705060000006)
Coreximine is found in soursop. Coreximine is an alkaloid from Papaver somniferum (opium poppy Alkaloid from Papaver somniferum (opium poppy). Coreximine is found in soursop.
D,L-Stepholidine
C19H21NO4 (327.14705060000006)
Stepholidine
C19H21NO4 (327.14705060000006)
l-Stepholidine is a natural product found in Desmos cochinchinensis, Meiogyne monosperma, and other organisms with data available.
4-hydroxybenzoate
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
p-Hydroxybenzoic acid
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
Tetrahydropalmatin
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2302 D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D-Tetrahydropalmatine is an isoquinoline alkaloid, mainly in the genus Corydalis[1]. D-Tetrahydropalmatine is a dopamine (DA) receptor antagonist with preferential affinity toward the D1 receptors[2]. D-Tetrahydropalmatine is a potent organic cation transporter 1 (OCT1) inhibitor[3]. D-Tetrahydropalmatine is an isoquinoline alkaloid, mainly in the genus Corydalis[1]. D-Tetrahydropalmatine is a dopamine (DA) receptor antagonist with preferential affinity toward the D1 receptors[2]. D-Tetrahydropalmatine is a potent organic cation transporter 1 (OCT1) inhibitor[3]. D-Tetrahydropalmatine is an isoquinoline alkaloid, mainly in the genus Corydalis[1]. D-Tetrahydropalmatine is a dopamine (DA) receptor antagonist with preferential affinity toward the D1 receptors[2]. D-Tetrahydropalmatine is a potent organic cation transporter 1 (OCT1) inhibitor[3].
Hyndarin
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM. Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC50s of 166 nM, 1.4 μM and 3.3 μM, respectively. Rotundine is also an antagonist of 5-HT1A with an IC50 of 370 nM.
(+)-Pronuciferine
C19H21NO3 (311.15213560000007)
An isoquinoline alkaloid isolated from Berberis coletioides.
2(6H)-Benzofuranone, 7,7a-dihydro-6-hydroxy-, (6S,7aR)-
5,11-dimethoxy-1h,2h,4h,5h,10h,11h,13ah-indolo[7a,1-a]isoquinolin-8-ol
(5s,9bs,11r,13as)-5,11-dimethoxy-1h,2h,4h,5h,10h,11h,13ah-indolo[7a,1-a]isoquinolin-8-ol
4-{2-[(5-methoxy-2-methylcyclohex-2-en-1-yl)(methyl)amino]ethenyl}phenol
(13r)-16,17-dimethoxy-5,7-dioxa-1-azapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3,8,10,14(19),15,17-hexaene
C20H21NO4 (339.14705060000006)
(9bs,11r)-8,11-dimethoxy-1h,2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-12-one
methyl (9bs,11s)-7,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline-8-carboxylate
(9s)-4,15-dimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(17),2(7),3,5,13,15-hexaene-5,16-diol
(9bs,11r)-8,11-dimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline
4-{2-[(5-hydroxy-2-methylcyclohex-2-en-1-yl)(methyl)amino]ethenyl}phenol
(12s,13r)-16,17-dimethoxy-12-methyl-5,7-dioxa-1-azapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3,8,10,14(19),15,17-hexaene
C21H23NO4 (353.16269980000004)
10',11'-dimethoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,5,8'(12'),9'-pentaen-4-one
C18H19NO3 (297.13648639999997)
10-(6,7-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl)-3,5,11-trioxatricyclo[7.3.0.0²,⁶]dodeca-1(9),2(6),7-trien-12-one
C21H21NO6 (383.13688060000004)
(9bs,11s)-8,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline
(9bs,11r,12r)-11-methoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline-8,12-diol
(5r,9bs,11r,13ar)-5,11-dimethoxy-1h,2h,4h,5h,10h,11h,13ah-indolo[7a,1-a]isoquinolin-8-ol
4-[(1z)-2-{[(1s,5s)-5-hydroxy-2-methylcyclohex-2-en-1-yl](methyl)amino}ethenyl]phenol
11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-8-ol
11-methoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinolin-8-ol
15-methoxy-10-azatetracyclo[8.6.1.0²,⁷.0¹³,¹⁷]heptadeca-2,4,6,13-tetraen-4-ol
8,11-dimethoxy-1h,2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-12-one
(1r,9r)-4,5,13-trimethoxy-17-methyl-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2,4,6,10,13-pentaen-12-one
C20H23NO4 (341.16269980000004)
8-hydroxy-11-methoxy-4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-2-one
8,11-dimethoxy-1h,2h,4h,5h-indolo[7a,1-a]isoquinolin-12-one
C18H19NO3 (297.13648639999997)
(9bs,11r)-8-hydroxy-11-methoxy-4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-2-one
8,11-dimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline
(10r)-10-[(1s)-6,7-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinolin-1-yl]-3,5,11-trioxatricyclo[7.3.0.0²,⁶]dodeca-1(9),2(6),7-trien-12-one
C21H21NO6 (383.13688060000004)
(9bs,11r)-8,11-dimethoxy-4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-2-one
C18H19NO3 (297.13648639999997)
8,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline
(8s,21s)-13,27-dimethoxy-7-methyl-15,29,31-trioxa-7,22-diazaoctacyclo[19.9.3.2¹⁶,¹⁹.1⁴,³⁰.1¹⁰,¹⁴.0³,⁸.0²⁵,³³.0²⁸,³²]heptatriaconta-1,3,10,12,14(37),16,18,25,27,30(34),32,35-dodecaene
13,27-dimethoxy-7-methyl-15,29,31-trioxa-7,22-diazaoctacyclo[19.9.3.2¹⁶,¹⁹.1⁴,³⁰.1¹⁰,¹⁴.0³,⁸.0²⁵,³³.0²⁸,³²]heptatriaconta-1,3,10,12,14(37),16,18,25,27,30(34),32,35-dodecaene
11-methoxy-1h,2h,4h,5h,10h,11h,13ah-indolo[7a,1-a]isoquinolin-8-ol
methyl 6-hydroxy-7,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline-8-carboxylate
4-[(1z)-2-{[(1s,5s)-5-methoxy-2-methylcyclohex-2-en-1-yl](methyl)amino}ethenyl]phenol
(9bs,11r,13ar)-11-methoxy-1h,2h,4h,5h,10h,11h,13ah-indolo[7a,1-a]isoquinolin-8-ol
(9s)-4,15-dimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene-5,16-diol
C19H21NO4 (327.14705060000006)
(9bs,11s)-8,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinolin-7-ol
4,5,16-trimethoxy-10-methyl-10-azatricyclo[11.4.0.0²,⁷]heptadeca-1(17),2,4,6,13,15-hexaene
C20H25NO3 (327.18343400000003)
(1s,15r)-10,21,22,26-tetramethoxy-16,31-dimethyl-8,24-dioxa-16,31-diazaheptacyclo[23.6.2.1³,⁷.1⁹,¹³.1¹⁵,¹⁹.0²⁸,³².0²³,³⁴]hexatriaconta-3(36),4,6,9(35),10,12,19(34),20,22,25,27,32-dodecaene
C38H42N2O6 (622.3042712000001)
(9bs,11r,13as)-11-methoxy-1h,2h,4h,5h,10h,11h,13ah-indolo[7a,1-a]isoquinolin-8-ol
(9s)-16-hydroxy-3,4,15-trimethoxy-10,10-dimethyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaen-10-ium
[C21H26NO4]+ (356.1861736000001)
(1s,2r,5r,7r,8r,11r,12r,18s)-12-methyl-6-methylidene-17-oxa-14-azahexacyclo[10.6.3.1⁵,⁸.0¹,¹¹.0²,⁸.0¹⁴,¹⁸]docosan-7-ol
C22H33NO2 (343.25111580000004)
7,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline-8-carboximidic acid
C19H24N2O3 (328.17868339999995)
8,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinolin-12-ol
(9s)-4,5,15-trimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene
C20H23NO3 (325.16778480000005)
(9s)-4,5,15,16-tetramethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaene
8,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinolin-7-ol
(6s,7as)-6-hydroxy-7,7a-dihydro-6h-1-benzofuran-2-one
(9s)-5,16-dihydroxy-4,15-dimethoxy-10,10-dimethyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2(7),3,5,13(17),14-hexaen-10-ium
[C20H24NO4]+ (342.17052440000003)
(9bs)-8,11-dimethoxy-1h,2h,4h,5h-indolo[7a,1-a]isoquinolin-12-one
C18H19NO3 (297.13648639999997)
methyl 7,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinoline-8-carboxylate
2-[(1e,4r,6s)-4,6-dihydroxycyclohex-2-en-1-ylidene]acetonitrile
4,15-dimethoxy-10-azatetracyclo[8.6.1.0²,⁷.0¹³,¹⁷]heptadeca-2,4,6,13-tetraene
(9bs,11r,13as)-8,11-dimethoxy-1h,2h,4h,5h,10h,11h,13ah-indolo[7a,1-a]isoquinoline
5,16-dimethoxy-10-methyl-10-azatricyclo[11.4.0.0²,⁷]heptadeca-1(17),2,4,6,13,15-hexaen-4-ol
C19H23NO3 (313.16778480000005)
8,11-dimethoxy-1h,2h,4h,5h,10h,11h,13ah-indolo[7a,1-a]isoquinoline
(4'r)-10',11'-dimethoxy-5'-azaspiro[cyclohexane-1,2'-tricyclo[6.3.1.0⁴,¹²]dodecane]-1'(11'),2,5,8'(12'),9'-pentaen-4-one
C18H19NO3 (297.13648639999997)
(9bs,11r,12r)-8,11-dimethoxy-1h,2h,4h,5h,10h,11h,12h-indolo[7a,1-a]isoquinolin-12-ol
4,16-dimethoxy-10-methyl-10-azatricyclo[11.4.0.0²,⁷]heptadeca-1(17),2,4,6,13,15-hexaen-5-ol
C19H23NO3 (313.16778480000005)
1-[(4-hydroxyphenyl)methyl]-6-methoxy-2-methyl-3,4-dihydro-1h-isoquinolin-7-ol
8,11-dimethoxy-4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-2-one
C18H19NO3 (297.13648639999997)