NCBI Taxonomy: 50172

Viscum articulatum (ncbi_taxid: 50172)

found 70 associated metabolites at species taxonomy rank level.

Ancestor: Viscum

Child Taxonomies: Viscum articulatum var. liquidambaricola

Vanillin

Vanillin melting point standard, Pharmaceutical Secondary Standard; Certified Reference Material

C8H8O3 (152.0473)


Vanillin, also known as vanillaldehyde or lioxin, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is used by the food industry as well as ethylvanillin. Vanillin exists in all living species, ranging from bacteria to humans. Vanillin is a sweet, chocolate, and creamy tasting compound. Vanillin is found, on average, in the highest concentration within a few different foods, such as corns, ryes, and sherries and in a lower concentration in beers, rums, and oats. Vanillin has also been detected, but not quantified, in several different foods, such as gooseberries, other bread, brazil nuts, shea tree, and ohelo berries. This could make vanillin a potential biomarker for the consumption of these foods. Vanillin is a potentially toxic compound. Synthetic vanillin, instead of natural Vanillin extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. Vanillin is the primary component of the extract of the Vanillin bean. Because of the scarcity and expense of natural Vanillin extract, there has long been interest in the synthetic preparation of its predominant component. Artificial Vanillin flavoring is a solution of pure vanillin, usually of synthetic origin. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Vanillin appears as white or very slightly yellow needles. Vanillin is a member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, a flavouring agent, an antioxidant and an anticonvulsant. It is a member of phenols, a monomethoxybenzene and a member of benzaldehydes. Vanillin is a natural product found in Ficus erecta var. beecheyana, Pandanus utilis, and other organisms with data available. Vanillin is the primary component of the extract of the vanilla bean. Synthetic vanillin, instead of natural vanilla extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. It is used by the food industry as well as ethylvanillin.Artificial vanilla flavoring is a solution of pure vanillin, usually of synthetic origin. Because of the scarcity and expense of natural vanilla extract, there has long been interest in the synthetic preparation of its predominant component. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. (Wiki). Vanillin is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of vanilla (Vanilla subspecies) and many other plants, e.g. Peru balsam, clove bud oil. Widely used flavouring agent especies in cocoa products. obtained from spent wood-pulp liquors. Vanillin is found in many foods, some of which are pomes, elderberry, common cabbage, and dock. A member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; ML_ID 59 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

Protocatechuic acid

3,4-dihydroxybenzoic acid

C7H6O4 (154.0266)


Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

4-Hydroxybenzaldehyde

4-hydroxybenzaldehyde

C7H6O2 (122.0368)


4-Hydroxybenzaldehyde, also known as 4-formylphenol or 4-hydroxybenzenecarbonal, belongs to the class of organic compounds known as hydroxybenzaldehydes. These are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde exists in all living organisms, ranging from bacteria to humans. 4-Hydroxybenzaldehyde is a sweet, almond, and balsam tasting compound. 4-Hydroxybenzaldehyde is found, on average, in the highest concentration within vinegars and oats. 4-Hydroxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cardoons, colorado pinyons, oyster mushrooms, common chokecherries, and potato. This could make 4-hydroxybenzaldehyde a potential biomarker for the consumption of these foods. 4-hydroxybenzaldehyde is a hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. It has a role as a plant metabolite, a mouse metabolite and an EC 1.14.17.1 (dopamine beta-monooxygenase) inhibitor. 4-Hydroxybenzaldehyde is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. Occurs naturally combined in many glycosides. Constituent of vanillin. Isol. in free state from opium poppy (Papaver somniferum) A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-08-0 (retrieved 2024-07-02) (CAS RN: 123-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.

   

4-Hydroxybenzoic acid

4-hydroxybenzoic acid

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in A√ßa√≠ oil, obtained from the fruit of the a√ßa√≠ palm (Euterpe oleracea), at relatively high concetrations (892¬±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843). Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid DVN38-Z and 2,4-Hexadienoic acid GMZ10-P. The taste is more detectable than for those preservatives. Effectiveness increases with chain length of the alcohol, but for some microorganisms this reduces cell permeability and thus counteracts the increased efficiency. 4-Hydroxybenzoic acid is found in many foods, some of which are chicory, corn, rye, and black huckleberry. 4-hydroxybenzoic acid is a monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. It has a role as a plant metabolite and an algal metabolite. It is a conjugate acid of a 4-hydroxybenzoate. 4-Hydroxybenzoic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). See also: Vaccinium myrtillus Leaf (part of); Galium aparine whole (part of); Menyanthes trifoliata leaf (part of) ... View More ... A monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. 4-Hydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-96-7 (retrieved 2024-07-01) (CAS RN: 99-96-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. Acquisition and generation of the data is financially supported in part by CREST/JST. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.3603)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

2-Phenylethanol

Phenethyl alcohol, 8ci, ban

C8H10O (122.0732)


2-Phenylethanol, also known as benzeneethanol or benzyl carbinol, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. 2-Phenylethanol exists in all living species, ranging from bacteria to humans. 2-Phenylethanol is a bitter, floral, and honey tasting compound. 2-Phenylethanol is found, on average, in the highest concentration within a few different foods, such as red wines, black walnuts, and white wines and in a lower concentration in grape wines, sweet basils, and peppermints. 2-Phenylethanol has also been detected, but not quantified, in several different foods, such as asparagus, allspices, fruits, horned melons, and lemons. 2-Phenylethanol, with regard to humans, has been found to be associated with several diseases such as ulcerative colitis, pervasive developmental disorder not otherwise specified, and autism. 2-phenylethanol has also been linked to the inborn metabolic disorder celiac disease. A primary alcohol that is ethanol substituted by a phenyl group at position 2. Flavouring ingredient. Component of ylang-ylang oil. 2-Phenylethanol is found in many foods, some of which are hickory nut, arrowhead, allspice, and nance. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents D010592 - Pharmaceutic Aids D004202 - Disinfectants 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions. 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions.

   

Quercitol

5-Deoxyinositol

C6H12O5 (164.0685)


   

Docosahexaenoic acid

Methylparaben, Pharmaceutical Secondary Standard; Certified Reference Material

C8H8O3 (152.0473)


Methylparaben is a 4-hydroxybenzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with methanol. It is the most frequently used antimicrobial preservative in cosmetics. It occurs naturally in several fruits, particularly in blueberries. It has a role as a plant metabolite, an antimicrobial food preservative, a neuroprotective agent and an antifungal agent. Methylparaben is used in allergenic testing. Methylparaben is a Standardized Chemical Allergen. The physiologic effect of methylparaben is by means of Increased Histamine Release, and Cell-mediated Immunity. Methylparaben is a natural product found in Zanthoxylum beecheyanum, Rhizophora apiculata, and other organisms with data available. Methylparaben is found in alcoholic beverages. Methylparaben is an antimicrobial agent, preservative, flavouring agent. Methylparaben is a constituent of cloudberry, yellow passion fruit, white wine, botrytised wine and Bourbon vanilla. Methylparaben has been shown to exhibit anti-microbial function Methylparaben belongs to the family of Hydroxybenzoic Acid Derivatives. These are compounds containing an hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxylic acid. (A3204). See also: Butylparaben; ethylparaben; methylparaben (component of) ... View More ... Methylparaben, also known as methyl 4-hydroxybenzoate or p-carbomethoxyphenol, belongs to the class of organic compounds known as p-hydroxybenzoic acid alkyl esters. These are aromatic compounds containing a benzoic acid, which is esterified with an alkyl group and para-substituted with a hydroxyl group. Methylparaben is an antimicrobial agent, preservative, and flavouring agent. methylparaben has been detected, but not quantified, in a few different foods, such as alcoholic beverages, saffrons, and fruits (particularly blueberries). It is also a constituent of cloudberry, yellow passion fruit, white wine, botrytized wine, and Bourbon vanilla. Methylparaben is the most frequently used antimicrobial preservative in cosmetics. A 4-hydroxybenzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with methanol. It is the most frequently used antimicrobial preservative in cosmetics. It occurs naturally in several fruits, particularly in blueberries. Antimicrobial agent, preservative, flavouring agent. Constituent of cloudberry, yellow passion fruit, white wine, botrytised wine and Bourbon vanilla. Methylparaben is found in saffron, alcoholic beverages, and fruits. D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1]. Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1].

   

Miscanthoside

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O11 (450.1162)


Constituent of Pyrus communis (pear) and Mentha aquatica (water mint),. Eriodictyol 7-glucoside is found in many foods, some of which are pomes, orange mint, peppermint, and tea. Miscanthoside is found in orange mint. Miscanthoside is a constituent of Pyrus communis (pear) and Mentha aquatica (water mint), Eriodictyol-7-O-glucoside (Eriodictyol 7-O-β-D-glucoside), a flavonoid, is a potent free radical scavenger. Eriodictyol-7-O-glucoside is also an Nrf2 activator, confers protection against Cisplatin-induced toxicity[1]. Eriodictyol-7-O-glucoside (Eriodictyol 7-O-β-D-glucoside), a flavonoid, is a potent free radical scavenger. Eriodictyol-7-O-glucoside is also an Nrf2 activator, confers protection against Cisplatin-induced toxicity[1].

   

(R)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

5-hydroxy-2-(4-hydroxyphenyl)-7-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3-dihydrochromen-4-one

C21H22O10 (434.1213)


Prunin, also known as pru du 6.01 protein, prunus, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Prunin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Prunin is a bitter tasting compound found in almond, garden tomato (variety), peach, and pine nut, which makes prunin a potential biomarker for the consumption of these food products. Prunin is a flavanone glycoside found in immature citrus fruits and in tomatoes. Its aglycone form is called naringenin . Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

Vanillin

4-hydroxy-3-methoxybenzaldehyde

C8H8O3 (152.0473)


CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3579; ORIGINAL_PRECURSOR_SCAN_NO 3578 D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3566; ORIGINAL_PRECURSOR_SCAN_NO 3561 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3549; ORIGINAL_PRECURSOR_SCAN_NO 3546 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3560; ORIGINAL_PRECURSOR_SCAN_NO 3556 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3573; ORIGINAL_PRECURSOR_SCAN_NO 3570 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3577; ORIGINAL_PRECURSOR_SCAN_NO 3575 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.504 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.503 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.500 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

Miscanthoside

(2S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2,3-dihydrochromen-4-one

C21H22O11 (450.1162)


Eriodictyol 7-O-beta-D-glucopyranoside is a flavanone glycoside that is eriodictyol attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It is an Nrf2 activator and provides protection against cisplatin-induced toxicity. It has a role as a plant metabolite and a radical scavenger. It is a monosaccharide derivative, a beta-D-glucoside, a flavanone glycoside and a trihydroxyflavanone. It is functionally related to an eriodictyol. Eriodictyol-7-O-glucoside is a natural product found in Lysimachia maxima, Balanophora tobiracola, and other organisms with data available. Eriodictyol-7-O-glucoside (Eriodictyol 7-O-β-D-glucoside), a flavonoid, is a potent free radical scavenger. Eriodictyol-7-O-glucoside is also an Nrf2 activator, confers protection against Cisplatin-induced toxicity[1]. Eriodictyol-7-O-glucoside (Eriodictyol 7-O-β-D-glucoside), a flavonoid, is a potent free radical scavenger. Eriodictyol-7-O-glucoside is also an Nrf2 activator, confers protection against Cisplatin-induced toxicity[1].

   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. A flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

β-Amyrin acetate

(4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl) acetate

C32H52O2 (468.3967)


β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Phenylethyl alcohol

2-phenylethanol

C8H10O (122.0732)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents D010592 - Pharmaceutic Aids D004202 - Disinfectants 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions. 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions.

   

β-Amyrin acetate

[(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl] acetate

C32H52O2 (468.3967)


Beta-amyrin acetate is a triterpenoid. beta-Amyrin acetate is a natural product found in Euphorbia decipiens, Euphorbia larica, and other organisms with data available. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

4-hydroxybenzoate

4-Hydroxybenzoic acid

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

p-Hydroxybenzaldehyde

p-Hydroxybenzaldehyde

C7H6O2 (122.0368)


p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.

   

p-Hydroxybenzoic acid

p-Hydroxybenzoic acid

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

4-Hydroxybenzaldehyde

4-hydroxybenzaldehyde

C7H6O2 (122.0368)


p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.

   

3,4-Dihydroxybenzoic acid

3,4-Dihydroxybenzoic acid

C7H6O4 (154.0266)


   

Methylparaben

Prodelphinidin trimer GC-C-C

C8H8O3 (152.0473)


Prodelphinidin trimer gc-c-c is a member of the class of compounds known as biflavonoids and polyflavonoids. Biflavonoids and polyflavonoids are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3-C3, and C6-C8. Prodelphinidin trimer gc-c-c is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Prodelphinidin trimer gc-c-c can be found in beer, which makes prodelphinidin trimer gc-c-c a potential biomarker for the consumption of this food product. D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3579; ORIGINAL_PRECURSOR_SCAN_NO 3578 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3566; ORIGINAL_PRECURSOR_SCAN_NO 3561 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3549; ORIGINAL_PRECURSOR_SCAN_NO 3546 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3560; ORIGINAL_PRECURSOR_SCAN_NO 3556 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3573; ORIGINAL_PRECURSOR_SCAN_NO 3570 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3577; ORIGINAL_PRECURSOR_SCAN_NO 3575 CONFIDENCE standard compound; INTERNAL_ID 2371 Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1]. Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1].

   

Viscumiside A

Viscumiside A

C22H24O11 (464.1319)


   

1,2,3,4,5-Cyclohexanepentol

1,2,3,4,5-Cyclohexanepentol

C6H12O5 (164.0685)


   

99-50-3

InChI=1\C7H6O4\c8-5-2-1-4(7(10)11)3-6(5)9\h1-3,8-9H,(H,10,11

C7H6O4 (154.0266)


D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Zimco

InChI=1\C8H8O3\c1-11-8-4-6(5-9)2-3-7(8)10\h2-5,10H,1H

C8H8O3 (152.0473)


D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

2-PEA

InChI=1\C8H10O\c9-7-6-8-4-2-1-3-5-8\h1-5,9H,6-7H

C8H10O (122.0732)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents D010592 - Pharmaceutic Aids D004202 - Disinfectants 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions. 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions.

   

FR-0985

4-08-00-00251 (Beilstein Handbook Reference)

C7H6O2 (122.0368)


p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.

   

Abiol

InChI=1\C8H8O3\c1-11-8(10)6-2-4-7(9)5-3-6\h2-5,9H,1H

C8H8O3 (152.0473)


D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1]. Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1].

   

(2S)-2-(4-{[(2S,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)tetrahydrofuran-2-yl]oxy}-3-methoxyphenyl)-5-hydroxy-4-oxo-3,4-dihydro-2H-chromen-7-yl beta-D-glucopyranoside

(2S)-2-(4-{[(2S,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)tetrahydrofuran-2-yl]oxy}-3-methoxyphenyl)-5-hydroxy-4-oxo-3,4-dihydro-2H-chromen-7-yl beta-D-glucopyranoside

C27H32O15 (596.1741)


   

(6-{[2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxo-2,3-dihydro-1-benzopyran-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl 3-phenylprop-2-enoate

(6-{[2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxo-2,3-dihydro-1-benzopyran-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl 3-phenylprop-2-enoate

C30H28O12 (580.1581)


   

(2s,3r,4s,5s,6r)-2-{[(2r)-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r)-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C23H28O10 (464.1682)


   

[(3s,4r,5s)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(2s)-5-hydroxy-4-oxo-2-phenyl-2,3-dihydro-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl (2e)-3-phenylprop-2-enoate

[(3s,4r,5s)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(2s)-5-hydroxy-4-oxo-2-phenyl-2,3-dihydro-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl (2e)-3-phenylprop-2-enoate

C35H36O14 (680.2105)


   

visartiside c

visartiside c

C35H36O16 (712.2003)


   

7-[(3-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-5-hydroxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

7-[(3-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-5-hydroxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C26H30O13 (550.1686)


   

(2s,3r,4s,5s,6r)-2-{4-[3-(4-hydroxy-2,3,6-trimethoxyphenyl)propyl]-2-methoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{4-[3-(4-hydroxy-2,3,6-trimethoxyphenyl)propyl]-2-methoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C25H34O11 (510.2101)


   

visartiside f

visartiside f

C30H36O13 (604.2156)


   

3-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoic acid

3-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoic acid

C13H16O9 (316.0794)


   

(2s)-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C22H24O11 (464.1319)


   

[(3s,4r,5s)-3,4-dihydroxy-5-{4-[(2s)-5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-2-yl]-2-methoxyphenoxy}oxolan-3-yl]methyl (2e)-3-phenylprop-2-enoate

[(3s,4r,5s)-3,4-dihydroxy-5-{4-[(2s)-5-hydroxy-4-oxo-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-2-yl]-2-methoxyphenoxy}oxolan-3-yl]methyl (2e)-3-phenylprop-2-enoate

C36H38O16 (726.216)


   

visartiside a

visartiside a

C30H28O12 (580.1581)


   

5-hydroxy-2-phenyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

5-hydroxy-2-phenyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C21H22O9 (418.1264)


   

[5-({4,5-dihydroxy-2-[(5-hydroxy-4-oxo-2-phenyl-2,3-dihydro-1-benzopyran-7-yl)oxy]-6-(hydroxymethyl)oxan-3-yl}oxy)-3,4-dihydroxyoxolan-3-yl]methyl 3-phenylprop-2-enoate

[5-({4,5-dihydroxy-2-[(5-hydroxy-4-oxo-2-phenyl-2,3-dihydro-1-benzopyran-7-yl)oxy]-6-(hydroxymethyl)oxan-3-yl}oxy)-3,4-dihydroxyoxolan-3-yl]methyl 3-phenylprop-2-enoate

C35H36O14 (680.2105)


   

[(3s,4r,5s)-5-{[(2r,3r,4s,5r,6r)-2-(benzyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl (2e)-3-phenylprop-2-enoate

[(3s,4r,5s)-5-{[(2r,3r,4s,5r,6r)-2-(benzyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl (2e)-3-phenylprop-2-enoate

C27H32O11 (532.1945)


   

2-(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3-methoxyphenyl)-5-hydroxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

2-(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3-methoxyphenyl)-5-hydroxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C27H32O15 (596.1741)


   

(2s)-5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C21H22O10 (434.1213)


   

[(3s,4r,5s)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(2s)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydro-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl (2e)-3-phenylprop-2-enoate

[(3s,4r,5s)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-{[(2s)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydro-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl (2e)-3-phenylprop-2-enoate

C35H36O15 (696.2054)


   

(2s)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C21H22O11 (450.1162)


   

(3,4-dihydroxy-5-{[2,3,5-trihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}oxolan-3-yl)methyl 3-phenylprop-2-enoate

(3,4-dihydroxy-5-{[2,3,5-trihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}oxolan-3-yl)methyl 3-phenylprop-2-enoate

C20H26O11 (442.1475)


   

(5-{[2-(benzyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-3,4-dihydroxyoxolan-3-yl)methyl 3-phenylprop-2-enoate

(5-{[2-(benzyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-3,4-dihydroxyoxolan-3-yl)methyl 3-phenylprop-2-enoate

C27H32O11 (532.1945)


   

[(3s,4r,5s)-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-2,3,5-trihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}oxolan-3-yl]methyl (2e)-3-phenylprop-2-enoate

[(3s,4r,5s)-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-2,3,5-trihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}oxolan-3-yl]methyl (2e)-3-phenylprop-2-enoate

C20H26O11 (442.1475)


   

allo-inositol

allo-inositol

C6H12O5 (164.0685)


   

(1r,3r,4r,5s)-1,3,5-trihydroxy-4-{[(2e)-3-phenylprop-2-enoyl]oxy}cyclohexane-1-carboxylic acid

(1r,3r,4r,5s)-1,3,5-trihydroxy-4-{[(2e)-3-phenylprop-2-enoyl]oxy}cyclohexane-1-carboxylic acid

C16H18O7 (322.1052)


   

(2s)-7-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4r)-4-({[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4-dihydroxyoxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

(2s)-7-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4r)-4-({[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4-dihydroxyoxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C31H38O17 (682.2109)


   

7-[(3-{[4-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4-dihydroxyoxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-5-hydroxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

7-[(3-{[4-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4-dihydroxyoxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-5-hydroxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C31H38O17 (682.2109)


   

[(3s,4r,5s)-5-{[(2r,3r,4s,5r,6r)-2-(benzyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl benzoate

[(3s,4r,5s)-5-{[(2r,3r,4s,5r,6r)-2-(benzyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl benzoate

C25H30O11 (506.1788)


   

2-{[2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[2-(4-hydroxy-3-methoxyphenyl)-7-methoxy-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C23H28O10 (464.1682)


   

visartiside b

visartiside b

C30H28O12 (580.1581)


   

2-{4-[3-(4-hydroxy-2,3,6-trimethoxyphenyl)propyl]-2-methoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{4-[3-(4-hydroxy-2,3,6-trimethoxyphenyl)propyl]-2-methoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C25H34O11 (510.2101)


   

{3,4-dihydroxy-5-[4-(5-hydroxy-4-oxo-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-2-yl)-2-methoxyphenoxy]oxolan-3-yl}methyl 3-phenylprop-2-enoate

{3,4-dihydroxy-5-[4-(5-hydroxy-4-oxo-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-2-yl)-2-methoxyphenoxy]oxolan-3-yl}methyl 3-phenylprop-2-enoate

C36H38O16 (726.216)


   

(2s)-5-hydroxy-2-phenyl-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-5-hydroxy-2-phenyl-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C21H22O9 (418.1264)


   

(3s,6ar,8ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl acetate

(3s,6ar,8ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

(2s)-2-(4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3-methoxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-2-(4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3-methoxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C27H32O15 (596.1741)


   

(5-{[2-(benzyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-3,4-dihydroxyoxolan-3-yl)methyl benzoate

(5-{[2-(benzyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-3,4-dihydroxyoxolan-3-yl)methyl benzoate

C25H30O11 (506.1788)


   

(2s)-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C22H24O11 (464.1319)


   

(2s)-7-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

(2s)-7-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C26H30O13 (550.1686)


   

(4as,6as,6br,8as,10s,12ar,12bs,14br)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8as,10s,12ar,12bs,14br)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


   

{5-[(4,5-dihydroxy-2-{[5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydro-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-3,4-dihydroxyoxolan-3-yl}methyl 3-phenylprop-2-enoate

{5-[(4,5-dihydroxy-2-{[5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-2,3-dihydro-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxan-3-yl)oxy]-3,4-dihydroxyoxolan-3-yl}methyl 3-phenylprop-2-enoate

C35H36O15 (696.2054)


   

2-{[2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxo-2,3-dihydro-1-benzopyran-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl 3-phenylprop-2-enoate

2-{[2-(3,4-dihydroxyphenyl)-5-hydroxy-4-oxo-2,3-dihydro-1-benzopyran-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl 3-phenylprop-2-enoate

C30H28O12 (580.1581)