NCBI Taxonomy: 4034
Oxalis (ncbi_taxid: 4034)
found 430 associated metabolites at genus taxonomy rank level.
Ancestor: Oxalidaceae
Child Taxonomies: Oxalis andina, Oxalis rusbyi, Oxalis herrerae, Oxalis martiana, Oxalis tuberosa, Oxalis spiralis, Oxalis dillenii, Oxalis laxa, Oxalis bisfracta, Oxalis boliviana, Oxalis crassipes, Oxalis villosula, Oxalis ortgiesii, Oxalis oulophora, Oxalis erosa, Oxalis levis, Oxalis rosea, Oxalis nivea, Oxalis annae, Oxalis aurea, Oxalis densa, Oxalis flava, Oxalis dines, Oxalis hirta, Oxalis longissima, Oxalis mollissima, Oxalis pes-caprae, Oxalis articulata, Oxalis obtusa, Oxalis lanata, Oxalis livida, Oxalis natans, Oxalis tenuis, Oxalis xantha, Oxalis setosa, Oxalis caesia, Oxalis suavis, Oxalis incana, Oxalis lomana, Oxalis rigida, Oxalis exilis, Oxalis alpina, Oxalis bowiei, Oxalis bifida, Oxalis burkei, Oxalis crocea, Oxalis comosa, Oxalis dregei, Oxalis grisea, Oxalis glabra, Oxalis minuta, Oxalis dolichopoda, Oxalis pachyrrhiza, Oxalis unduavensis, Oxalis vulcanicola, Oxalis yungasensis, Oxalis oregana, Oxalis blackii, Oxalis florida, Oxalis pallens, Oxalis pusilla, Oxalis salteri, Oxalis tenella, Oxalis montana, Oxalis viscosa, Oxalis cinerea, Oxalis pyrenea, Oxalis virgata, Oxalis zeyheri, Oxalis virgosa, Oxalis extensa, Oxalis hirsuta, Oxalis odorata, Oxalis reflexa, Oxalis stricta, Oxalis stokoei, Oxalis trollii, Oxalis ciliata, Oxalis cordata, Oxalis alvimii, Oxalis ambigua, Oxalis bifurca, Oxalis callosa, Oxalis cathara, Oxalis caprina, Oxalis dentata, Oxalis copiosa, Oxalis bifrons, Oxalis cuneata, Oxalis debilis, Oxalis exserta, Oxalis fibrosa, Oxalis serpens, Oxalis louisae, Oxalis luteola, Oxalis melilotoides, Oxalis peduncularis, Oxalis nidulans, Oxalis meisneri, Oxalis purpurea, Oxalis nortieri, Oxalis tenuipes, Oxalis pampeana, Oxalis arenaria, Oxalis dreyerae, Oxalis punctata, Oxalis stellata, Oxalis compacta, Oxalis hepatica, Oxalis strigosa, Oxalis gigantea, Oxalis sellowii, Oxalis zamorana, Oxalis lunulata, Oxalis loricata, Oxalis virginea, Oxalis paposana, Oxalis ricardii, Oxalis squamata, Oxalis tortuosa, Oxalis caerulea, Oxalis discolor, Oxalis creaseyi, Oxalis crispula, Oxalis gregaria, Oxalis carolina, Oxalis nelsonii, Oxalis lotoides, Oxalis morronei, Oxalis nubigena, Oxalis violacea, Oxalis puberula, Oxalis adenodes, Oxalis alstonii, Oxalis adspersa, Oxalis ciliaris, Oxalis depressa, Oxalis dilatata, Oxalis disticha, Oxalis paludosa, Oxalis refracta, Oxalis linearis, Oxalis gracilis, Oxalis aff. tuberosa, Oxalis namaquana, Oxalis imbricata, Oxalis incarnata, Oxalis oculifera, Oxalis bipartita, Oxalis cratensis, Oxalis oreophila, Oxalis hispidula, Oxalis neuwiedii, Oxalis pocockiae, Oxalis pulchella, Oxalis micrantha, Oxalis reclinata, Oxalis orthopoda, Oxalis tomentosa, Oxalis urbaniana, Oxalis arbuscula, Oxalis psilopoda, Oxalis smithiana, Oxalis dumetorum, Oxalis gyrorhiza, Oxalis uliginosa, Oxalis laciniata, Oxalis squarrosa, Oxalis smalliana, Oxalis foveolata, Oxalis divergens, Oxalis eriolepis, Oxalis magnifica, Oxalis primavera, Oxalis monticola, Oxalis famatinae, Oxalis muscoides, Oxalis petricola, Oxalis cuzcensis, Oxalis humbertii, Oxalis cipoensis, Oxalis polyrhiza, Oxalis corymbosa, Oxalis argentina, Oxalis purpurata, Oxalis attaquana, Oxalis aridicola, Oxalis bullulata, Oxalis burtoniae, Oxalis campicola, Oxalis lasiandra, Oxalis commutata, Oxalis comptonii, Oxalis convexula, Oxalis fruticosa, Oxalis eriocarpa, Oxalis impatiens, Oxalis dichotoma, Oxalis praetexta, Oxalis knuthiana, Oxalis latifolia, Oxalis fabifolia, Oxalis falcatula, Oxalis fourcadei, Oxalis tenerrima, Oxalis perennans, Oxalis aff. distincta, Oxalis aff. latifolia, Oxalis monophylla, Oxalis hygrophila, Oxalis hypsophila, Oxalis floribunda, Oxalis sellowiana, Oxalis leptocalyx, Oxalis polyphylla, Oxalis massoniana, Oxalis oreocharis, Oxalis tenuifolia, Oxalis palmifrons, Oxalis perdicaria, Oxalis truncatula, Oxalis versicolor, Oxalis polymorpha, Oxalis aureoflava, Oxalis fenestrata, Oxalis goyazensis, Oxalis stenoptera, Oxalis physocalyx, Oxalis suteroides, Oxalis johnstonii, Oxalis ornithopus, Oxalis magnifolia, Oxalis decaphylla, Oxalis helicoides, Oxalis drummondii, Oxalis linarantha, Oxalis macrocarpa, Oxalis geralensis, Oxalis noctiflora, Oxalis subacaulis, Oxalis berteroana, Oxalis pardoensis, Oxalis leucolepis, Oxalis kollmannii, Oxalis petrophila, Oxalis picchensis, Oxalis flagellata, Oxalis subintegra, Oxalis acetosella, Oxalis griffithii, Oxalis ericifolia, Oxalis barrelieri, Oxalis argillacea, Oxalis capillacea, Oxalis kuhlmannii, Oxalis sonderiana, Oxalis clavifolia, Oxalis ebracteata, Oxalis eckloniana, Oxalis conorrhiza, Oxalis engleriana, Oxalis densifolia, Oxalis divaricata, Oxalis frutescens, Oxalis furcillata, Oxalis cytisoides, Oxalis duriuscula, Oxalis sarmentosa, Oxalis goniorhiza, Oxalis gracilipes, Oxalis haedulipes, Oxalis inconspicua, Oxalis oligophylla, Oxalis lateriflora, Oxalis umbraticola, Oxalis primuloides, Oxalis multicaulis, Oxalis stenopetala, Oxalis orbicularis, Oxalis phaeotricha, Oxalis pillansiana, Oxalis atacamensis, Oxalis hyalotricha, Oxalis recticaulis, Oxalis corniculata, Oxalis diamantinae, Oxalis enneaphylla, Oxalis tetraphylla, Oxalis holosericea, Oxalis magellanica, Oxalis matancillae, Oxalis morenoensis, Oxalis penicillata, Oxalis pycnophylla, Oxalis luederitzii, Oxalis lasiorrhiza, Oxalis adenophylla, Oxalis wulingensis, Oxalis psammophila, Oxalis hernandezii, Oxalis jacquiniana, Oxalis lasiopetala, Oxalis medicaginea, Oxalis ptychoclada, Oxalis amblyodonta, Oxalis teneriensis, Oxalis weberbaueri, Oxalis saltusbelli, Oxalis flaviuscula, Oxalis deserticola, Oxalis mandioccana, Oxalis glaucescens, Oxalis droseroides, Oxalis paranaensis, Oxalis leptogramma, Oxalis lichenoides, Oxalis heterophylla, unclassified Oxalis, Oxalis colatinensis, Oxalis x vanaelstii, Oxalis purpurascens, Oxalis obliquifolia, Oxalis stictocheila, Oxalis pendulifolia, Oxalis pseudocernua, Oxalis psoraleoides, Oxalis hirsutibulba, Oxalis triangularis, Oxalis urubambensis, Oxalis valdiviensis, Oxalis cardenasiana, Oxalis canaliculata, Oxalis morelosensis, Oxalis hedysaroides, Oxalis trilliifolia, Oxalis rosettifolia, Oxalis rubricallosa, Oxalis lucumayensis, Oxalis megalorrhiza, Oxalis hirsutissima, Oxalis staffordiana, Oxalis amblyosepala, Oxalis argyrophylla, Oxalis brasiliensis, Oxalis blastorrhiza, Oxalis niederleinii, Oxalis grammophylla, Oxalis melanosticta, Oxalis grammopetala, Oxalis phloxidiflora, Oxalis obtriangulata, Oxalis bulbocastanum, Oxalis hedysarifolia, Oxalis erythrorrhiza, Oxalis filifoliolata, Oxalis pinguiculacea, Oxalis chachahuensis, Oxalis oblongiformis, Oxalis campylorrhiza, Oxalis confertifolia, Oxalis bela-vitoriae, Oxalis giftbergensis, Oxalis suborbiculata, Oxalis rhombeo-ovata, Oxalis novemfoliolata, Oxalis tabaconasensis, Oxalis calachaccensis, Oxalis camelopardalis, Oxalis kamiesbergensis, Oxalis porphyriosiphon, Oxalis zeekoevleyensis, Oxalis paucartambensis, Oxalis cf. flava MO576, Oxalis nahuelhuapiensis, Oxalis cf. alpina SW979, Oxalis cf. dines MO1286h, Oxalis cf. pulvinata MO57, Oxalis cf. tuberosa EE259, Oxalis cf. compressa MO519, Oxalis cf. lasiandra MO455, Oxalis cf. tragopoda MO490, Oxalis cf. villosula EE807, Oxalis cf. sonderiana MO125, Oxalis cf. copiosa KCO-2013, Oxalis cf. fergusoniae MO501, Oxalis cf. pachyrrhiza MO460, Oxalis cf. haedulipes MO1459, Oxalis cf. ptychoclada EE916, Oxalis cf. melilotoides EE190, Oxalis aff. peduncularis EE850, Oxalis aff. campylorrhiza MO120, Oxalis cf. helicoides Dreyer 688
Vanillic acid
Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].
Cinnamic acid
Cinnamic acid is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. It has a role as a plant metabolite. It is a member of styrenes and a member of cinnamic acids. It is a conjugate acid of a cinnamate. Cinnamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cinnamic acid is a natural product found in Marsypopetalum crassum, Aiouea brenesii, and other organisms with data available. Cinnamic acid has the formula C6H5CHCHCOOH and is an odorless white crystalline acid, which is slightly soluble in water. It has a melting point of 133 degree centigrade and a boiling point of 300 degree centigrade. Cinnamic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon (part of); Chinese Cinnamon (part of); Stevia rebaudiuna Leaf (part of) ... View More ... Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID C016 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
4-Hydroxycinnamic acid
4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Harmaline
Harmaline is a harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7 and has been reduced across the 3,4 bond. It has a role as a oneirogen. It derives from a hydride of a harman. Harmaline is a natural product found in Passiflora pilosicorona, Passiflora boenderi, and other organisms with data available. A beta-carboline alkaloid isolated from seeds of PEGANUM. A harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7 and has been reduced across the 3,4 bond. Harmaline is found in fruits. Harmaline is an alkaloid from Passiflora incarnata (maypops D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H027; [MS2] KO008994 KEIO_ID H027
Caffeic acid
Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
4-Hydroxybenzoic acid
4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in Açaí oil, obtained from the fruit of the açaí palm (Euterpe oleracea), at relatively high concetrations (892±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843).
Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid
Sinapic acid
Sinapic acid, also known as sinapinate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Sinapic acid has been detected, but not quantified, in several different foods, such as strawberry guava, purple lavers, common verbena, ryes, and lupines. This could make sinapic acid a potential biomarker for the consumption of these foods. A sinapic acid in which the double bond has trans-configuration. Trans-sinapic acid is a sinapic acid in which the double bond has trans-configuration. It has a role as a MALDI matrix material and a plant metabolite. It is a conjugate acid of a trans-sinapate. Sinapic acid is a matrix for matrix-assisted laser desorption technique for protein MW determination. It is also a constituent of propolis. Sinapic acid is a natural product found in Sida acuta, Limoniastrum guyonianum, and other organisms with data available. A common constituent of plants and fruits. trans-Sinapic acid is found in many foods, some of which are small-leaf linden, redcurrant, malabar spinach, and blackcurrant. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents A sinapic acid in which the double bond has trans-configuration. Acquisition and generation of the data is financially supported in part by CREST/JST. Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00014.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00015.jpg CONFIDENCE standard compound; INTERNAL_ID 174 Annotation level-1 Annotation level-2 KEIO_ID S028 Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3]. Sinapinic acid (Sinapic acid) is a phenolic compound isolated from Hydnophytum formicarum Jack. Rhizome, acts as an inhibitor of HDAC, with an IC50 of 2.27 mM[1], and also inhibits ACE-I activity[2]. Sinapinic acid posssess potent anti-tumor activity, induces apoptosis of tumor cells[1]. Sinapinic acid shows antioxidant and antidiabetic activities[2]. Sinapinic acid reduces total cholesterol, triglyceride, and HOMA-IR index, and also normalizes some serum parameters of antioxidative abilities and oxidative damage in ovariectomized rats[3].
4-Hydroxybenzyl alcohol
4-hydroxybenzyl alcohol is the cleavage product produced during the biosynthesis of the thiazole moiety of thiamine from tyrosine as part of the thiamine biosynthesis pathway. It is a derivative of benzyl alcohol which is used as a local anesthetic and to reduce pain associated with Lidocaine injection. Also, it is used in the manufacture of other benzyl compounds, as a pharmaceutical aid, and in perfumery and flavoring. Benzyl Alcohol is an aromatic alcohol used in a wide variety of cosmetic formulations as a fragrance component, preservative, solvent, and viscosity-decreasing agent. Benzyl Alcohol is metabolized to Benzoic Acid, which reacts with glycine and excreted as hippuric acid in the human body. Acceptable daily intakes were established by the World Health Organization at 5 mg/kg for Benzyl Alcohol. No adverse effects of benzyl alcohol have been seen in chronic exposure animal studies using rats and mice. Effects of Benzyl Alcohol in chronic exposure animal studies are limited to reduced feed intake and reduced growth. Some differences have been noted in one reproductive toxicity study using mice, but these were limited to lower maternal body weights and decreased mean litter weights. Another study also noted that fetal weight was decreased compared to controls, but a third study showed no differences between control and benzyl alcohol-treated groups. Benzyl Alcohol has been associated with an increased number of resorptions and malformations in hamsters, but there have been no reproductive or developmental toxicity findings in studies using mice and rats. Genotoxicity tests for benzyl alcohol are mostly negative, but there were some assays that were positive. Carcinogenicity studies, however, were negative. Clinical data indicates that benzyl alcohol can produce nonimmunologic contact urticaria and nonimmunologic immediate contact reactions, characterized by the appearance of wheals, erythema, and pruritis. 5\\\\% benzyl alcohol can elicit a reaction. Benzyl Alcohol is not a sensitizer at 10\\\\%. Benzyl Alcohol could be used safely at concentrations up to 5\\\\%, but that manufacturers should consider the nonimmunologic phenomena when using benzyl alcohol in cosmetic formulations designed for infants and children. Additionally, Benzyl Alcohol is considered safe up to 10\\\\% for use in hair dyes. The limited body exposure, the duration of use, and the frequency of use are considered in concluding that the nonimmunologic reactions would not be a concern. Because of the wide variety of product types in which benzyl alcohol may be used, it is likely that inhalation may be a route of exposure. The available safety tests are not considered sufficient to support the safety of benzyl alcohol in formulations where inhalation is a route of exposure. Inhalation toxicity data are needed to complete the safety assessment of benzyl alcohol where inhalation can occur. (PMID: 11766131). P-hydroxybenzyl alcohol is a member of the class of benzyl alcohols that is benzyl alcohol substituted by a hydroxy group at position 4. It has been isolated from Arcangelisia gusanlung. It has a role as a plant metabolite. It is a member of phenols and a member of benzyl alcohols. 4-Hydroxybenzyl alcohol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). 4-Hydroxybenzyl alcohol is a natural product found in Populus laurifolia, Mesua, and other organisms with data available. Constituent of muskmelon (Cucurbita moschata) 4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4]. 4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4].
Harmine
C13H12N2O (212.09495819999998)
Harmine is a harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7. It has a role as a metabolite, an anti-HIV agent and an EC 1.4.3.4 (monoamine oxidase) inhibitor. It derives from a hydride of a harman. Harmine is a natural product found in Thalictrum foetidum, Acraea andromacha, and other organisms with data available. Alkaloid isolated from seeds of PEGANUM HARMALA; ZYGOPHYLLACEAE. It is identical to banisterine, or telepathine, from Banisteria caapi and is one of the active ingredients of hallucinogenic drinks made in the western Amazon region from related plants. It has no therapeutic use, but (as banisterine) was hailed as a cure for postencephalitic PARKINSON DISEASE in the 1920s. D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens Harmine is found in fruits. Harmine is an alkaloid from Passiflora edulis (passionfruit A harmala alkaloid in which the harman skeleton is methoxy-substituted at C-7. D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) [Raw Data] CB043_Harmine_pos_40eV_CB000020.txt [Raw Data] CB043_Harmine_pos_50eV_CB000020.txt [Raw Data] CB043_Harmine_pos_10eV_CB000020.txt [Raw Data] CB043_Harmine_pos_30eV_CB000020.txt [Raw Data] CB043_Harmine_pos_20eV_CB000020.txt CONFIDENCE standard compound; INTERNAL_ID 2884 [Raw Data] CB043_Harmine_neg_50eV_000013.txt [Raw Data] CB043_Harmine_neg_30eV_000013.txt [Raw Data] CB043_Harmine_neg_10eV_000013.txt [Raw Data] CB043_Harmine_neg_20eV_000013.txt [Raw Data] CB043_Harmine_neg_40eV_000013.txt Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1].
Guaiacol
O-methoxyphenol appears as colorless to amber crystals or liquid. Density (of solid) 1.129 g / cm3. Solidifies at 28 °C (82.4 °F), but may remain liquid for a long time even at a much lower temperature. Slightly water soluble. Soluble in aqueous sodium hydroxide. Used medicinally as an expectorant. Used, because of its anti-oxidant properties, as an anti-skinning agent for paints. Guaiacol is a monomethoxybenzene that consists of phenol with a methoxy substituent at the ortho position. It has a role as an expectorant, a disinfectant, a plant metabolite and an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor. It is functionally related to a catechol. Guaiacol is an agent thought to have disinfectant properties and used as an expectorant. Guaiacol is a phenolic natural product first isolated from Guaiac resin and the oxidation of lignin. Guaiacol is also present in wood smoke, as a product of pyrolysis of lignin. Guaiacol has been found in the urine of patients with neuroblastoma and pheochromocytoma. Guaiacol is a natural product found in Verbascum lychnitis, Castanopsis cuspidata, and other organisms with data available. Guaiacol is a phenolic compound with a methoxy group and is the monomethyl ether of catechol. Guaiacol is readily oxidized by the heme iron of peroxidases including the peroxidase of cyclooxygenase (COX) enzymes. It therefore serves as a reducing co-substrate for COX reactions. Guaiacol is a phenolic natural product first isolated from Guaiac resin and the oxidation of lignin. It is a yellowish aromatic oil that is now commonly derived from guaiacum or wood creosote. It is used medicinally as an expectorant, antiseptic, and local anesthetic. Guaiacol is used in traditional dental pulp sedation, and has the property of inducing cell proliferation; guaiacol is a potent scavenger of reactive oxygen radicals and its radical scavenging activity may be associated with its effect on cell proliferation. Guaiacol is also used in the preparation of synthetic vanillin. Guaiacol is also present in wood smoke, as a product of pyrolysis of lignin. Guaiacol has been found in the urine of patients with neuroblastoma and pheochromocytoma. (A3556, A3559). 2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. An agent thought to have disinfectant properties and used as an expectorant. (From Martindale, The Extra Pharmacopoeia, 30th ed, p747) See also: Wood Creosote (part of); Tolu balsam (USP) (part of). Guaiacol is a phenolic compound with a methoxy group and is the monomethyl ether of catechol. Guaiacol is readily oxidized by the heme iron of peroxidases including the peroxidase of cyclooxygenase (COX) enzymes. It therefore serves as a reducing co-substrate for COX reactions. Guaiacol is a phenolic natural product first isolated from Guaiac resin and the oxidation of lignin. It is a yellowish aromatic oil that is now commonly derived from guaiacum or wood creosote. It is used medicinally as an expectorant, antiseptic, and local anesthetic. Guaiacol is used in traditional dental pulp sedation, and has the property of inducing cell proliferation; guaiacol is a potent scavenger of reactive oxygen radicals and its radical scavenging activity may be associated with its effect on cell proliferation. Guaiacol is also used in the preparation of synthetic vanillin. Guaiacol is also present in wood smoke, as a product of pyrolysis of lignin. Guaiacol has been found in the urine of patients with neuroblastoma and pheochromocytoma. (PMID 4344880, 16152729). Present in Parmesan cheese, tea and soybean. Flavouring ingredient. 2-Methoxyphenol is found in many foods, some of which are milk and milk products, asparagus, pepper (c. annuum), and wild celery. R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants A monomethoxybenzene that consists of phenol with a methoxy substituent at the ortho position. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C78273 - Agent Affecting Respiratory System > C29767 - Expectorant Guaiacol, a phenolic compound, inhibits LPS-stimulated COX-2 expression and NF-κB activation[1]. Anti-inflammatory activity[1]. Guaiacol, a phenolic compound, inhibits LPS-stimulated COX-2 expression and NF-κB activation[1]. Anti-inflammatory activity[1].
Hydrocinnamic acid
Hydrocinnamic acid, also known as 3-phenylpropanoic acid or dihydrocinnamic acid, belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid (C6-C3). Phenylpropanoic acid can be prepared from cinnamic acid by hydrogenation. Hydrocinnamic acid is a sweet, balsamic, and cinnamon tasting compound. This compound is used frequently in cosmetic products such as perfumes, bath gels, detergent powders, liquid detergents, fabric softeners, and soaps as it gives off a floral scent. A characteristic reaction of phenylpropanoic acid is its cyclization to indanones. Phenylpropanoic acid is used in the food industry to preserve and maintain the original aroma quality of frozen foods. Phenylpropanoic acid is also added to food for technological purposes in a wide variety including manufacturing, processing, preparation, treatment, packaging, transportation or storage, and food additives. This compound is used as a sweetener as well to sweeten food and can be found in tabletop sweeteners. Hydrocinnamic acid is an analogue of phenylalanine. It is a substrate of the enzyme oxidoreductases [EC 1.14.12.-] in the pathway phenylalanine metabolism (KEGG). 3-Phenylpropanoic acid is found in many foods, some of which are purple laver, quinoa, custard apple, and conch. KEIO_ID P109 Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
Tangeritin
Isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutical. Tangeritin is found in many foods, some of which are apple, broccoli, sweet bay, and tea. Tangeritin is found in apple. Tangeritin is isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutica Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor.
Nobiletin
Nobiletin is a methoxyflavone that is flavone substituted by methoxy groups at positions 5, 6, 7, 8, 3 and 4 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is functionally related to a flavone. Nobiletin is a natural product found in Citrus tankan, Citrus keraji, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). Isolated from peel of king orange (Citrus nobilis), seville orange (Citrus aurantium) and other Citrus subspecies, and the round kumquat (Fortunella japonica). Nobiletin is found in many foods, some of which are sweet bay, citrus, lemon, and grapefruit. Nobiletin is found in citrus. Nobiletin is isolated from peel of king orange (Citrus nobilis), seville orange (Citrus aurantium) and other Citrus species, and the round kumquat (Fortunella japonica A methoxyflavone that is flavone substituted by methoxy groups at positions 5, 6, 7, 8, 3 and 4 respectively. D020011 - Protective Agents > D000975 - Antioxidants Nobiletin is a poly-methoxylated flavone from the citrus peel that improves memory loss. Nobiletin is a retinoid acid receptor-related orphan receptors (RORs) agonist. Nobiletin can reduce reactive oxygen species (ROS) levels in differentiated C2C12 myotubes and has anti-inflammation and anti-cancer properties, including anti-angiogenesis, anti-proliferation, anti-metastasis and induced apoptosis[1][2][3][4]. Nobiletin is a poly-methoxylated flavone from the citrus peel that improves memory loss. Nobiletin is a retinoid acid receptor-related orphan receptors (RORs) agonist. Nobiletin can reduce reactive oxygen species (ROS) levels in differentiated C2C12 myotubes and has anti-inflammation and anti-cancer properties, including anti-angiogenesis, anti-proliferation, anti-metastasis and induced apoptosis[1][2][3][4].
1,3-Benzenediol
1,3-Benzenediol, also known as resorcin or m-hydroquinone, belongs to the class of organic compounds known as resorcinols. Resorcinols are compounds containing a resorcinol moiety, which is a benzene ring bearing two hydroxyl groups at positions 1 and 3. 1,3-Benzenediol exists in all living organisms, ranging from bacteria to humans. 1,3-Benzenediol is a creamy, hawthorn, and musty tasting compound. 1,3-Benzenediol has been detected, but not quantified, in several different foods, such as alcoholic beverages, cereals and cereal products, coffee and coffee products, eggplants, and java plums. This could make 1,3-benzenediol a potential biomarker for the consumption of these foods. 1,3-Benzenediol is a potentially toxic compound. In addition, exogenous ochronosis is associated with prolonged exposure to resorcinol . Data regarding the specific mechanisms of action of resorcinol does not appear to be readily accessible in the literature. Nevertheless, the role played by iodide ions in the irreversible inactivation of the enzymes is not yet fully elucidated . Resorcinol works by helping to remove hard, scaly, or roughened skin. In particular, it appears that resorcinol indicated for treating acne, dermatitis, or eczema in various skin care topical applications and peels revolves around the compounds ability to precipitate cutaneous proteins from the treated skin . In LPO and TPO, the resulting π-cation radical of the porphyrin can isomerize to a radical cation with the radical in an aromatic side chain of the enzyme . In vitro and in vivo studies have demonstrated that resorcinol can inhibit peroxidases in the thyroid and subsequently block the synthesis of thyroid hormones and cause goiter . Present in roasted barley, cane molasses, coffee, beer and wine. Flavouring ingredient. 1,3-Benzenediol is found in many foods, some of which are cereals and cereal products, coffee and coffee products, alcoholic beverages, and java plum. D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
Cyanidin 3-glucoside
[C21H21O11]+ (449.10838160000003)
Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-glucoside is a product of cyanidin 3-sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Acquisition and generation of the data is financially supported in part by CREST/JST. Found in many plants and fruits, e.g. cherries, olives and grapes
Embelin
Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3]. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3].
5-O-Methylembelin
5-O-Methylembelin is a constituent of Myrsine africana (cape myrtle). Constituent of Myrsine africana (cape myrtle) 5-O-Methylembelin is a natural isocoumarin that inhibits PCSK9, inducible degrader of the low-density lipoprotein receptor (IDLR), and sterol regulatory element binding protein 2 (SREBP2) mRNA expression[1].
Cinnamic acid
Cinnamic acid, also known as (Z)-cinnamate or 3-phenyl-acrylate, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Cinnamic acid can be obtained from oil of cinnamon, or from balsams such as storax. Cinnamic acid is a weakly acidic compound (based on its pKa). It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Cinnamic acid exists in all living organisms, ranging from bacteria to plants to humans. Outside of the human body, cinnamic acid has been detected, but not quantified in, chinese cinnamons. In plants, cinnamic acid is a central intermediate in the biosynthesis of myriad natural products include lignols (precursors to lignin and lignocellulose), flavonoids, isoflavonoids, coumarins, aurones, stilbenes, catechin, and phenylpropanoids. CONFIDENCE standard compound; INTERNAL_ID 191; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3778; ORIGINAL_PRECURSOR_SCAN_NO 3776 CONFIDENCE standard compound; INTERNAL_ID 191; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3783; ORIGINAL_PRECURSOR_SCAN_NO 3781 Cinnamic acid is a white crystalline hydroxycinnamic acid, which is slightly soluble in water. It is obtained from oil of cinnamon, or from balsams such as storax. cis-Cinnamic acid is found in chinese cinnamon. CONFIDENCE standard compound; INTERNAL_ID 183 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
Clionasterol
Clionasterol is a triterpenoid isolated from the Indian marine red alga Gracilaria edulis, the sponge Veronica aerophoba and the Kenyan Marine Green. Macroalga Halimeda macroloba. It is a potent inhibitor of complement component C1. (PMID 12624828). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites
cis-p-Coumaric acid
cis-p-Coumaric acid, also known as cis-4-hydroxycinnamic acid, is a hydroxy derivative of cinnamic acid. Cinnamic acid and its derivatives are used as important components in flavours, perfumes, synthetic indigo, and pharmaceuticals. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid. These isomers differ by the position of the hydroxy substitution. p-Coumaric acid is the most abundant isomer in nature (Wikipedia). cis-p-Coumaric acid is found in coriander. Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. cis-p-Coumaric acid is found in coriander.
Isovitexin 2-O-xyloside
Isovitexin 2''-O-arabinoside is an inactive flavonoid in plantlets of Avena sativa L.[1]. Isovitexin 2''-O-arabinoside is an inactive flavonoid in plantlets of Avena sativa L.[1].
Demethylnobiletin
Demethylnobiletin is an ether and a member of flavonoids. Demethylnobiletin is a natural product found in Clinopodium dalmaticum, Stachys aegyptiaca, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). Isolated from Citrus subspecies, Mentha piperita and Thymus species Demethylnobiletin is found in many foods, some of which are herbs and spices, winter savory, sweet orange, and peppermint. Demethylnobiletin is found in citrus. Demethylnobiletin is isolated from Citrus species, Mentha piperita and Thymus sp. 5-O-Demethylnobiletin (5-Demethylnobiletin), a polymethoxyflavone isolated from Citrus jambhiri Lush., is a direct inhibition of 5-LOX (IC50=0.1 μM), without affecting the expression of COX-2. 5-O-Demethylnobiletin (5-Demethylnobiletin) has anti-inflammatory activity, inhibits leukotriene B (4)(LTB4) formation in rat neutrophils and elastase release in human neutrophils with an IC50 of 0.35 μM[1]. 5-O-Demethylnobiletin (5-Demethylnobiletin), a polymethoxyflavone isolated from Citrus jambhiri Lush., is a direct inhibition of 5-LOX (IC50=0.1 μM), without affecting the expression of COX-2. 5-O-Demethylnobiletin (5-Demethylnobiletin) has anti-inflammatory activity, inhibits leukotriene B (4)(LTB4) formation in rat neutrophils and elastase release in human neutrophils with an IC50 of 0.35 μM[1]. 5-O-Demethylnobiletin (5-Demethylnobiletin), a polymethoxyflavone isolated from Citrus jambhiri Lush., is a direct inhibition of 5-LOX (IC50=0.1 μM), without affecting the expression of COX-2. 5-O-Demethylnobiletin (5-Demethylnobiletin) has anti-inflammatory activity, inhibits leukotriene B (4)(LTB4) formation in rat neutrophils and elastase release in human neutrophils with an IC50 of 0.35 μM[1].
Docosahexaenoic acid
Methylparaben is a 4-hydroxybenzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with methanol. It is the most frequently used antimicrobial preservative in cosmetics. It occurs naturally in several fruits, particularly in blueberries. It has a role as a plant metabolite, an antimicrobial food preservative, a neuroprotective agent and an antifungal agent. Methylparaben is used in allergenic testing. Methylparaben is a Standardized Chemical Allergen. The physiologic effect of methylparaben is by means of Increased Histamine Release, and Cell-mediated Immunity. Methylparaben is a natural product found in Zanthoxylum beecheyanum, Rhizophora apiculata, and other organisms with data available. Methylparaben is found in alcoholic beverages. Methylparaben is an antimicrobial agent, preservative, flavouring agent. Methylparaben is a constituent of cloudberry, yellow passion fruit, white wine, botrytised wine and Bourbon vanilla. Methylparaben has been shown to exhibit anti-microbial function Methylparaben belongs to the family of Hydroxybenzoic Acid Derivatives. These are compounds containing an hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxylic acid. (A3204). See also: Butylparaben; ethylparaben; methylparaben (component of) ... View More ... Methylparaben, also known as methyl 4-hydroxybenzoate or p-carbomethoxyphenol, belongs to the class of organic compounds known as p-hydroxybenzoic acid alkyl esters. These are aromatic compounds containing a benzoic acid, which is esterified with an alkyl group and para-substituted with a hydroxyl group. Methylparaben is an antimicrobial agent, preservative, and flavouring agent. methylparaben has been detected, but not quantified, in a few different foods, such as alcoholic beverages, saffrons, and fruits (particularly blueberries). It is also a constituent of cloudberry, yellow passion fruit, white wine, botrytized wine, and Bourbon vanilla. Methylparaben is the most frequently used antimicrobial preservative in cosmetics. A 4-hydroxybenzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with methanol. It is the most frequently used antimicrobial preservative in cosmetics. It occurs naturally in several fruits, particularly in blueberries. Antimicrobial agent, preservative, flavouring agent. Constituent of cloudberry, yellow passion fruit, white wine, botrytised wine and Bourbon vanilla. Methylparaben is found in saffron, alcoholic beverages, and fruits. D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1]. Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1].
Isovitexin 2'-O-arabinoside
Isovitexin 2-O-arabinoside is found in cereals and cereal products. Isovitexin 2-O-arabinoside is isolated from Avena sativa (oats). Isolated from Avena sativa (oats). Isovitexin 2-arabinoside is found in oat and cereals and cereal products. Isovitexin 2''-O-arabinoside is an inactive flavonoid in plantlets of Avena sativa L.[1]. Isovitexin 2''-O-arabinoside is an inactive flavonoid in plantlets of Avena sativa L.[1].
4'-Hydroxy-3',5,6,7,8-pentamethoxyflavone
4-Hydroxy-3,5,6,7,8-pentamethoxyflavone is found in citrus. 4-Hydroxy-3,5,6,7,8-pentamethoxyflavone is a constituent of mandarin orange peel (Citrus reticulata)
cis-Caffeic acid
Caffeic acid, also known as caffeate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Caffeic acid exists in all living species, ranging from bacteria to humans. It is the precursor to ferulic acid, coniferyl alcohol, and sinapyl alcohol, all of which are significant building blocks in lignin. Outside of the human body, caffeic acid has been detected, but not quantified in fats and oils and nuts. Caffeic acid is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Caffeic acid has a variety of potential pharmacological effects in in vitro studies and in animal models, and the inhibitory effect of caffeic acid on cancer cell proliferation by an oxidative mechanism in the human HT-1080 fibrosarcoma cell line has recently been established. It occurs at high levels in black chokeberry (141 mg per 100 g) and in fairly high level in lingonberry (6 mg per 100 g). D020011 - Protective Agents > D000975 - Antioxidants Found in olive oil, peanuts and other plant sources Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Isovitexin 2'-(6'-(E)-p-coumaroylglucoside)
Isovitexin 2-(6-(e)-p-coumaroylglucoside) is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isovitexin 2-(6-(e)-p-coumaroylglucoside) is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Isovitexin 2-(6-(e)-p-coumaroylglucoside) can be found in cucumber, which makes isovitexin 2-(6-(e)-p-coumaroylglucoside) a potential biomarker for the consumption of this food product.
Methyl p-coumarate
Methyl p-coumarate, also known as 4-coumaric acid methyl ester, is a member of the class of compounds known as coumaric acid esters. Coumaric acid esters are aromatic compounds containing an ester derivative of coumaric acid. Methyl p-coumarate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Methyl p-coumarate can be found in bamboo shoots and garden onion, which makes methyl p-coumarate a potential biomarker for the consumption of these food products. Methyl p-coumarate (Methyl 4-hydroxycinnamate), an esterified derivative of p-Coumaric acid (pCA), is isolated from the flower of Trixis michuacana var longifolia. Methyl p-coumarate could inhibit the melanin formation in B16 mouse melanoma cells. Methyl p-coumarate also has strong in vitro inhibitory effect on A. alternata and other pathogens[1][2]. Methyl p-coumarate (Methyl 4-hydroxycinnamate), an esterified derivative of p-Coumaric acid (pCA), is isolated from the flower of Trixis michuacana var longifolia. Methyl p-coumarate could inhibit the melanin formation in B16 mouse melanoma cells. Methyl p-coumarate also has strong in vitro inhibitory effect on A. alternata and other pathogens[1][2].
Loliolide
Loliolide, also known as (3s5r)-loliolide, is a member of the class of compounds known as benzofurans. Benzofurans are organic compounds containing a benzene ring fused to a furan. Furan is a five-membered aromatic ring with four carbon atoms and one oxygen atom. Loliolide is soluble (in water) and an extremely weak acidic compound (based on its pKa). Loliolide can be found in sunflower, tea, and wakame, which makes loliolide a potential biomarker for the consumption of these food products.
isoleucine betaine
3-phenylpropanoic acid
Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
Embelin
Embelin is a member of the class of dihydroxy-1,4-benzoquinones that is 2,5-dihydroxy-1,4-benzoquinone which is substituted by an undecyl group at position 3. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antimicrobial, antineoplastic and inhibitory activity towards hepatitis C protease. It has a role as a hepatitis C protease inhibitor, an antimicrobial agent, an antineoplastic agent and a plant metabolite. Embelin is a natural product found in Ardisia paniculata, Embelia tsjeriam-cottam, and other organisms with data available. A member of the class of dihydroxy-1,4-benzoquinones that is 2,5-dihydroxy-1,4-benzoquinone which is substituted by an undecyl group at position 3. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antimicrobial, antineoplastic and inhibitory activity towards hepatitis C protease. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3]. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3].
Tangeritin
Tangeretin is a pentamethoxyflavone flavone with methoxy groups at positions 4, 5, 6 , 7 and 8. It has a role as an antineoplastic agent and a plant metabolite. Tangeretin is a natural product found in Citrus tankan, Citrus keraji, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). Isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutical. Tangeritin is found in many foods, some of which are apple, broccoli, sweet bay, and tea. Tangeritin is found in apple. Tangeritin is isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutica A pentamethoxyflavone flavone with methoxy groups at positions 4, 5, 6 , 7 and 8. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor.
Demethylnobiletin
5-O-Demethylnobiletin (5-Demethylnobiletin), a polymethoxyflavone isolated from Citrus jambhiri Lush., is a direct inhibition of 5-LOX (IC50=0.1 μM), without affecting the expression of COX-2. 5-O-Demethylnobiletin (5-Demethylnobiletin) has anti-inflammatory activity, inhibits leukotriene B (4)(LTB4) formation in rat neutrophils and elastase release in human neutrophils with an IC50 of 0.35 μM[1]. 5-O-Demethylnobiletin (5-Demethylnobiletin), a polymethoxyflavone isolated from Citrus jambhiri Lush., is a direct inhibition of 5-LOX (IC50=0.1 μM), without affecting the expression of COX-2. 5-O-Demethylnobiletin (5-Demethylnobiletin) has anti-inflammatory activity, inhibits leukotriene B (4)(LTB4) formation in rat neutrophils and elastase release in human neutrophils with an IC50 of 0.35 μM[1]. 5-O-Demethylnobiletin (5-Demethylnobiletin), a polymethoxyflavone isolated from Citrus jambhiri Lush., is a direct inhibition of 5-LOX (IC50=0.1 μM), without affecting the expression of COX-2. 5-O-Demethylnobiletin (5-Demethylnobiletin) has anti-inflammatory activity, inhibits leukotriene B (4)(LTB4) formation in rat neutrophils and elastase release in human neutrophils with an IC50 of 0.35 μM[1].
Isovitexin 2-O-arabinoside
Isovitexin 2''-O-arabinoside is an inactive flavonoid in plantlets of Avena sativa L.[1]. Isovitexin 2''-O-arabinoside is an inactive flavonoid in plantlets of Avena sativa L.[1].
Nobiletin
D020011 - Protective Agents > D000975 - Antioxidants Nobiletin is a poly-methoxylated flavone from the citrus peel that improves memory loss. Nobiletin is a retinoid acid receptor-related orphan receptors (RORs) agonist. Nobiletin can reduce reactive oxygen species (ROS) levels in differentiated C2C12 myotubes and has anti-inflammation and anti-cancer properties, including anti-angiogenesis, anti-proliferation, anti-metastasis and induced apoptosis[1][2][3][4]. Nobiletin is a poly-methoxylated flavone from the citrus peel that improves memory loss. Nobiletin is a retinoid acid receptor-related orphan receptors (RORs) agonist. Nobiletin can reduce reactive oxygen species (ROS) levels in differentiated C2C12 myotubes and has anti-inflammation and anti-cancer properties, including anti-angiogenesis, anti-proliferation, anti-metastasis and induced apoptosis[1][2][3][4].
Tangeretin
Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor.
Cinnamic Acid
Trans-cinnamic acid, also known as (2e)-3-phenyl-2-propenoic acid or (E)-cinnamate, is a member of the class of compounds known as cinnamic acids. Cinnamic acids are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Trans-cinnamic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Trans-cinnamic acid is a sweet, balsam, and honey tasting compound and can be found in a number of food items such as maitake, mustard spinach, common wheat, and barley, which makes trans-cinnamic acid a potential biomarker for the consumption of these food products. Trans-cinnamic acid can be found primarily in saliva. Trans-cinnamic acid exists in all living species, ranging from bacteria to humans. Trans-cinnamic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cinnamic acid is an organic compound with the formula C6H5CHCHCO2H. It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Classified as an unsaturated carboxylic acid, it occurs naturally in a number of plants. It exists as both a cis and a trans isomer, although the latter is more common . Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
Harmaline
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.572 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.569 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.563 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.565 D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors
Harmine
C13H12N2O (212.09495819999998)
Origin: Plant; SubCategory_DNP: Alkaloids derived from tryptophan, beta-Carboline alkaloids, Indole alkaloids D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.622 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.620 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.613 Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1].
5-O-ethyl embelin
A member of the class of monohydroxy-1,4-benzoquinones that is embelin in which the hydroxy group at position 5 is replaced by a ethoxy group. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antineoplastic activity.
Resorcine
D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
5-O-Methylembelin
5-O-methyl embelin is a member of the class of monohydroxy-1,4-benzoquinones that is embelin in which the hydroxy group at position 5 is replaced by a methoxy group. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antileishmanial activity as well as inhibitory activity towards hepatitis C protease. It has a role as a metabolite, a hepatitis C protease inhibitor, an antileishmanial agent and an antineoplastic agent. It is an enol ether and a member of monohydroxy-1,4-benzoquinones. It is functionally related to an embelin. 5-O-Methylembelin is a natural product found in Lysimachia punctata, Embelia schimperi, and other organisms with data available. 5-O-Methylembelin is a constituent of Myrsine africana (cape myrtle). Constituent of Myrsine africana (cape myrtle) 5-O-Methylembelin is a natural isocoumarin that inhibits PCSK9, inducible degrader of the low-density lipoprotein receptor (IDLR), and sterol regulatory element binding protein 2 (SREBP2) mRNA expression[1].
Caffeate
D020011 - Protective Agents > D000975 - Antioxidants KEIO_ID C107 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Caffeic Acid
A hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. 3,4-dihydroxycinnamic acid, also known as caffeic acid or trans-caffeate, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 3,4-dihydroxycinnamic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxycinnamic acid can be found in fats and oils and nuts, which makes 3,4-dihydroxycinnamic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxycinnamic acid exists in all eukaryotes, ranging from yeast to humans. Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is a key intermediate in the biosynthesis of lignin, one of the principal components of plant biomass and its residues . Caffeic acid is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food. (PMID:16870009) [HMDB]. Caffeic acid is found in many foods, some of which are cardoon, coriander, common persimmon, and irish moss. D020011 - Protective Agents > D000975 - Antioxidants Annotation level-2 CONFIDENCE standard compound; INTERNAL_ID 167 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.412 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.403 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
4-hydroxybenzoate
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
Vanillic Acid
Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].
hydrocinnamic acid
Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
p-Hydroxybenzoic acid
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
loliolide
A natural product found in Brachystemma calycinum.
oxalic acid
An alpha,omega-dicarboxylic acid that is ethane substituted by carboxyl groups at positions 1 and 2. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D019163 - Reducing Agents Oxalic Acid is a strong dicarboxylic acid occurring in many plants and vegetables and can be used as an analytical reagent and general reducing agent. Oxalic Acid is a strong dicarboxylic acid occurring in many plants and vegetables and can be used as an analytical reagent and general reducing agent.
Methylparaben
Prodelphinidin trimer gc-c-c is a member of the class of compounds known as biflavonoids and polyflavonoids. Biflavonoids and polyflavonoids are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3-C3, and C6-C8. Prodelphinidin trimer gc-c-c is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Prodelphinidin trimer gc-c-c can be found in beer, which makes prodelphinidin trimer gc-c-c a potential biomarker for the consumption of this food product. D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3579; ORIGINAL_PRECURSOR_SCAN_NO 3578 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3566; ORIGINAL_PRECURSOR_SCAN_NO 3561 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3549; ORIGINAL_PRECURSOR_SCAN_NO 3546 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3560; ORIGINAL_PRECURSOR_SCAN_NO 3556 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3573; ORIGINAL_PRECURSOR_SCAN_NO 3570 CONFIDENCE standard compound; INTERNAL_ID 1106; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3577; ORIGINAL_PRECURSOR_SCAN_NO 3575 CONFIDENCE standard compound; INTERNAL_ID 2371 Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1]. Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1].
4-Hydroxy-3,5,6,7,8-pentamethoxyflavone
1-methyl-1H,2H,3H,4H,9H-pyrido[3,4-b]indole-3-carboxylic acid
clionasterol
A member of the class of phytosterols that is poriferast-5-ene carrying a beta-hydroxy substituent at position 3. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites
3-phenylpropanoic acid
A monocarboxylic acid that is propionic acid substituted at position 3 by a phenyl group. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
Vanillate
Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].
AI3-63211
D020011 - Protective Agents > D000975 - Antioxidants Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
AI3-00892
Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
Coumarate
D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively.
Zimtsaeure
Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
Guajol
R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C78273 - Agent Affecting Respiratory System > C29767 - Expectorant Guaiacol, a phenolic compound, inhibits LPS-stimulated COX-2 expression and NF-κB activation[1]. Anti-inflammatory activity[1]. Guaiacol, a phenolic compound, inhibits LPS-stimulated COX-2 expression and NF-κB activation[1]. Anti-inflammatory activity[1].
Abiol
D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1]. Methyl Paraben, isolated from the barks of Tsuga dumosa the methyl ester of p-hydroxybenzoic acid, is a standardized chemical allergen. Methyl Paraben is a stable, non-volatile compound used as an antimicrobial preservative in foods, agents and cosmetics. The physiologic effect of Methyl Paraben is by means of increased histamine release, and cell-mediated immunity[1].
623-05-2
4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4]. 4-Hydroxybenzyl alcohol is a phenolic compound widely distributed in various kinds of plants. Anti-inflammatory, anti-oxidant, anti-nociceptive activity. Neuroprotective effect. Inhibitor of tumor angiogenesis and growth[1][2][3][4].
Yageine
C13H12N2O (212.09495819999998)
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1]. Harmine is a natural dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor with anticancer and anti-inflammatory activities. Harmine has a high affinity of 5-HT2A serotonin receptor, with an Ki of 397 nM[1].
Acnomel
D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
Cyanidin 3-glucoside
C21H21O11+ (449.10838160000003)
Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-glucoside is a product of cyanidin 3-sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Found in many plants and fruits, e.g. cherries, olives and grapes
trans-Cinnamic acid
trans-Cinnamic acid, also known as (e)-cinnamic acid or phenylacrylic acid, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. trans-Cinnamic acid exists in all living species, ranging from bacteria to humans. trans-Cinnamic acid is a sweet, balsam, and cinnamon tasting compound. Outside of the human body, trans-Cinnamic acid is found, on average, in the highest concentration within a few different foods, such as chinese cinnamons, olives, and lingonberries and in a lower concentration in redcurrants, red raspberries, and corianders. trans-Cinnamic acid has also been detected, but not quantified in several different foods, such as common oregano, pepper (spice), fennels, pomegranates, and european cranberries. This could make trans-cinnamic acid a potential biomarker for the consumption of these foods. Cinnamic acid has been shown to be a microbial metabolite; it can be found in Alcaligenes, Brevibacterium, Cellulomonas, and Pseudomonas (PMID:16349793). trans-Cinnamic acid is a potentially toxic compound. Cinnamic acid is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. It has a role as a plant metabolite. It is a member of styrenes and a member of cinnamic acids. It is a conjugate acid of a cinnamate. Cinnamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cinnamic acid is a natural product found in Marsypopetalum crassum, Aiouea brenesii, and other organisms with data available. Cinnamic acid has the formula C6H5CHCHCOOH and is an odorless white crystalline acid, which is slightly soluble in water. It has a melting point of 133 degree centigrade and a boiling point of 300 degree centigrade. Cinnamic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon (part of); Chinese Cinnamon (part of); Stevia rebaudiuna Leaf (part of) ... View More ... Cinnamic acid is a white crystalline hydroxycinnamic acid, which is slightly soluble in water. It is obtained from oil of cinnamon, or from balsams such as storax. Cinnamic acid is found in many foods, some of which are green bell pepper, olive, pepper (spice), and pear. A monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
[6-({2-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-6-yl]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl}oxy)-3,4,5-trihydroxyoxan-2-yl]methyl 3-(4-hydroxyphenyl)prop-2-enoate
4-[(1r)-1-[(1s)-1-(4-hydroxyphenyl)ethoxy]ethyl]phenol
7-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-5-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium
[6-({2-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-6-yl]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl}oxy)-3,4,5-trihydroxyoxan-2-yl]methyl 3-(3,4-dihydroxyphenyl)prop-2-enoate
2-(acetyloxy)ethyl (2e)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate
3-methoxyphenyl (2e)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate
3-hydroxyphenyl 3-(3,4,5-trimethoxyphenyl)prop-2-enoate
4-{1-[4-(1-hydroxyethyl)phenoxy]ethyl}phenyl 3-(3,4,5-trimethoxyphenyl)prop-2-enoate
3-methoxyphenyl 3-(3,4,5-trimethoxyphenyl)prop-2-enoate
7-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-5-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium
2-hydroxyethyl (2e)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate
2-hydroxyethyl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate
3-hydroxyphenyl 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate
7-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-5-{[(2s,4s,5s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,5s)-3,4,5-trihydroxy-6-({[(2r,4s,5r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium
3-hydroxyphenyl (2e)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate
7-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium
6-[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one
4-{4-[(1e)-2-carboxyeth-1-en-1-yl]phenoxy}benzoic acid
5,7-dihydroxy-2-(4-hydroxy-3-oxidophenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium
2-(acetyloxy)ethyl 3-(3,4,5-trimethoxyphenyl)prop-2-enoate
3-{[(2s,3r,4r,5s,6r)-6-({[(2r,3s,4s,5r,6s)-5-[(2-carboxyacetyl)oxy]-3,4-dihydroxy-6-methyloxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-7-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium
[C38H47O24]+ (887.2457162000001)
3-hydroxyphenyl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate
2-hydroxyethyl 3-(3,4-dihydroxyphenyl)prop-2-enoate
[(2r,3s,4s,5r,6s)-6-{[(2s,3r,4s,5s,6r)-2-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-6-yl]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate
5-{[(2s,3r,4s,5s,6s)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-7-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-3-{[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3s,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium
[C38H47O24]+ (887.2457162000001)
2-hydroxyethyl 3-(3,4,5-trimethoxyphenyl)prop-2-enoate
2-hydroxyethyl (2e)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate
3-methoxyphenyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
6-[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one
3-{[(2s,3r,4s,5s,6r)-6-({[(2r,3s,4r,5r,6s)-5-[(2-carboxyacetyl)oxy]-3,4-dihydroxy-6-methyloxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5-{[(2s,3r,4s,5s,6r)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-7-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-1λ⁴-chromen-1-ylium
3-{[(2s,3r,4s,5s,6r)-6-({[(2r,3s,4r,5r,6s)-5-[(2-carboxyacetyl)oxy]-3,4-dihydroxy-6-methyloxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-1λ⁴-chromen-1-ylium
[C32H37O19]+ (725.1928952000001)