NCBI Taxonomy: 360145
Grosmannia (ncbi_taxid: 360145)
found 214 associated metabolites at genus taxonomy rank level.
Ancestor: Ophiostomataceae
Child Taxonomies: Grosmannia aurea, Grosmannia pruni, Grosmannia huntii, Grosmannia robusta, Grosmannia laricis, Grosmannia bistata, Grosmannia koreana, Grosmannia serpens, Grosmannia wageneri, Grosmannia abietina, Grosmannia hughesii, Grosmannia aoshimae, Grosmannia purpurea, Grosmannia zekuensis, Grosmannia americana, Grosmannia abiocarpa, Grosmannia taigensis, Grosmannia fruticeta, Grosmannia crassivaginata, Grosmannia curvispora, Grosmannia maixiuense, Grosmannia abieticola, Grosmannia tibetensis, Grosmannia chlamydata, Grosmannia aenigmatica, Grosmannia crassifolia, Grosmannia xianmiensis, Grosmannia yunnanensis, Grosmannia penicillata, Grosmannia trypodendri, Grosmannia curviconidia, Grosmannia grandifoliae, Grosmannia dryocoetidis, unclassified Grosmannia, Grosmannia xeno-abietina, Grosmannia eucalyptophila, Grosmannia leptographioides, Grosmannia cf. pruni 130GRJ, Grosmannia cf. pruni 209GRJ, Grosmannia pseudoeurophioides
Vanillic acid
Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].
4-Hydroxybenzaldehyde
4-Hydroxybenzaldehyde, also known as 4-formylphenol or 4-hydroxybenzenecarbonal, belongs to the class of organic compounds known as hydroxybenzaldehydes. These are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde exists in all living organisms, ranging from bacteria to humans. 4-Hydroxybenzaldehyde is a sweet, almond, and balsam tasting compound. 4-Hydroxybenzaldehyde is found, on average, in the highest concentration within vinegars and oats. 4-Hydroxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cardoons, colorado pinyons, oyster mushrooms, common chokecherries, and potato. This could make 4-hydroxybenzaldehyde a potential biomarker for the consumption of these foods. 4-hydroxybenzaldehyde is a hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. It has a role as a plant metabolite, a mouse metabolite and an EC 1.14.17.1 (dopamine beta-monooxygenase) inhibitor. 4-Hydroxybenzaldehyde is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. Occurs naturally combined in many glycosides. Constituent of vanillin. Isol. in free state from opium poppy (Papaver somniferum) A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-08-0 (retrieved 2024-07-02) (CAS RN: 123-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
4-Hydroxybenzoic acid
4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in Açaí oil, obtained from the fruit of the açaí palm (Euterpe oleracea), at relatively high concetrations (892±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843).
Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid
Tyrosol
Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285). 2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol. 2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available. Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents A phenol substituted at position 4 by a 2-hydroxyethyl group. D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].
beta-Sitosterol
beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
4-hydroxyphenylacetate
p-Hydroxyphenylacetic acid, also known as 4-hydroxybenzeneacetate, is classified as a member of the 1-hydroxy-2-unsubstituted benzenoids. 1-Hydroxy-2-unsubstituted benzenoids are phenols that are unsubstituted at the 2-position. p-Hydroxyphenylacetic acid is considered to be slightly soluble (in water) and acidic. p-Hydroxyphenylacetic acid can be synthesized from acetic acid. It is also a parent compound for other transformation products, including but not limited to, methyl 2-(4-hydroxyphenyl)acetate, ixerochinolide, and lactucopicrin 15-oxalate. p-Hydroxyphenylacetic acid can be found in numerous foods such as olives, cocoa beans, oats, and mushrooms. p-Hydroxyphenylacetic acid can be found throughout all human tissues and in all biofluids. Within a cell, p-hydroxyphenylacetic acid is primarily located in the cytoplasm and in the extracellular space. p-Hydroxyphenylacetic acid is also a microbial metabolite produced by Acinetobacter, Clostridium, Klebsiella, Pseudomonas, and Proteus. Higher levels of this metabolite are associated with an overgrowth of small intestinal bacteria from Clostridia species including C. difficile, C. stricklandii, C. lituseburense, C. subterminale, C. putrefaciens, and C. propionicum (PMID: 476929, 12173102). p-Hydroxyphenylacetic acid is detected after the consumption of whole grain. 4-hydroxyphenylacetic acid is a monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. It has a role as a plant metabolite, a fungal metabolite, a human metabolite and a mouse metabolite. It is a monocarboxylic acid and a member of phenols. It is functionally related to an acetic acid. It is a conjugate acid of a 4-hydroxyphenylacetate. 4-Hydroxyphenylacetic acid is a natural product found in Guanomyces polythrix, Forsythia suspensa, and other organisms with data available. 4-Hydroxyphenylacetic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. Constituent of sweet clover (Melilotus officinalis) and yeast Hydroxyphenylacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=156-38-7 (retrieved 2024-07-02) (CAS RN: 156-38-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].
2-Pyrocatechuic acid
2-Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma (PMID 16351159), and is normally found with increased levels after consumption of many nutrients and drugs, i.e.: cranberry juice (PMID 14733499), aspirin ingestion. (PMID 3342084) It has been found associated with idiopathic oro-facial pain due to stress (oxidative stress might enhance the production of free radicals); it has been suggested that OH radicals are responsible for the production of many systemic and local tissue injury diseases which may initially manifest as pain syndrome, and 2-Pyrocatechuic acid is a biological marker for the detection and quantification of OH radicals, and patients had significantly increased circulating levels of 2-Pyrocatechuic acid after aspirin ingestion than control subjects. (PMID 7748148). D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Occurs in Gentiana lutea (yellow gentian) Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
2-hydroxyphenylacetate
ortho-Hydroxyphenylacetic acid, also known as (o-hydroxyphenyl)acetate or 2-hydroxybenzeneacetic acid, is a member of the class of compounds known as 2(hydroxyphenyl)acetic acids. 2(Hydroxyphenyl)acetic acids are phenylacetic acids that carry a hydroxyl group at the 2-position. ortho-Hydroxyphenylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). ortho-Hydroxyphenylacetic acid can be found in a number of food items such as natal plum, lemon verbena, half-highbush blueberry, and parsley, which makes ortho-hydroxyphenylacetic acid a potential biomarker for the consumption of these food products. ortho-Hydroxyphenylacetic acid can be found primarily in blood, feces, and urine. Moreover, ortho-hydroxyphenylacetic acid is found to be associated with phenylketonuria, which is an inborn error of metabolism. ortho-Hydroxyphenylacetic acid is a substrate of the enzyme oxidoreductases (EC 1.14.13.-) in the pathway styrene degradation (KEGG). ortho-Hydroxyphenylacetic acid is also a microbial metabolite. ortho-Hydroxyphenylacetic acid is a substrate of the enzyme oxidoreductases [EC 1.14.13.-] in the pathway styrene degradation. (KEGG) [HMDB]. 2-Hydroxyphenylacetic acid is found in many foods, some of which are rambutan, common oregano, burbot, and wild leek. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 155 INTERNAL_ID 155; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 46 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU).
Tryptophol
Tryptophol, also known as indole-3-ethanol, is an indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. It has a role as a Saccharomyces cerevisiae metabolite, an auxin and a plant metabolite. Tryptophol is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID:30120222). Tryptophol production was negatively associated with interferon-gamma production (IFNγ) which suggests that tryptophol has anti-inflammatory properties (PMID:27814509). Tryptophol has also been identified as the hypnotic agent in trypanosomal sleeping sickness, and because it is formed in vivo after ethanol or disulfiram treatment, it is also associated with the study of alcoholism (PMID:7241135). Indole-3-ethanol is a dietary indole present in cruciferous vegetables that has been shown to influence estradiol metabolism in humans and may provide a new chemopreventive approach to estrogen-dependent diseases. (PMID 2342128) Tryptophol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=526-55-6 (retrieved 2024-06-29) (CAS RN: 526-55-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.
L-3-Phenyllactic acid
L-3-Phenyllactic acid (or PLA) is a chiral aromatic compound involved in phenylalanine metabolism. It is likely produced from phenylpyruvate via the action of lactate dehydrogenase. The D-form of this organic acid is typically derived from bacterial sources while the L-form is almost certainly endogenous. Levels of phenyllactate are normally very low in blood or urine. High levels of PLA in the urine or blood are often indicative of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid (a precursor of phenylactate). In particular, excessive phenylalanine is typically metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid and then to phenyllactate through the action of lactate dehydrogenase. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. [HMDB] L-3-Phenyllactic acid (or PLA) is a chiral aromatic compound involved in phenylalanine metabolism. It is likely produced from phenylpyruvate via the action of lactate dehydrogenase. The D-form of this organic acid is typically derived from bacterial sources while the L-form is almost certainly endogenous. Levels of phenyllactate are normally very low in blood or urine. High levels of PLA in the urine or blood are often indicative of phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU is due to lack of the enzyme phenylalanine hydroxylase (PAH), so that phenylalanine is converted not to tyrosine but to phenylpyruvic acid (a precursor of phenylactate). In particular, excessive phenylalanine is typically metabolized into phenylketones through, a transaminase pathway route involving glutamate. Metabolites of this transamination reaction include phenylacetate, phenylpyruvate and phenethylamine. In persons with PKU, dietary phenylalanine either accumulates in the body or some of it is converted to phenylpyruvic acid and then to phenyllactate through the action of lactate dehydrogenase. Individuals with PKU tend to excrete large quantities of phenylpyruvate, phenylacetate and phenyllactate, along with phenylalanine, in their urine. If untreated, mental retardation effects and microcephaly are evident by the first year along with other symptoms which include: unusual irritability, epileptic seizures and skin lesions. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A "musty or mousy" odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed. The neural-development effects of PKU are primarily due to the disruption of neurotransmitter synthesis. In particular, phenylalanine is a large, neutral amino acid which moves across the blood-brain barrier (BBB) via the large neutral amino acid transporter (LNAAT). Excessive phenylalanine in the blood saturates the transporter. Thus, excessive levels of phenylalanine significantly decrease the levels of other LNAAs in the brain. But since these amino acids are required for protein and neurotransmitter synthesis, phenylalanine accumulation disrupts brain development, leading to mental retardation. (±)-3-Phenyllactic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=828-01-3 (retrieved 2024-07-04) (CAS RN: 828-01-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxy-3-phenylpropanoic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria. D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1]. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound.
2-Furoic acid
Furoic acid is a metabolite that appears in the urine of workers occupationally exposed to furfural and is a marker of exposure to this compound. Furfural is a heterocyclic aldehyde that is commonly used as a solvent in industry. It is readily absorbed into the body via the lungs and has significant skin absorption. Furfural is an irritant of the eyes, mucous membranes, and skin and is a central nervous system depressant. Furfural as a confirmed animal carcinogen with unknown relevance to humans (It has been suggested that is a substance that produces hepatic cirrhosis). Once in the body, furfural is metabolized rapidly via oxidation to the metabolite furoic acid, which is then conjugated with glycine and excreted in the urine in both free and conjugated forms. (PMID: 3751566, 4630229, 12587683). 2-Furoic acid is a biomarker for the consumption of beer. 2-Furancarboxylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=88-14-2 (retrieved 2024-07-10) (CAS RN: 88-14-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].
3-(4-hydroxyphenyl)lactate
Hydroxyphenyllactic acid or 4-hydroxyphenyllactate (the L-form) is a tyrosine metabolite. The level of L-hydroxyphenyllactic acid is elevated in patients with a deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2) (PMID: 4720815). L-hydroxyphenyllactate is present in relatively higher concentrations in the cerebrospinal fluid and urine of patients with phenylketonuria (PKU) and tyrosinemia (PMID: 3126358). However, the D-form of hydroxyphenyllactate is of bacterial origin and is also found in individuals with bacterial overgrowth or unusual gut microflora (PMID: 3126358). Microbial hydroxyphenyllactate is likely derived from phenolic or polyphenolic compounds in the diet. Bifidobacteria and lactobacilli produce considerable amounts of phenyllactic and p-hydroxyphenyllactic acids (PMID: 23061754). It has also been shown that hydroxyphenyllactate decreases ROS (reactive oxygen species) production in both mitochondria and neutrophils and so hydroxyphenyllactate may function as a natural anti-oxidant (PMID: 23061754). Hydroxyphenyllactic acid is a microbial metabolite found in Acinetobacter, Bacteroides, Bifidobacteria, Bifidobacterium, Clostridium, Enterococcus, Escherichia, Eubacterium, Klebsiella, Lactobacillus, Pseudomonas and Staphylococcus (PMID: 19961416). Acquisition and generation of the data is financially supported in part by CREST/JST. Hydroxyphenyllactic acid is an antifungal metabolite.
1-Phenylethanol
1-Phenylethanol is a flavouring agent. It is found in many foods, some of which are onion-family vegetables, herbs and spices, nuts, and fruits. (±)-1-Phenylethanol is a flavouring agent
2-Benzoxazolol
2-benzoxazolinone is a member of the class of benzoxazoles that is 2,3-dihydro-1,3-benzoxazole carrying an oxo group at position 2. It has a role as an allelochemical and a phytoalexin. 2-Benzoxazolinone is a natural product found in Scoparia dulcis, Acanthus ilicifolius, and other organisms with data available. A member of the class of benzoxazoles that is 2,3-dihydro-1,3-benzoxazole carrying an oxo group at position 2. 2-Benzoxazolol is found in cereals and cereal products. 2-Benzoxazolol is found in rye seedlings. Found in rye seedlings 2-Benzoxazolinone is an anti-leishmanial agent with an LC50 of 40 μg/mL against L. donovani[1]. A building block in chemical synthesis. 1,3-Benzoxazol-2(3H)-one derivatives have antimicrobial activity against a selection of Gram-positive, Gram-negative bacteria and yeasts[3]. Derivatives as anti-quorum sensing agent[4]. 2-Benzoxazolinone is an anti-leishmanial agent with an LC50 of 40 μg/mL against L. donovani[1]. A building block in chemical synthesis. 1,3-Benzoxazol-2(3H)-one derivatives have antimicrobial activity against a selection of Gram-positive, Gram-negative bacteria and yeasts[3]. Derivatives as anti-quorum sensing agent[4].
D-Phenyllactic acid
Phenyllactic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria. (+)-3-Phenyllactic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7326-19-4 (retrieved 2024-07-04) (CAS RN: 7326-19-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxy-3-phenylpropanoic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria. D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1]. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound.
L,L-Cyclo(leucylprolyl)
L,L-Cyclo(leucylprolyl) is found in alcoholic beverages. L,L-Cyclo(leucylprolyl) is produced by microorganisms and is a bitter component of sake and contributes to the flavour of beer. L,L-Cyclo(leucylprolyl), also known as cyclo(leu-pro) or cyclo(L-prolyl-L-leucyl), belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. L,L-Cyclo(leucylprolyl) is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Based on a literature review a significant number of articles have been published on L,L-Cyclo(leucylprolyl). L-Leucyl-L-proline lactam. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2873-36-1 (retrieved 2024-07-10) (CAS RN: 2873-36-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cyclo(L-Leu-L-Pro) is an inhibitory substance targeting to production of norsolorinic acid (NA,a precursor of aflatoxin),which can be isolated from A. xylosoxidans NFRI-A1. Cyclo(L-Leu-L-Pro) inhibits accumulation of NA by A. parasiticus NFRI-95 and inhibits spore formation. Cyclo(L-Leu-L-Pro) inhibits aflatoxin production with an IC50 of 0.2 mg/mL in A. parasiticus SYS-4[1].
5-Nonadecyl-1,3-benzenediol
Constituent of wheat bran. 5-Nonadecyl-1,3-benzenediol is found in many foods, some of which are common wheat, pasta, wheat bread, and oat. 5-Nonadecyl-1,3-benzenediol is found in barley. 5-Nonadecyl-1,3-benzenediol is a constituent of wheat bran
4-Ethyl-1,2-benzenediol
Constituent of roasted coffeeand is) also isolated from eggplant leaves (Solanum melongena). 4-Ethyl-1,2-benzenediol is found in many foods, some of which are coffee and coffee products, eggplant, coffee, and cocoa powder. 4-Ethyl-1,2-benzenediol is found in arabica coffee. 4-Ethyl-1,2-benzenediol is a constituent of roasted coffee. Also isolated from eggplant leaves (Solanum melongena).
D-3-phenyllactic acid
D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1]. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound. DL-3-Phenyllactic acid is a broad-spectrum antimicrobial compound.
Hydroxyphenyllactic acid
Hydroxyphenyllactic acid is an antifungal metabolite.
4-Hydroxyphenylacetic acid
4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].
sitosterol
A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
4-hydroxybenzoate
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
2,3-Dihydroxybenzoic acid
A dihydroxybenzoic acid that is benzoic acid substituted by hydroxy groups at positions 2 and 3. It occurs naturally in Phyllanthus acidus and in the aquatic fern Salvinia molesta. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
Tryptophol
An indolyl alcohol that is ethanol substituted by a 1H-indol-3-yl group at position 2. Tryptophol (Indole-3-ethanol) is an endogenous metabolite. Tryptophol (Indole-3-ethanol) is an endogenous metabolite.
Hydroxyphenyllactic acid
Hydroxyphenyllactic acid is a tyrosine metabolite. It is carcinogenic. The level of hydroxyphenyllactic acid is elevated in patients with deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2). (PMID 4720815) [HMDB] Hydroxyphenyllactic acid is an antifungal metabolite.
2-Hydroxyphenylacetic acid
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). D-(-)-Mandelic acid is a natural compound isolated from bitter almonds. D-(-)-Mandelic acid is a natural compound isolated from bitter almonds.
Vanillic Acid
Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].
p-Hydroxybenzaldehyde
p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
p-Hydroxybenzoic acid
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
2-Pyrocatechuic acid
Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
2-FUROIC ACID
A furoic acid having the carboxylic acid group located at position 2. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].
L-3-Phenyllactic acid
(S)-2-Hydroxy-3-phenylpropanoic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria.
4-Hydroxybenzaldehyde
p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
L-Phenyl lactate
(S)-2-Hydroxy-3-phenylpropanoic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria.
Vanillate
Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].
Harzol
C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
FR-0985
p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
Tyrosol
Tyrosol, also known as 4-hydroxyphenylethanol or 4-(2-hydroxyethyl)phenol, is a member of the class of compounds known as tyrosols. Tyrosols are organic aromatic compounds containing a phenethyl alcohol moiety that carries a hydroxyl group at the 4-position of the benzene group. Tyrosol is soluble (in water) and a very weakly acidic compound (based on its pKa). Tyrosol can be synthesized from 2-phenylethanol. Tyrosol is also a parent compound for other transformation products, including but not limited to, hydroxytyrosol, crosatoside B, and oleocanthal. Tyrosol is a mild, sweet, and floral tasting compound and can be found in a number of food items such as breadnut tree seed, sparkleberry, loquat, and savoy cabbage, which makes tyrosol a potential biomarker for the consumption of these food products. Tyrosol can be found primarily in feces and urine, as well as in human prostate tissue. Tyrosol exists in all eukaryotes, ranging from yeast to humans. Tyrosol present in wine is also shown to be cardioprotective. Samson et al. has shown that tyrosol-treated animals showed significant increase in the phosphorylation of Akt, eNOS and FOXO3a. In addition, tyrosol also induced the expression of longevity protein SIRT1 in the heart after myocardial infarction in a rat MI model. Hence tyrosols SIRT1, Akt and eNOS activating power adds another dimension to the wine research, because it adds a great link to the French paradox. In conclusion these findings suggest that tyrosol induces myocardial protection against ischemia related stress by inducing survival and longevity proteins that may be considered as anti-aging therapy for the heart . D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].
4-HPA
D009676 - Noxae > D002273 - Carcinogens 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].
furoic acid
2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2]. 2-Furoic acid (Furan-2-carboxylic acid) is an organic compound produced through furfural oxidation[1]. 2-Furoic acid exhibits hypolipidemic effet, lowers both serum cholesterol and serum triglyceride levels in rats[2].
614-75-5
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU).
FR-1294
D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
Methylbenzylalcohol
An aromatic alcohol that is ethanol substituted by a phenyl group at position 1.
D-3-phenyllactic acid
D-?(+)?-?Phenyllactic acid is an anti-bacterial agent, excreted by Geotrichum candidum, inhibits a range of Gram-positive from humans and foodstuffs and Gram-negative bacteria found in humans[1].
L-(-)-3-Phenyllactic acid
(S)-2-Hydroxy-3-phenylpropanoic acid is a product of phenylalanine catabolism. An elevated level of phenyllactic acid is found in body fluids of patients with or phenylketonuria.