NCBI Taxonomy: 4678

Allium (ncbi_taxid: 4678)

found 116 associated metabolites at genus taxonomy rank level.

Ancestor: Allieae

Child Taxonomies: Allium cepa, Allium roylei, Allium sativum, Allium ursinum, Allium altaicum, Allium rude, Allium moly, Allium tuberosum, Allium galanthum, Allium coryi, Allium minus, Allium nevii, Allium grayi, Allium serra, Allium savii, Allium akaka, Allium majus, Allium motor, Allium fistulosum, Allium thunbergii, Allium oschaninii, Allium humile, Allium henryi, Allium nigrum, Allium macrum, Allium affine, Allium munzii, Allium grande, Allium anceps, Allium flavum, Allium nutans, Allium yuanum, Allium mairei, Allium rubens, Allium parvum, Allium parryi, Allium cupani, Allium roseum, Allium geyeri, Allium rothii, Allium sergii, Allium aaseae, Allium subhirsutum, Allium erdelii, Allium dictuon, Allium cyaneum, Allium noeanum, Allium kunthii, Allium madidum, Allium abbasii, Allium cowanii, Allium passeyi, Allium regelii, Allium tolmiei, Allium spirale, Allium inutile, Allium textile, Allium kasteki, Allium aroides, Allium listera, Allium crispum, Allium prattii, Allium hookeri, Allium ramosum, Allium siculum, Allium cernuum, Allium obtusum, Allium praecox, Allium punctum, Allium nanodes, Allium spurium, Allium pallens, Allium caesium, Allium vineale, Allium tardans, Allium elegans, Allium matinae, Allium farctum, Allium validum, Allium alaicum, Allium assadii, Allium caspium, Allium cyrilli, Allium ellisii, Allium pumilum, Allium koelzii, Allium albidum, Allium carmeli, Allium cassium, Allium lineare, Allium ampeloprasum, Allium rubellum, Allium stenodon, Allium petraeum, Allium clivorum, Allium parishii, Allium notabile, Allium perdulce, Allium speculae, Allium udinicum, Allium strictum, Allium zagricum, Allium togashii, Allium ubsicola, Allium negianum, Allium globosum, Allium lepsicum, Allium horvatii, Allium glaciale, Allium abramsii, Allium eusperma, Allium asarense, Allium cornutum, Allium burlewii, Allium omeiense, Allium pallasii, Allium howellii, Allium asirense, Allium jepsonii, Allium lemmonii, Allium ducissae, Allium runyonii, Allium chinense, Allium spicatum, Allium nikolaii, Allium baeticum, Allium guttatum, Allium hyalinum, Allium telmatum, Allium filidens, Allium haneltii, Allium obliquum, Allium parvulum, Allium rupestre, Allium chelotum, Allium koreanum, Allium saxatile, Allium taquetii, Allium ponticum, Allium rotundum, Allium bellulum, Allium isakulii, Allium robustum, Allium drobovii, Allium eduardii, Allium flavidum, Allium iranicum, Allium negevense, Allium papillare, Allium douglasii, Allium moschatum, Allium fibrillum, Allium lacunosum, Allium tripedale, Allium splendens, Allium monticola, Allium aznavense, Allium nevadense, Allium sunhangii, Allium plummerae, Allium rhodopeum, Allium wendelboi, Allium semenovii, Allium keusgenii, Allium moderense, Allium buhseanum, Allium carinatum, Allium tuvinicum, Allium kirilovii, Allium pskemense, Allium vavilovii, Allium koksuense, Allium kokanicum, Allium psebaicum, Allium caeruleum, Allium forrestii, Allium canadense, Allium jodanthum, Allium angulosum, Allium kujukense, Allium monanthum, Allium kingdonii, Allium sabulosum, Allium hickmanii, Allium hoffmanii, Allium suworowii, Allium tricoccum, Allium wallichii, Allium fetisowii, Allium giganteum, Allium jesdianum, Allium macleanii, Allium protensum, Allium senescens, Allium shevockii, Allium denudatum, Allium michaelis, Allium lehmannii, Allium bolanderi, Allium brevidens, Allium sanbornii, Allium stellatum, Allium inaequale, Allium unifolium, Allium oleraceum, Allium pamiricum, Allium arkitense, Allium paradoxum, Allium schmitzii, Allium gilanense, Allium decipiens, Allium ochotense, Allium bourgeaui, Allium hexaceras, Allium truncatum, Allium stracheyi, Allium cretaceum, Allium orientale, Allium rosenorum, Allium saralicum, Allium stamineum, Allium viridulum, Allium beesianum, Allium dregeanum, Allium gunibicum, Allium gypsaceum, Allium karelinii, Allium komarowii, Allium kuramense, Allium bigelovii, Allium macranthum, Allium crenulatum, Allium cuthbertii, Allium mongolicum, Allium qasyunense, Allium heteronema, Allium oliganthum, Allium erubescens, Allium praemixtum, Allium robinsonii, Allium scilloides, Allium simillimum, Allium setifolium, Allium sikkimense, Allium suaveolens, Allium talassicum, Allium tanguticum, Allium tenuicaule, Allium ericetorum, Allium pendulinum, Allium subscabrum, Allium tubiflorum, Allium ferganicum, Allium savranicum, Allium atrorubens, Allium drummondii, Allium fimbriatum, Allium maowenense, Allium gilgiticum, Allium caricoides, Allium eriocoleum, Allium diabolense, Allium insubricum, Allium oreoprasum, Allium polyrhizum, Allium dumebuchum, Allium cristophii, Allium darwasicum, Allium platycaule, Allium oreophilum, Allium schubertii, Allium stipitatum, Allium glomeratum, Allium palentinum, Allium jichouense, Allium canariense, Allium azutavicum, Allium burjaticum, Allium prostratum, Allium dentiferum, Allium garganicum, Allium amplectens, Allium chamaemoly, Allium gooddingii, Allium triquetrum, Allium kaschianum, Allium zebdanense, Allium kunthianum, Allium litvinovii, Allium margaritae, Allium alexeianum, Allium altissimum, Allium mareoticum, Allium bucharicum, Allium sulphureum, Allium amphibolum, Allium elburzense, Allium commutatum, Allium leucanthum, Allium polyanthum, Allium hissaricum, Allium pyrenaicum, Allium bogdoicola, Allium lipskyanum, Allium schistosum, Allium materculae, Allium nevskianum, Allium sewerzowii, Allium alamutense, Allium latifolium, Allium zergericum, Allium bidentatum, Allium chamarense, Allium clathratum, Allium dentigerum, Allium bulgaricum, Allium flavescens, Allium acuminatum, Allium circinatum, Allium bisceptrum, Allium brandegeei, Allium lusitanicum, Allium columbianum, Allium monadelphum, Allium phthioticum, Allium elmendorfii, Allium trifoliatum, Allium victorialis, Allium ovalifolium, Allium paniculatum, Allium scotostemon, Allium herderianum, Allium subvillosum, Allium bisotunense, Allium tenuissimum, Allium himalayense, Allium kurssanovii, Allium x cepiforme, Allium auriculatum, Allium macrostemon, Allium praescissum, Allium zaissanicum, Allium changduense, Allium chrysanthum, Allium flavovirens, Allium cratericola, Allium falcifolium, Allium xichuanense, Allium oreoscordum, Allium schisticola, Allium aflatunense, Allium peninsulare, Allium hirtifolium, Allium caespitosum, Allium trifurcatum, Allium tuolumnense, Allium yosemitense, Allium confragosum, Allium ascalonicum, Allium parciflorum, Allium brevistylum, Allium condensatum, Allium tenuiflorum, Allium eremoprasum, Allium glandulosum, Allium malyschevii, Allium breviscapum, Allium umbilicatum, Allium chitralicum, Allium cupuliferum, Allium dasyphyllum, Allium heldreichii, Allium longistylum, Allium derderianum, Allium sindjarense, Allium acutiflorum, Allium ulleungense, Allium hamedanense, Allium hollandicum, Allium tuncelianum, Allium delicatulum, Allium songpanicum, Allium rubriflorum, Allium urusakiorum, Allium xinlongense, Allium anisopodium, Allium ubipetrense, Allium breviradium, Allium circassicum, Allium longisepalum, Allium maximowiczii, Allium microdictyon, Allium lenkoranicum, Allium eurotophilum, Allium carolinianum, Allium sacculiferum, Allium macropetalum, Allium hooshidaryae, Allium x proliferum, Allium platyspathum, Allium massaessylum, Allium scabriscapum, Allium toksanbaicum, Allium stellerianum, Allium ivasczenkoae, Allium subangulatum, Allium viridiflorum, Allium guanxianense, Allium teretifolium, Allium sulaimanicum, Allium vodopjanovae, Allium xiphopetalum, Allium dshungaricum, Allium caricifolium, Allium fasciculatum, Allium campanulatum, Allium barsczewskii, Allium cyathophorum, Allium denticulatum, Allium inconspicuum, Allium obtusiflorum, Allium neriniflorum, Allium membranaceum, Allium karataviense, Allium sharsmithiae, Allium siskiyouense, Allium agrigentinum, Allium pentadactyli, Allium dichlamydeum, Allium crystallinum, Allium neapolitanum, Allium nerinifolium, Allium komarovianum, Allium bakhtiaricum, Allium brachyscapum, Allium yingshanense, Allium chychkanense, Allium dodecadontum, Allium dictyoprasum, Allium tsinlingense, Allium insufficiens, unclassified Allium, Allium kuhsorkhense, Allium minutiflorum, Allium schugnanicum, Allium tashkenticum, Allium altyncolicum, Allium tulipifolium, Allium winklerianum, Allium cardiostemon, Allium candolleanum, Allium kopetdagense, Allium chrysantherum, Allium haemanthoides, Allium tianschanicum, Allium sordidiflorum, Allium funckiifolium, Allium haematochiton, Allium trachyscordum, Allium turkestanicum, Allium griffithianum, Allium plurifoliatum, Allium subtilissimum, Allium heterophyllum, Allium weschniakowii, Allium atropurpureum, Allium consanguineum, Allium tribracteatum, Allium czelghauricum, Allium castellanense, Allium chamaespathum, Allium schoenoprasum, Allium leucocephalum, Allium melanantherum, Allium scorodoprasum, Allium linearifolium, Allium helicophyllum, Allium oreoprasoides, Allium saposhnikovii, Allium taeniopetalum, Allium mahneshanense, Allium atroviolaceum, Allium vvedenskyanum, Allium backhousianum, Allium tetraploideum, Allium daghestanicum, Allium hymenorrhizum, Allium verticillatum, Allium incensiodorum, Allium ledebourianum, Allium przewalskianum, Allium chrysocephalum, Allium phanerantherum, Allium chienchuanense, Allium xiangchengense, Allium narcissiflorum, Allium marschallianum, Allium tarkhankuticum, Allium atrosanguineum, Allium sarawschanicum, Allium tytthocephalum, Allium purpureoviride, Allium filidentiforme, Allium aschersonianum, Allium pseudotelmatum, Allium vallivanchense, Allium fuscoviolaceum, Allium pseudobodeanum, Allium rosenbachianum, Allium shelkovnikovii, Allium austroiranicum, Allium drepanophyllum, Allium longivaginatum, Allium montibaicalense, Allium paepalanthoides, Allium undulatitepalum, Allium longipapillatum, Allium pseudosenescens, Allium sphaerocephalon, Allium pseudojaponicum, Allium intradarvazicum, Allium x agarmyschicum, Allium severtzovioides, Allium austrosibiricum, Allium scorzonerifolium, Allium schoenoprasoides, Allium costatovaginatum, Allium austrodanubiense, Allium montanostepposum, Allium trautvetterianum, Allium rupestristepposum, Allium schachimardanicum, Allium pseudohollandicum, Allium deltoidefistulosum, Allium cf. nigrum GA-2015, Allium pseudoampeloprasum, Allium pseudowinklerianum, Allium cf. ochotense Am165, Allium cf. prostratum Rz22, Allium aff. koelzii MG-2009, Allium cf. victorialis Am46, Allium chodsha-bakirganicum, Allium cf. cretaceum NF-2013, Allium cf. ledebourianum Sp23, Allium cf. talassicum NF-2013, Allium cf. ramosum OSBU 20642, Allium spirale x Allium nutans, Allium vavilovii x Allium cepa, Allium cf. prattii 11-42-0057-20, Allium cf. microdictyon SKH-2019, Allium cf. montanostepposum NF-2013, Allium robustum x Allium tulipifolium, Allium tulipifolium x Allium robustum

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Allantoin

(2,5-dioxoimidazolidin-4-yl)urea

C4H6N4O3 (158.0439886)


Allantoin is an imidazolidine-2,4-dione that is 5-aminohydantoin in which a carbamoyl group is attached to the exocyclic nitrogen. It has a role as a vulnerary, a human metabolite, a Saccharomyces cerevisiae metabolite and an Escherichia coli metabolite. It is a member of ureas and an imidazolidine-2,4-dione. It is functionally related to a hydantoin. It is a tautomer of a 1-(5-hydroxy-2-oxo-2,3-dihydroimidazol-4-yl)urea. Allantoin is a substance that is endogenous to the human body and also found as a normal component of human diets. In healthy human volunteers, the mean plasma concentration of allantoin is about 2-3 mg/l. During exercise, the plasma allantoin concentration rapidly increases about two fold and remains elevated. In human muscle, urate is oxidized to allantoin during such exercise. The concentration of allantoin in muscles increases from a resting value of about 5000 ug/kg to about 16000 ug/kg immediately after short-term exhaustive cycling exercise. More specifically, allantoin is a diureide of glyoxylic acid that is produced from uric acid. It is a major metabolic intermediate in most organisms. Allantoin is found in OTC cosmetic products and other commercial products such as oral hygiene products, in shampoos, lipsticks, anti-acne products, sun care products, and clarifying lotions. Allantoin has also demonstrated to ameliorate the wound healing process in some studies. Allantoin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Allantoin is a natural product found in Aristolochia gigantea, Rhinacanthus, and other organisms with data available. Allantoin is a mineral with formula of C4H6N4O3. The corresponding IMA (International Mineralogical Association) number is IMA2020-004a. The IMA symbol is Aan. Allantoin is a diureide of glyoxylic acid with the chemical formula C4H6N4O3. It is also called 5-ureidohydantoin, glyoxyldiureide, and 5-ureidohydantoin. It is a product of oxidation of uric acid. It is a product of purine metabolism in most mammals except higher apes, and it is present in their urine. In humans, uric acid is excreted instead of allantoin. The presence of allantoin in the urine can be an indication of microbial overgrowth or it can be created via non-enzymatic means through high levels of reactive oxygen species. In this regard Allantoin is sometimes used as a marker of oxidative stress. Allantoin can be isolated from cow urine or as a botanical extract of the comfrey plant. It has long been used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulates the growth of healthy tissue. Allantoin can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is frequently present in toothpaste, mouthwash, and other oral hygiene products as well as shampoos, lipsticks, various cosmetic lotions and creams and other cosmetic and pharmaceutical products. Allantoin is a metabolite found in or produced by Saccharomyces cerevisiae. A urea hydantoin that is found in URINE and PLANTS and is used in dermatological preparations. See also: Alcloxa (active moiety of); Comfrey Leaf (part of); Comfrey Root (part of) ... View More ... Allantoin is a chemical compound with formula C4H6N4O3. It is also called 5-ureidohydantoin or glyoxyldiureide. It is a diureide of glyoxylic acid. Named after the allantois, an amniote embryonic excretory organ in which it concentrates during development in most mammals except humans and higher apes, it is a product of oxidation of uric acid by purine catabolism. After birth, it is the predominant means by which nitrogenous waste is excreted in the urine of these animals. In humans and higher apes, the metabolic pathway for conversion of uric acid to allantoin is not present, so the former is excreted. Recombinant rasburicase is sometimes used as a drug to catalyze this metabolic conversion in patients. In fish, allantoin is broken down further (into ammonia) before excretion. Allantoin is a major metabolic intermediate in many other organisms including plants and bacteria.; Its chemical formula is C4H6N4O3. It is also called 5-ureidohydantoin, glyoxyldiureide, and 5-ureidohydantoin. It is a product of oxidation of uric acid. It is a diureide of glyoxylic acid. It is a product of purine metabolism in most mammals except higher apes, and it is present in their urine. Allantoin is a botanical extract of the comfrey plant and is used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulate growth of healthy tissue. This extract can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is a diureide of glyoxylic acid with the chemical formula C4H6N4O3. It is also called 5-ureidohydantoin or glyoxyldiureide. It is a product of the oxidation of uric acid. It is also a product of purine metabolism in most mammals except for higher apes, and it is present in their urine. In humans, uric acid is excreted instead of allantoin. The presence of allantoin in the urine can be an indication of microbial overgrowth or it can be created via non-enzymatic means through high levels of reactive oxygen species. In this regard, allantoin is sometimes used as a marker of oxidative stress. Allantoin can be isolated from cow urine or as a botanical extract of the comfrey plant. It has long been used for its healing, soothing, and anti-irritating properties. Allantoin helps to heal wounds and skin irritations and stimulates the growth of healthy tissue. Allantoin can be found in anti-acne products, sun care products, and clarifying lotions because of its ability to help heal minor wounds and promote healthy skin. Allantoin is frequently present in toothpaste, mouthwash, and other oral hygiene products as well as in shampoos, lipsticks, various cosmetic lotions and creams, and other cosmetic and pharmaceutical products. It is also a metabolite of Bacillus (PMID: 18302748) and Streptomyces (PMID: 24292080). An imidazolidine-2,4-dione that is 5-aminohydantoin in which a carbamoyl group is attached to the exocyclic nitrogen. Allantoin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5377-33-3 (retrieved 2024-06-29) (CAS RN: 97-59-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth.

   

Inosine

9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-3H-purin-6-one

C10H12N4O5 (268.08076619999997)


Inosine, also known as hypoxanthosine or inotin, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Inosine is formed when hypoxanthine is attached to a ribose ring a beta-N9-glycosidic bond. Inosine is an intermediate in the degradation of purines and purine nucleosides to uric acid. Inosine is also an intermediate in the purine salvage pathway. Inosine occurs in the anticodon of certain transfer RNA molecules and is essential for proper translation of the genetic code in wobble base pairs. Inosine exists in all living species, ranging from bacteria to plants to humans. Inosine participates in a number of enzymatic reactions. In particular, inosine can be biosynthesized from inosinic acid through its interaction with the enzyme known as cytosolic purine 5-nucleotidase. In addition, inosine can be converted into hypoxanthine and ribose 1-phosphate through its interaction with the enzyme known as purine nucleoside phosphorylase. Altered levels of inosine have also been associated with purine nucleoside phosphorylase deficiency and xanthinuria type I, both of which are inborn errors of metabolism. Animal studies have suggested that inosine has neuroprotective properties. It has been proposed as a potential treatment for spinal cord injury (PMID: 16317421) and for administration after stroke, as inosine appears to induce axonal rewiring (PMID: 12084941). After ingestion, inosine is metabolized into uric acid, which has been found to be a natural antioxidant and peroxynitrite scavenger. As such, inosine may have potential benefits to patients with multiple sclerosis and Parkinson’s disease (PMID: 19425822). Inosine can also be produced by gut bacteria and appears to have a number of beneficial effects. Inosine, has been shown to activate peroxisome proliferator-activated receptor (PPAR)-gamma signaling in human colon epithelial cells. Furthermore, exogenous treatment of inosine has been found to protect against DSS-induced colitis in rodents by improving adenosine 2A receptor (A2AR)/PPAR-gamma-dependent mucosal barrier functions (PMID: 33820558). Microbiome-derived inosine has also been shown to modulate the response to checkpoint inhibitor immunotherapy in cancer models. In particular, decreased gut barrier function induced by immunotherapy increases systemic translocation of bacterially derived inosine and activates antitumor T cells. The effect of inosine is dependent on T cell expression of the adenosine A2A receptor and requires co-stimulation. Inosine appears to have other roles in non-mammalian system. For instance, it has been found to be an important feed stimulant by itself or in combination with certain amino acids in some species of farmed fish. For example, inosine and inosine-5-monophosphate have been reported as specific feeding stimulants for turbot fry, (Scophthalmus maximus) and Japanese amberjack. Inosine is a purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purines D-ribonucleoside and a member of inosines. It is functionally related to a hypoxanthine and a ribofuranose. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) Inosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Inosine is a natural product found in Fritillaria thunbergii, Cichorium endivia, and other organisms with data available. Inosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals A purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Present in meat extracts and sugar beet Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Inosine (exact mass = 268.08077) and L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and L-Tyrosine (exact mass = 181.07389) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 110 KEIO_ID I003 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].

   

Dimethyl trisulfide

FLAMMABLE LIQUID, N.O.S. (DIMETHYL TRISULPHIDE)

C2H6S3 (125.9631636)


Dimethyl trisulfide (DMTS) is an organic chemical compound and the simplest organic trisulfide. It is a flammable liquid with a foul odor, which is detectable at levels as low as 1 part per trillion. Dimethyl trisulfide has been found in volatiles emitted from cooked onion, leek and other Allium species, from broccoli and cabbage, as well as from Limburger cheese, and is involved in the unpalatable aroma of aged beer and stale Japanese sake. It is a decomposition product from bacterial decomposition, including from the early stages of human decomposition, and is a major attractant for blowflies looking for hosts. Dimethyl trisulfide along with dimethyl sulfide and dimethyl disulfide have been confirmed as volatile compounds given off by the fly-attracting plant known as dead-horse arum (Helicodiceros muscivorus). These flies are attracted to the odor of fetid meat and help pollinate this plant. DMTS contributes to the foul odor given off by the fungus Phallus impudicus, also known as the common stinkhorn. DMTS causes the characteristic malodorous smell of a fungating lesion, e.g., from cancer wounds, and contributes to the odor of human feces. Dimethyldisulfide is a volatile organic compound. Methyl disulfide is occasionally found as a volatile component of normal human breath and biofluids. Dimethyldisulfide is one of the representative volatile components found in oral malodor. Dimethyldisulfide concentrations in breath is a practical noninvasive way to assess recent exposure to sulfur compounds in sulfate pulp mills, and therefore it should be applicable to workplaces contaminated. (PMID: 5556886, 14691119, 11236158, 8481097) (Wikipedia). Found in essential oil of hop (Humulus lupulus), garlic (Allium sativum), shallot (Allium cepa) and ramsons (Allium ursinum)and is also found in pineapple, raw cabbage, kohrabi, roasted filberts, roasted peanuts, edible mushrooms, brussel sprouts, fermented radish, Chinese cabbage, parsnips, scallop and squid. The major off-flavour principle of overcooked brassicas. Flavouring ingredient. Dimethyl trisulfide is an organic trisulfide. Dimethyl trisulfide is a natural product found in Psidium guajava, Allium chinense, and other organisms with data available. dimethyltrisulfide is a metabolite found in or produced by Saccharomyces cerevisiae. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].

   

(-)-alpha-Pinene

(-)-alpha-Pinene, 99\\%, optical purity ee: >=86\\% (GLC)

C10H16 (136.1251936)


(-)-alpha-pinene is an alpha-pinene. It is an enantiomer of a (+)-alpha-pinene. (-)-alpha-Pinene is a natural product found in Curcuma amada, Thryptomene saxicola, and other organisms with data available. (-)-alpha-Pinene is found in almond. alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (Wikipedia) (-)-alpha-Pinene belongs to the family of Bicyclic Monoterpenes. These are monoterpenes containing exactly 2 rings, which are fused to each other. alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). (-)-alpha-Pinene is found in almond. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].

   

Squalene

InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24

C30H50 (410.39123)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.307899)


Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

gamma-Terpinene

1-Isopropyl-4-methyl-1,4-cyclohexadiene, p-Mentha-1,4-diene

C10H16 (136.1251936)


Gamma-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. It has a role as an antioxidant, a plant metabolite, a volatile oil component and a human xenobiotic metabolite. It is a monoterpene and a cyclohexadiene. gamma-Terpinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. The terpinenes are three isomeric hydrocarbons that are classified as terpenes. Gamma-terpinene is one these three isomeric hydrocarbons. It is natural and has been isolated from a variety of plant sources (Wikipedia). It is a major component of essential oils made from Citrus Fruits and has strong antioxidant activity. It has a lemon odor and widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Mandarin oil (part of). Gamma-terpinene is one of four isomeric monoterpenes (the other three being alpha terpinene, beta terpinene and delta terpinene). It is a naturally occurring terpinene and has been isolated from a variety of plant sources. It has the highest boiling point of the four known terpinene isomers. It is a major component of essential oils made from citrus fruits and has a strong antioxidant activity. It has a lemon-like or lime-like odor and is widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). The other isomers of gamma-terpinene, such as alpha-terpinene and delta-terpinene, have been isolated from cardamom and marjoram oils while beta terpinene appears to have no natural source. One of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. Constituent of many essential oils e.g. Citrus, Eucalyptus, Mentha, Pinus subspecies Ajowan seed oil (Carum copticum) is a major source γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].

   

Farnesyl pyrophosphate

{[hydroxy({[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy})phosphoryl]oxy}phosphonic acid

C15H28O7P2 (382.1310198)


Farnesyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. -- Wikipedia [HMDB]. Farnesyl pyrophosphate is found in many foods, some of which are kumquat, macadamia nut, sweet bay, and agave. Farnesyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. -- Wikipedia.

   

gamma-Glutamylcysteine

(2S)-2-amino-4-{[(1R)-1-carboxy-2-sulfanylethyl]carbamoyl}butanoic acid

C8H14N2O5S (250.0623394)


gamma-Glutamylcysteine is a dipeptide composed of gamma-glutamate and cysteine, and is a proteolytic breakdown product of larger proteins. It belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. gamma-Glutamylcysteine is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. gamma-Glutamylcysteine is a product of enzyme glutamate-cysteine ligase [EC 6.3.2.2] and a substrate of enzyme glutathione synthase [EC 6.3.2.3] in the glutamate metabolism pathway (KEGG). G-Glutamylcysteine is a product of enzyme glutamate-cysteine ligase [EC 6.3.2.2] and a substrate of enzyme glutathione synthase [EC 6.3.2.3] in glutamate metabolism pathway (KEGG). gamma-Glutamyl-cysteine is found in many foods, some of which are cardamom, hyacinth bean, oil palm, and pak choy. Acquisition and generation of the data is financially supported in part by CREST/JST. Gamma-glutamylcysteine (γ-Glutamylcysteine), a dipeptide containing cysteine and glutamic acid, is a precursor to glutathione (GSH). Gamma-glutamylcysteine is a cofactor for glutathione peroxidase (GPx) to increase GSH levels[1].

   

(3S,6E)-Nerolidol

(S-(e))-3,7,11-Trimethyldodeca-1,6,10-trien-3-ol

C15H26O (222.1983546)


(3S,6E)-Nerolidol, also known as nerolidol or peruviol, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Thus, (3S,6E)-nerolidol is considered to be an isoprenoid lipid molecule. (3S,6E)-Nerolidol is an isomer of nerolidol, a naturally occurring sesquiterpene found in the essential oils of many types of plants and flowers. An isomer of nerolidol, a naturally occurring sesquiterpene found in the essential oils of many types of plants and flowers [Wikipedia] Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

   

Ajoene

3-{[(1Z)-3-(prop-2-ene-1-sulfinyl)prop-1-en-1-yl]disulfanyl}prop-1-ene

C9H14OS3 (234.02067540000002)


Ajoene is found in onion-family vegetables. Ajoene is isolated from garlic (Allium sativum) extracts. Nutriceutical with anti-cancer properties Ajoene is a chemical compound available from garlic (Allium sativum). The name (and pronunciation) is derived from "ajo", the Spanish word for garlic. It is found as a mixture of two isomers, E-, and Z- 4,5,9-trithiadodeca-1,6,11-triene 9-oxide. Ajoene, an unsaturated disulfide, is formed from the bonding of three allicin molecules. Allicin is a sulfinyl compound that gives garlic its strong odor and flavor. The release of allicin occurs after a garlic clove is crushed or finely chopped. Subsequent formation of ajoene occurs when allicin is dissolved in various solvents including edible oils. Ajoene is also found in garlic extract. Ajoene is most stable and most abundant in macerate of garlic (chopped garlic in edible oil) Ajoene is a member of the class of compounds known as sulfoxides. Sulfoxides are compounds containing a sulfoxide functional group, with the structure RS(=O)R (R,R not H). Ajoene is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Ajoene can be found in garlic, onion-family vegetables, and soft-necked garlic, which makes ajoene a potential biomarker for the consumption of these food products. The name (and pronunciation) is derived from "ajo", the Spanish word for garlic. It is found as a mixture of up to four isomers, which differ in terms of the stereochemistry of central alkene (E- vs Z-) and the chirality of the sulfoxide . D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   

Terpinolene

1-methyl-4-(propan-2-ylidene)cyclohexene p-mentha-1,4(8)-diene

C10H16 (136.1251936)


Terpinolene (TPO), also known as alpha-terpinolene or isoterpinene, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, terpinolene is considered to be an isoprenoid lipid molecule. Terpinolene is a very hydrophobic monoterpenoid, practically insoluble in water, and relatively neutral. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes in plants is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Terpinolene is one of the constituents of turpentine and an isomer of terpinene. It appears colourless to pale yellow liquid. Alpha-terpinolene has been identified as an abundant monoterpene in the essential oil of Cannabis sativa plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Although common in cannabis cultivars, terpinolene is typically found in relatively low amounts. On the other hand, the concentration of terpinolene can be has high as 30\\% of the essential oil. It is thought that terpinolene offers a mildly sedative effect and can reduce anxiety (PMID:28826544 ). In particular, terpinolene is a central nervous system depressant that has been shown to induce drowsiness (PMID:23339024 ). Terpinolene has been demonstrated to prevent LDL oxidation and is of potential interest in the treatment of atherogenesis and coronary artery disease (PMID:28826544 ). Terpinolene exhibits antifungal and larvicidal properties (PMID:28826544 ). Terpinolene is also an effective anti-microbial agent, particularly against E coli and Staphylococcus bacteria (PMID:16402540 ). Terpinolene is also employed as a fragrence ingredient in lotions, insect repellents (similar to other terpenes), perfumes, and soaps. Terpinolene is also a constituent of many other essential oils e. g. Citrus, Mentha, Juniperus, Myristica species. Parsnip oil (Pastinaca sativa) in particular, is a major source (40-70\\%). Terpinolene is a sweet, citrus, and fresh tasting compound. It produces a floral, woody or herbal aroma reminiscent of pine needles. In addition to being found in various plant essential oils, terpinolene is found in a few different foods and spices, such as allspice, apples, sage, rosemary, parsnips, nutmegs, and wild carrots and in a lower concentration in sweet bay, star anises, turmerics, apricots, cumins, evergreen blackberries, red bell peppers, and caraway. Constituent of many essential oils e.g. Citrus, Mentha, Juniperus, Myristica subspecies Parsnip oil (Pastinaca sativa) is a major source (40-70\\%). Flavouring ingredient. Terpinolene is found in many foods, some of which are coriander, ceylon cinnamon, pine nut, and caraway.

   

Dipropyl disulfide

1-(propyldisulfanyl)propane

C6H14S2 (150.0536884)


Dipropyl disulfide, also known as 1,1-dithiodipropane or 4,5-dithiaoctane, belongs to the class of organic compounds known as dialkyldisulfides. These are organic compounds containing a disulfide group R-SS-R where R and R are both alkyl groups. Dipropyl disulfide is possibly neutral. Dipropyl disulfide is a burnt, earthy, and green tasting compound. Dipropyl disulfide has been detected, but not quantified, in several different foods, such as chives, cabbages, garden onions, nuts, and brassicas. Constituent of garlic, onion and other Allium subspecies Also present in raw cabbage, roast beef and roasted peanuts. Flavouring agent. Dipropyl disulfide is found in many foods, some of which are garden onion, onion-family vegetables, brassicas, and allium (onion).

   

(+)-Limonene

(4R)-1-Methyl-4-(prop-1-en-2-yl)cyclohex-1-ene

C10H16 (136.1251936)


(+)-Limonene, also known as d-limonene, is a naturally occurring monoterpene which is the major component in orange oil. Currently, (+)-limonene is widely used as a flavour and fragrance and is listed to be generally recognized as safe in food by the Food and Drug Administration (21 CFR 182.60 in the Code of Federal Regulations, U.S.A.). Recently, however, (+)-limonene has been shown to cause a male rat-specific kidney toxicity referred to as hyaline droplet nephropathy. Furthermore, chronic exposure to (+)-limonene causes a significant incidence of renal tubular tumours exclusively in male rats. Although (+)-limonene is not carcinogenic in female rats or male and female mice given much higher dosages, the male rat-specific nephrocarcinogenicity of (+)-limonene may raise some concern regarding the safety of (+)-limonene for human consumption. A considerable body of scientific data has indicated that the renal toxicity of (+)-limonene results from the accumulation of a protein, alpha 2u-globulin, in male rat kidney proximal tubule lysosomes. This protein is synthesized exclusively by adult male rats. Other species, including humans, synthesize proteins that share significant homology with alpha 2u-globulin. However, none of these proteins, including the mouse equivalent of alpha 2u-globulin, can produce this toxicity, indicating a unique specificity for alpha 2u-globulin. With chronic exposure to (+)-limonene, the hyaline droplet nephropathy progresses and the kidney shows tubular cell necrosis, granular cast formation at the corticomedullary junction, and compensatory cell proliferation. Both (+)-limonene and cis-d-limonene-1,2-oxide (the major metabolite involved in this toxicity) are negative in vitro mutagenicity screens. Therefore, the toxicity-related renal cell proliferation is believed to be integrally involved in the carcinogenicity of (+)-limonene as persistent elevations in renal cell proliferation may increase fixation of spontaneously altered DNA or serve to promote spontaneously initiated cells. The scientific data demonstrates that the tumorigenic activity of (+)-limonene in male rats is not relevant to humans. The three major lines of evidence supporting the human safety of (+)-limonene are (1) the male rat specificity of the nephrotoxicity and carcinogenicity; (2) the pivotal role that alpha 2u-globulin plays in the toxicity, as evidenced by the complete lack of toxicity in other species despite the presence of structurally similar proteins; and (3) the lack of genotoxicity of both (+)-limonene and d-limonene-1,2-oxide, supporting the concept of a nongenotoxic mechanism, namely, sustained renal cell proliferation (PMID:2024047). (4r)-limonene, also known as (+)-4-isopropenyl-1-methylcyclohexene or (R)-1-methyl-4-(1-methylethenyl)cyclohexene, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (4r)-limonene is considered to be an isoprenoid lipid molecule (4r)-limonene can be found in sweet marjoram, which makes (4r)-limonene a potential biomarker for the consumption of this food product (4r)-limonene can be found primarily in saliva.

   

3-(Methylthio)-1-propene

3-(Methylsulphanyl)prop-1-ene

C4H8S (88.0346688)


3-(Methylthio)-1-propene is found in garden onion. 3-(Methylthio)-1-propene is a constituent of garlic volatiles. It is a potential nutraceutical. It can also be found in Williopsis (PMID: 22370952). Constituent of garlic volatiles. Potential nutriceutical. 3-(Methylthio)-1-propene is found in many foods, some of which are onion-family vegetables, soft-necked garlic, ginger, and garden onion. 3-(Methylthio)-1-propene is an organic sulfide. Allyl methyl sulfide is a natural product found in Allium chinense, Dactylanthus taylorii, and other organisms with data available. Allyl methyl sulfide is a bioactive organosulfur compound found in garlic. Allyl methyl sulfide exhibits antibacterial, antioxidant and anticancer properties[1]. Allyl methyl sulfide is a bioactive organosulfur compound found in garlic. Allyl methyl sulfide exhibits antibacterial, antioxidant and anticancer properties[1].

   

Karion

Sorbitol, LINIMENT 60\\%, Mannitol, Liniment, D-Mannitol, D-Sorbitol, Dulcitol

C6H14O6 (182.0790344)


Hexane-1,2,3,4,5,6-hexol is a hexitol. Hexitol is a natural product found in Mus musculus, Salacia chinensis, and other organisms with data available. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. DL-Mannitol is obtained by combining D-mannitol with a sample of Lmannitol obtained by reduction of L-mannono-1, Clactone[1]. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Mannitol (Mannitol) is an oral, resistant sugar widely used in the food and pharmaceutical industries to promote the absorption and retention of calcium and magnesium through cecal fermentation, while acting as a osmotic diuretic to reduce tissue edema. D-Mannitol can enhance brown fat formation, improve insulin effect, reduce blood sugar levels, And through the start the β3-adrenergic receptor (β3-AR), PGC1α and PKA induced by means of white fat cells into brown fat cells[1][2][3][4][5][6][7]. D-Mannitol is an osmotic diuretic with weak renal vasodilatory activity. D-Sorbitol (Sorbitol) is a six-carbon sugar alcohol and can used as a sugar substitute. D-Sorbitol can be used as a stabilizing excipient and/or isotonicity agent, sweetener, humectant, thickener and dietary supplement[1]. D-Sorbitol (Sorbitol) is a six-carbon sugar alcohol and can used as a sugar substitute. D-Sorbitol can be used as a stabilizing excipient and/or isotonicity agent, sweetener, humectant, thickener and dietary supplement[1]. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose.

   

Nerolidol

[S-(E)]-3,7,11-trimethyldodeca-1,6,10-trien-3-ol

C15H26O (222.1983546)


A component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Flavouring agent. Nerolidol is found in many foods, some of which are coriander, sweet basil, roman camomile, and sweet orange. Nerolidol is found in bitter gourd. Nerolidol is a component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Nerolidol is a flavouring agent Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

   

Allitridin

Prop-2-enyl prop-2-enylthio disulfide

C6H10S3 (177.994462)


Volatile component from onion (Allium sativum), garlic (Allium sativum) and other commercial garlics. Potential nutriceutical. Allitridin is found in many foods, some of which are onion-family vegetables, garden onion, soft-necked garlic, and garlic. Allitridin is found in garden onion. Allitridin is a volatile component from onion (Allium sativum), garlic (Allium sativum) and other commercial garlics. Potential nutriceutica D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D009676 - Noxae > D000988 - Antispermatogenic Agents > D013089 - Spermatocidal Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D020011 - Protective Agents > D000975 - Antioxidants D010575 - Pesticides > D007306 - Insecticides D009676 - Noxae > D000963 - Antimetabolites D016573 - Agrochemicals Diallyl Trisulfide is isolated from Garlic. Diallyl Trisulfide suppresses the growth of Penicillium expansum (MFC99 value: ≤ 90 μg/mL) and promotes apoptosis via production of reactive oxygen species (ROS) and disintegration of cellular ultrastructure. Anticancer effect[1]. Diallyl Trisulfide is isolated from Garlic. Diallyl Trisulfide suppresses the growth of Penicillium expansum (MFC99 value: ≤ 90 μg/mL) and promotes apoptosis via production of reactive oxygen species (ROS) and disintegration of cellular ultrastructure. Anticancer effect[1].

   

Neoporrigenin B

16,19-dihydroxy-5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosane]-15-one

C27H42O5 (446.30320820000003)


Porrigenin B is found in onion-family vegetables. Porrigenin B is a constituent of Allium porrum (leeks) Constituent of Allium porrum (leeks). Neoporrigenin B is found in onion-family vegetables.

   

Di-2-propenyl tetrasulfide

Bis(prop-2-en-1-yl)tetrasulphane

C6H10S4 (209.96653400000002)


Isolated from garlic oil (Allium sativum). Di-2-propenyl tetrasulfide is found in garlic, soft-necked garlic, and onion-family vegetables. Di-2-propenyl tetrasulfide is found in onion-family vegetables. Di-2-propenyl tetrasulfide is isolated from garlic oil (Allium sativum).

   

Dimethyl tetrasulfide

1,4-Dimethyltetrasulfane

C2H6S4 (157.9352356)


Constituent of various Allium subspecies and Lentinus species Dimethyl tetrasulfide is found in many foods, some of which are mushrooms, soft-necked garlic, garden onion, and shiitake. Dimethyl tetrasulfide is found in garden onion. Dimethyl tetrasulfide is a constituent of various Allium species and Lentinus sp.

   

S-2-Propenyl methanesulfinothioate

S-2-Propenyl methanesulphinothioic acid

C4H8OS2 (136.0016558)


S-2-Propenyl methanesulfinothioate is found in onion-family vegetables. S-2-Propenyl methanesulfinothioate is a constituent of Allium species. Constituent of Allium subspecies S-2-Propenyl methanesulfinothioate is found in soft-necked garlic and onion-family vegetables.

   

Dipropyl trisulfide

1,3-Dipropyltrisulfane

C6H14S3 (182.02576040000002)


Dipropyl trisulfide is found in garden onion. Dipropyl trisulfide is a component of onion oil. Dipropyl trisulfide is a flavouring ingredient. Component of onion oil. Flavouring ingredient. Dipropyl trisulfide is found in garden onion and onion-family vegetables.

   

Diethyl trisulfide

1,3-Diethyltrisulfane

C4H10S3 (153.994462)


Cystine thermal degradation product. Aroma constituent of salted pork, cooked beef and durian fruit (Durio zibethinus). Diethyl trisulfide is found in animal foods and fruits. Diethyl trisulfide is found in animal foods. Cystine thermal degradation product. Aroma constituent of salted pork, cooked beef and durian fruit (Durio zibethinus).

   

Squalene

InChI=1\C30H50\c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4\h15-18,23-24H,9-14,19-22H2,1-8H3\b27-17+,28-18+,29-23+,30-24

C30H50 (410.39123)


Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Allantoin

(2,5-dioxoimidazolidin-4-yl)urea

C4H6N4O3 (158.0439886)


C78284 - Agent Affecting Integumentary System > C29708 - Anti-psoriatic Agent C78284 - Agent Affecting Integumentary System > C29700 - Astringent D003879 - Dermatologic Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; POJWUDADGALRAB-UHFFFAOYSA-N_STSL_0150_Allantoin_8000fmol_180425_S2_LC02_MS02_50; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth. Allantoin is a skin conditioning agent that promotes healthy skin, stimulates new and healthy tissue growth.

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.307899)


Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Gamma-glutamylcysteine

Gamma-glutamylcysteine

C8H14N2O5S (250.0623394)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RITKHVBHSGLULN_STSL_0116_5-Glutamylcysteine_8000fmol_180506_S2_LC02_MS02_219; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Gamma-glutamylcysteine (γ-Glutamylcysteine), a dipeptide containing cysteine and glutamic acid, is a precursor to glutathione (GSH). Gamma-glutamylcysteine is a cofactor for glutathione peroxidase (GPx) to increase GSH levels[1].

   

CH3SCH2CH=CH2

3-(Methylsulfanyl)-1-propene

C4H8S (88.0346688)


Allyl methyl sulfide is a bioactive organosulfur compound found in garlic. Allyl methyl sulfide exhibits antibacterial, antioxidant and anticancer properties[1]. Allyl methyl sulfide is a bioactive organosulfur compound found in garlic. Allyl methyl sulfide exhibits antibacterial, antioxidant and anticancer properties[1].

   

Neoporrigenin B

16,19-dihydroxy-5,7,9,13-tetramethyl-5-oxaspiro[oxane-2,6-pentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane]-15-one

C27H42O5 (446.30320820000003)


   

Allyl methanethiosulfinate

3-(methanesulfinylsulfanyl)prop-1-ene

C4H8OS2 (136.0016558)


   

Propyl trisulfide

1,3-Dipropyltrisulfane

C6H14S3 (182.02576040000002)


   

Dially tetrasulfide

4,5,6,7-Tetrathia-1,9-decadiene

C6H10S4 (209.96653400000002)


   

diethyltrisulfane

1,3-Diethyltrisulfane

C4H10S3 (153.994462)


   

Dimethyltetrasulfane

1,4-Dimethyltetrasulfane

C2H6S4 (157.9352356)


   

Terpinolen

1-methyl-4-(propan-2-ylidene)cyclohexene p-mentha-1,4(8)-diene

C10H16 (136.1251936)


   

farnesyl diphosphate

2-trans,6-trans-Farnesyl diphosphate

C15H28O7P2 (382.1310198)


The trans,trans-stereoisomer of farnesyl diphosphate.

   

α-Pinene

InChI=1\C10H16\c1-7-4-5-8-6-9(7)10(8,2)3\h4,8-9H,5-6H2,1-3H

C10H16 (136.1251936)


A pinene that is bicyclo[3.1.1]hept-2-ene substituted by methyl groups at positions 2, 6 and 6 respectively. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].

   

Moslene

InChI=1\C10H16\c1-8(2)10-6-4-9(3)5-7-10\h4,7-8H,5-6H2,1-3H

C10H16 (136.1251936)


γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].

   

Tereben

Dipentene Fluka specially purified fraction of terpene hydrocarbons

C10H16 (136.1251936)


   

5756-24-1

methyldisulfanyldisulfanylmethane

C2H6S4 (157.9352356)


   

10152-76-8

1-Propene, 3-(methylthio)-

C4H8S (88.0346688)


Allyl methyl sulfide is a bioactive organosulfur compound found in garlic. Allyl methyl sulfide exhibits antibacterial, antioxidant and anticancer properties[1]. Allyl methyl sulfide is a bioactive organosulfur compound found in garlic. Allyl methyl sulfide exhibits antibacterial, antioxidant and anticancer properties[1].

   

Garlic oil

0-01-00-00441 (Beilstein Handbook Reference)

C6H10S3 (177.994462)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D009676 - Noxae > D000988 - Antispermatogenic Agents > D013089 - Spermatocidal Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D020011 - Protective Agents > D000975 - Antioxidants D010575 - Pesticides > D007306 - Insecticides D009676 - Noxae > D000963 - Antimetabolites D016573 - Agrochemicals Diallyl Trisulfide is isolated from Garlic. Diallyl Trisulfide suppresses the growth of Penicillium expansum (MFC99 value: ≤ 90 μg/mL) and promotes apoptosis via production of reactive oxygen species (ROS) and disintegration of cellular ultrastructure. Anticancer effect[1]. Diallyl Trisulfide is isolated from Garlic. Diallyl Trisulfide suppresses the growth of Penicillium expansum (MFC99 value: ≤ 90 μg/mL) and promotes apoptosis via production of reactive oxygen species (ROS) and disintegration of cellular ultrastructure. Anticancer effect[1].

   

AI3-26172

InChI=1\C2H6S3\c1-3-5-4-2\h1-2H

C2H6S3 (125.9631636)


Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1]. Dimethyl trisulfide is an organic chemical compound and the simplest organic trisulfide found in garlic, onion, broccoli, and similar plants. Dimethyl trisulfide is a cyanide antidote[1].

   

SSP-SSP

InChI=1\C6H14S2\c1-3-5-7-8-6-4-2\h3-6H2,1-2H

C6H14S2 (150.0536884)


   

6028-61-1

4-01-00-01455 (Beilstein Handbook Reference)

C6H14S3 (182.02576040000002)


   

AIDS-109732

3-prop-2-enyldisulfanyldisulfanylprop-1-ene

C6H10S4 (209.96653400000002)


   

Dipropyl tetrasulfide

Dipropyl tetrasulfide

C6H14S4 (213.9978324)


   

(3S,9S,10R,13R,14R,17R)-17-[(E,2S,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

(3S,9S,10R,13R,14R,17R)-17-[(E,2S,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H44O (396.3391974)


   

ORANGE TERPENES

ORANGE TERPENES

C10H16 (136.1251936)


   

TERPINOLENE

TERPINOLENE

C10H16 (136.1251936)


A p-menthadiene with double bonds at positions 1 and 4(8).

   

Propyl disulfide

Dipropyl disulfide

C6H14S2 (150.0536884)


An organic disulfide where the alkyl groups specified are propyl. It is a component of the essential oils obtained from Allium.

   

(3S,6E)-Nerolidol

[S-(E)]-3,7,11-trimethyldodeca-1,6,10-trien-3-ol

C15H26O (222.1983546)


A (6E)-nerolidol in which the hydroxy group at positon 3 adopts an S-configuration. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1].

   

(Z)-Ajoene

(Z)-Ajoene

C9H14OS3 (234.02067540000002)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   
   
   

diethyl trisulfide

3,4,5-trithiaheptane

C4H10S3 (153.994462)


   

S-2-Propenyl methanesulfinothioate

S-2-Propenyl methanesulfinothioate

C4H8OS2 (136.0016558)