NCBI Taxonomy: 5073
Penicillium (ncbi_taxid: 5073)
found 54 associated metabolites at genus taxonomy rank level.
Ancestor: Aspergillaceae
Child Taxonomies: Penicillium freii, Penicillium hordei, Penicillium thomii, Penicillium daleae, Penicillium solitum, Penicillium commune, Penicillium carneum, Penicillium urticae, Penicillium tricolor, Penicillium hirsutum, Penicillium gladioli, Penicillium italicum, Penicillium vulpinum, Penicillium expansum, Penicillium citrinum, Penicillium taxi, Penicillium mali, Penicillium fagi, Penicillium soli, Penicillium cyclopium, Penicillium polonicum, Penicillium digitatum, Penicillium crustosum, Penicillium javanicum, Penicillium canescens, Penicillium lunae, Penicillium momoi, Penicillium laeve, Penicillium allii, Penicillium canis, Penicillium album, Penicillium ortum, Penicillium aeris, Penicillium colei, Penicillium limae, Penicillium vagum, Penicillium molle, Penicillium verrucosum, Penicillium inusitatum, Penicillium miczynskii, Penicillium spinulosum, Penicillium clavigerum, Penicillium camemberti, Penicillium roqueforti, Penicillium lagena, Penicillium paneum, Penicillium kongii, Penicillium tealii, Penicillium brocae, Penicillium acidum, Penicillium apimei, Penicillium ribium, Penicillium krskae, Penicillium simile, Penicillium ovatum, Penicillium boreae, Penicillium pullum, Penicillium donkii, Penicillium aeneum, Penicillium wotroi, Penicillium soppii, Penicillium mellis, Penicillium tardum, Penicillium nudgee, Penicillium pulvis, Penicillium raperi, Penicillium patens, Penicillium fuscum, Penicillium humuli, Penicillium flavum, Penicillium parvum, Penicillium silybi, Penicillium alogum, Penicillium cainii, Penicillium nalgiovense, Penicillium coprophilum, Penicillium aethiopicum, Penicillium chermesinum, Penicillium viridicatum, Penicillium eickeri, Penicillium scottii, Penicillium tulipae, Penicillium guarroi, Penicillium coffeae, Penicillium indicum, Penicillium ashbyae, Penicillium levitum, Penicillium olsonii, Penicillium sexuale, Penicillium albidum, Penicillium steckii, Penicillium venetum, Penicillium kewense, Penicillium lanosum, Penicillium sanjayi, Penicillium arvense, Penicillium iriense, Penicillium biforme, Penicillium raphiae, Penicillium limosum, Penicillium korosum, Penicillium bilaiae, Penicillium salamii, Penicillium goetzii, Penicillium cyaneum, Penicillium glabrum, Penicillium setosum, Penicillium herquei, Penicillium madriti, Penicillium melinii, Penicillium rolfsii, Penicillium fractum, Penicillium fimorum, Penicillium sicoris, Penicillium rivolii, Penicillium hoeksii, Penicillium marinum, Penicillium armarii, Penicillium punicae, Penicillium ornatum, Penicillium ucsense, Penicillium lividum, Penicillium fimosum, Penicillium nodulum, Penicillium smithii, Penicillium poederi, Penicillium cryptum, Penicillium paxilli, Penicillium griseum, Penicillium umkhoba, Penicillium alexiae, Penicillium maximae, Penicillium amaliae, Penicillium sizovae, Penicillium shearii, Penicillium pagulum, Penicillium zonatum, Penicillium dravuni, Penicillium atramentosum, Penicillium griseofulvum, Penicillium janthinellum, Penicillium citreoviride, Penicillium ulaiense, Penicillium sacculum, Penicillium hepuense, Penicillium jensenii, Penicillium syriacum, Penicillium virgatum, Penicillium parvulum, Penicillium tropicum, Penicillium soosanum, Penicillium koreense, Penicillium discolor, Penicillium rotoruae, Penicillium tolerans, Penicillium palmense, Penicillium nucicola, Penicillium manginii, Penicillium cuddlyae, Penicillium obscurum, Penicillium elleniae, Penicillium allaniae, Penicillium archerae, Penicillium ludwigii, Penicillium burgense, Penicillium alfredii, Penicillium arabicum, Penicillium oxalicum, Penicillium cellarum, Penicillium onobense, Penicillium odoratum, Penicillium vinaceum, Penicillium nordicum, Penicillium globosum, Penicillium zhuangii, Penicillium oledzkii, Penicillium stolkiae, Penicillium sinaicum, Penicillium jejuense, Penicillium yezoense, Penicillium viticola, Penicillium lassenii, Penicillium exsudans, Penicillium excelsum, Penicillium stangiae, Penicillium gercinae, Penicillium doidgeae, Penicillium ibericum, Penicillium ovetense, Penicillium sartoryi, Penicillium pusillum, Penicillium turbatum, Penicillium barbosae, Penicillium kalander, Penicillium terrenum, Penicillium arianeae, Penicillium angulare, Penicillium thiersii, Penicillium palitans, Penicillium amagasakiense, Penicillium jacksonii, Penicillium coprobium, Penicillium thymicola, Penicillium fusiforme, Penicillium dierckxii, Penicillium submersum, Penicillium restingae, Penicillium mallochii, Penicillium ubiquetum, Penicillium griseolum, Penicillium ezekielii, Penicillium paradoxum, Penicillium farinosum, Penicillium nothofagi, Penicillium kloeckeri, Penicillium menonorum, Penicillium copticola, Penicillium caperatum, Penicillium tirolense, Penicillium gallaicum, Penicillium lusitanum, Penicillium euglaucum, Penicillium ochotense, Penicillium pinetorum, Penicillium speluncae, Penicillium tularense, Penicillium kiamaense, Penicillium corvianum, Penicillium aquaticum, Penicillium meliponae, Penicillium vickeryae, Penicillium terrestre, Penicillium vanluykii, Penicillium circulare, Penicillium lapatayae, Penicillium wandoense, Penicillium chalybeum, Penicillium ilerdanum, Penicillium adametzii, Penicillium hermansii, Penicillium scabrosum, Penicillium mexicanum, Penicillium charlesii, Penicillium dokdoense, Penicillium decumbens, Penicillium alagoense, Penicillium catenatum, Penicillium acericola, Penicillium corticola, Penicillium flexuosum, Penicillium compactum, Penicillium bissettii, Penicillium coeruleum, Penicillium waksmanii, Penicillium idahoense, Penicillium baarnense, Penicillium martensii, Penicillium ehrlichii, Penicillium meloforme, Penicillium michaelis, Penicillium soliforme, Penicillium paczoskii, Penicillium lapidosum, Penicillium puberulum, Penicillium radulatum, Penicillium crocicola, Penicillium severskii, Penicillium fortuitum, Penicillium amapaense, Penicillium sajarovii, Penicillium volgaense, Penicillium klebahnii, Penicillium alutaceum, Penicillium rubidurum, Penicillium murcianum, Penicillium kojigenum, Penicillium nepalense, Penicillium velutinum, Penicillium mattheeae, Penicillium ausonanum, Penicillium subfuscum, Penicillium aotearoae, Penicillium piscarium, Penicillium fundyense, Penicillium abidjanum, Penicillium hirayamae, Penicillium vasconiae, Penicillium annulatum, Penicillium confertum, Penicillium melanoconidium, Penicillium ochrosalmoneum, Penicillium brevicompactum, Penicillium johnkrugii, Penicillium austricola, Penicillium formosanum, Penicillium radicicola, Penicillium irregulare, Penicillium phoeniceum, Penicillium glandicola, Penicillium neoherquei, Penicillium atrofulvum, Penicillium godlewskii, Penicillium multicolor, Penicillium pancosmium, Penicillium georgiense, Penicillium cordubense, Penicillium montanense, Penicillium quebecense, Penicillium cairnsense, Penicillium guttulosum, Penicillium persicinum, Penicillium cf. kongii, Penicillium diatomitis, Penicillium dipodomyus, Penicillium terrigenum, Penicillium curticaule, Penicillium skrjabinii, Penicillium ramusculum, Penicillium aragonense, Penicillium attenuatum, Penicillium dangeardii, Penicillium piltunense, Penicillium suaveolens, Penicillium vaccaeorum, Penicillium toxicarium, Penicillium buchwaldii, Penicillium improvisum, Penicillium granulatum, Penicillium anatolicum, Penicillium fennelliae, Penicillium ardesiacum, Penicillium porphyreum, Penicillium sucrivorum, Penicillium canariense, Penicillium capsulatum, Penicillium atrovirens, Penicillium imranianum, Penicillium americanum, Penicillium implicatum, Penicillium sankaranii, Penicillium terrarumae, Penicillium chalabudae, Penicillium singorense, Penicillium lineolatum, Penicillium restrictum, Penicillium luzoniacum, Penicillium granatense, Penicillium camponotum, Penicillium flavigenum, Penicillium flavescens, Penicillium westlingii, Penicillium hainanense, Penicillium desertorum, Penicillium laevigatum, Penicillium egyptiacum, Penicillium meridianum, Penicillium hispanicum, Penicillium olivicolor, Penicillium tanzanicum, Penicillium yunnanense, Penicillium patris-mei, Penicillium indonesiae, Penicillium rudallense, Penicillium fusisporum, Penicillium cerradense, Penicillium aquadulcis, Penicillium daejeonium, Penicillium arizonense, Penicillium senticosum, Penicillium gerundense, Penicillium malacaense, Penicillium balearicum, Penicillium taurinense, Penicillium labradoris, Penicillium bussumense, Penicillium valentinum, Penicillium erubescens, Penicillium verhagenii, Penicillium fellutanum, Penicillium sanshaense, Penicillium oregonense, Penicillium neocrassum, Penicillium tubakianum, Penicillium sylvaticum, Penicillium majusculum, Penicillium monsgalena, Penicillium melaleucae, Penicillium subericola, Penicillium yarmokense, Penicillium allsoppiae, Penicillium vanoranjei, Penicillium xyleborini, Penicillium tunisiense, Penicillium osmophilum, Penicillium ellipticum, Penicillium swiecickii, Penicillium beceitense, Penicillium katangense, Penicillium aurantiogriseum, Penicillium uruguayense, Penicillium cf. olsonii, Penicillium janczewskii, Penicillium eremophilum, Penicillium chrzaszczii, Penicillium quercetorum, Penicillium bovifimosum, Penicillium repensicola, Penicillium pasqualense, Penicillium isariiforme, Penicillium kurssanovii, Penicillium cf. herquei, Penicillium sanguifluum, Penicillium brasilianum, Penicillium paraherquei, Penicillium pulvillorum, Penicillium hemitrachum, Penicillium brevissimum, Penicillium jenningsiae, Penicillium spathulatum, Penicillium tropicoides, Penicillium longisporum, Penicillium penarojense, Penicillium guaibinense, Penicillium guizhouanum, Penicillium hennebertii, Penicillium jiangxiense, Penicillium geumsanense, Penicillium astrolabium, Penicillium subarcticum, Penicillium dunedinense, Penicillium incoloratum, Penicillium atrovenetum, Penicillium macedonense, Penicillium saanichanum, Penicillium camerunense, Penicillium cartierense, Penicillium raistrickii, Penicillium brasiliense, Penicillium gracilentum, Penicillium sumatraense, Penicillium flaviroseum, Penicillium raciborskii, Penicillium janthogenum, Penicillium samsonianum, Penicillium guangxiense, Penicillium oligosporum, Penicillium malodoratum, Penicillium pseudocasei, Penicillium psittacinum, Penicillium neomanginii, Penicillium alicantinum, Penicillium cavernicola, Penicillium trzebinskii, Penicillium roseoviride, Penicillium antarcticum, Penicillium cantabricum, Penicillium catalonicum, Penicillium cinerascens, Penicillium variratense, Penicillium rubefaciens, Penicillium tannophilum, Penicillium claroviride, Penicillium myrtacearum, Penicillium meleagrinum, Penicillium malachiteum, Penicillium decaturense, Penicillium consobrinum, Penicillium estinogenum, Penicillium cravenianum, Penicillium caseifulvum, Penicillium robsamsonii, Penicillium gravinicasei, Penicillium namyslowskii, Penicillium donggangicum, unclassified Penicillium, Penicillium melanosporum, Penicillium cf. oxalicum, Penicillium aff. glabrum, Penicillium aff. solitum, Penicillium saturniforme, Penicillium chroogomphum, Penicillium cf. tropicum, Penicillium argentinense, Penicillium fuscoglaucum, Penicillium coralligerum, Penicillium parvofructum, Penicillium subturcoseum, Penicillium minnesotense, Penicillium ferraniaense, Penicillium albocoremium, Penicillium griseoroseum, Penicillium aff. lividum, Penicillium subrubescens, Penicillium aff. melinii, Penicillium fernandesiae, Penicillium kapuscinskii, Penicillium gorlenkoanum, Penicillium glaucoroseum, Penicillium kananaskense, Penicillium mali-pumilae, Penicillium cinereoatrum, Penicillium corynephorum, Penicillium jugoslavicum, Penicillium allii-sativi, Penicillium citreonigrum, Penicillium corylophilum, Penicillium ochrochloron, Penicillium purpurescens, Penicillium chloroleucon, Penicillium flavoglaucum, Penicillium sclerotiorum, Penicillium grancanariae, Penicillium griseoflavum, Penicillium maclennaniae, Penicillium spinuliferum, Penicillium halotolerans, Penicillium viridissimum, Penicillium crystallinum, Penicillium pedemontanum, Penicillium resticulosum, Penicillium concentricum, Penicillium stoloniferum, Penicillium terraconense, Penicillium contaminatum, Penicillium pedernalense, Penicillium athertonense, Penicillium asperosporum, Penicillium ianthinellum, Penicillium caprifimosum, Penicillium wollemiicola, Penicillium cvjetkovicii, Penicillium fluviserpens, Penicillium lemhiflumine, Penicillium brefeldianum, Penicillium amphipolaria, Penicillium cataractarum, Penicillium costaricense, Penicillium biourgeianum, Penicillium elizabethiae, Penicillium cf. discolor, Penicillium svalbardense, Penicillium aff. steckii, Penicillium pole-evansii, Penicillium cf. citrinum, Penicillium cf. sacculum, Penicillium bialowiezense, Penicillium michoacanense, Penicillium nordestinense, Penicillium guanacastense, Penicillium vancouverense, Penicillium siccitolerans, Penicillium mononematosum, Penicillium neomiczynskii, Penicillium lenticrescens, Penicillium xingjiangense, Penicillium heteromorphum, Penicillium glaucoalbidum, Penicillium cf. crustosum, Penicillium candidofulvum, Penicillium castellonense, Penicillium cremeogriseum, Penicillium gracehopperae, Penicillium araracuarense, Penicillium glaucolanosum, Penicillium austrosinense, Penicillium sclerotigenum, Penicillium dipodomyicola, Penicillium mariae-crucis, Penicillium griseoazureum, Penicillium lanosogriseum, Penicillium melanochlorum, Penicillium grevilleicola, Penicillium sublectaticum, Penicillium wisconsinense, Penicillium synnematicola, Penicillium sublateritium, Penicillium subspinulosum, Penicillium austrosinicum, Penicillium adametzioides, Penicillium verrucisporum, Penicillium riverlandense, Penicillium philippinense, Penicillium mediterraneum, Penicillium cf. polonicum, Penicillium striatisporum, Penicillium outeniquaense, Penicillium infrabuccalum, Penicillium pimiteouiense, Penicillium atrolazulinum, Penicillium xanthomelinii, Penicillium cf. copticola, Penicillium malmesburiense, Penicillium aspericonidium, Penicillium christenseniae, Penicillium wellingtonense, Penicillium cosmopolitanum, Penicillium aurantiovirens, Penicillium longicatenatum, Penicillium atrosanguineum, Penicillium aff. ubiquetum, Penicillium hetheringtonii, Penicillium newtonturnerae, Penicillium simplicissimum, Penicillium neoechinulatum, Penicillium psychrosexuale, Penicillium vanderhammenii, Penicillium infrapurpureum, Penicillium luteocoeruleum, Penicillium coeruleoviride, Penicillium marykayhuntiae, Penicillium cf. roqueforti, Penicillium roseopurpureum, Penicillium rubriannulatum, Penicillium coccotrypicola, Penicillium radiatolobatum, Penicillium ranomafanaense, Penicillium turrispainense, Penicillium roseomaculatum, Penicillium dimorphosporum, Penicillium williamettense, Penicillium shennongjianum, Penicillium salmoniflumine, Penicillium reticulisporum, Penicillium cf. caseifulvum, Penicillium cf. hennebertii, Penicillium aff. cecidicola, Penicillium aff. spinulosum, Penicillium brevistipitatum, Penicillium jamesonlandense, Penicillium uttarakhandense, Penicillium griseopurpureum, Penicillium glycyrrhizacola, Penicillium aff. multicolor, Penicillium carneolutescens, Penicillium eben-bitarianum, Penicillium lanosocoeruleum, Penicillium sterculiniicola, Penicillium tsitsikammaense, Penicillium cf. decaturense, Penicillium austroafricanum, Penicillium cf. pulvillorum, Penicillium jiaozhouwanicum, Penicillium angustiporcatum, Penicillium cf. viridicatum, Penicillium monsserratidens, Penicillium panissanguineum, Penicillium clavistipitatum, Penicillium parviverrucosum, Penicillium cf. chrysogenum, Penicillium novae-zeelandiae, Penicillium malacosphaerulum, Penicillium psychrotrophicum, Penicillium concavorugulosum, Penicillium aurantiocandidum, Penicillium tardochrysogenum, Penicillium brunneoviolaceum, Penicillium carminoviolaceum, Penicillium reconvexovelosoi, Penicillium citreosulfuratum, Penicillium cf. brefeldianum, Penicillium jianfenglingense, Penicillium spinuloramigenum, Penicillium choerospondiatis, Penicillium vallebormidaense, Penicillium cf. griseofulvum, Penicillium cinnamopurpureum, Penicillium cf. citreonigrum, Penicillium diabolicalicense, Penicillium aff. chrysogenum, Penicillium cf. mononematosum, Penicillium cf. mariae-crucis, Penicillium vascosobrinhoanum, Penicillium cf. bialowiezense, Penicillium macrosclerotiorum, Penicillium cf. javanicum 87U, Penicillium aurantioviolaceum, Penicillium turcosoconidiatum, Penicillium ellipsoideosporum, Penicillium flavidostipitatum, Penicillium anthracinoglaciei, Penicillium flavisclerotiatum, Penicillium brunneoconidiatum, Penicillium infra-aurantiacum, Penicillium longiconidiophorum, Penicillium cf. paneum KRCF659, Penicillium cf. paneum KRCF698, Penicillium aurantiacobrunneum, Penicillium cf. brevicompactum, Penicillium fructuariae-cellae, Penicillium cf. shearii Fun22C, Penicillium magnielliptisporum, Penicillium cf. psychrosexuale, Penicillium lilacinoechinulatum, Penicillium aff. brevicompactum, Penicillium echinulonalgiovense, Penicillium brunneostoloniferum, Penicillium cf. chermesinum F99, Penicillium carolineherscheliae, Penicillium cf. citreosulfuratum, Penicillium cf. restrictum CV419, Penicillium cf. restrictum CV387, Penicillium cf. verruculosum 41C, Penicillium cf. restrictum CV136, Penicillium cf. restrictum CV301, Penicillium cf. restrictum CV316, Penicillium cf. janthinellum 19U, Penicillium aff. spinolosum T50b, Penicillium aff. spinulosum PP41, Penicillium aff. janthinellum P43, Penicillium aff. janthinellum P49, Penicillium cf. kloeckeri Fun216B, Penicillium cf. janthinellum SW14, Penicillium aff. rugulosum MS-2015, Penicillium cf. rugulosum CMV-2008, Penicillium cf. simplicissimum 99C, Penicillium cf. glabrum CBS 229.28, Penicillium cf. verruculosum RS7PF, Penicillium marthae-christenseniae, Penicillium aff. sclerotiorum PP47, Penicillium aff. sclerotiorum PP95, Penicillium cf. lanosum IHEM 28051, Penicillium cf. coffeae UFMGCB10021, Penicillium cf. terrigenum DTO 19H8, Penicillium cf. biourgeianum MU-214, Penicillium cf. steckii UFMGCB 6737, Penicillium aff. sclerotiorum PP131, Penicillium aff. sclerotiorum PP134, Penicillium cf. citrinum IHEM 28166, Penicillium cf. citrinum UFMGCB8090, Penicillium cf. decaturense EXP0523F, Penicillium cf. piscarium DTO 108-E1, Penicillium cf. citrinum UFMGCB 6740, Penicillium cf. citrinum UFMGCB 6748, Penicillium cf. spathulatum CMV-2023a, Penicillium cf. simplicissimum FunS11, Penicillium cf. restrictum DTO 184-E4, Penicillium cf. restrictum DTO 184-E6, Penicillium cf. minioluteum A6/1/1/A1, Penicillium cf. minioluteum A7/1/2/A1, Penicillium cf. minioluteum A7/3/0/A1, Penicillium cf. restrictum IHEM 28287, Penicillium cf. restrictum IHEM 28039, Penicillium aff. sclerotiorum ROG-2010, Penicillium cf. restrictum DAOM 241050, Penicillium cf. restrictum DAOM 241054, Penicillium cf. restrictum DAOM 241052, Penicillium cf. restrictum DAOM 241055, Penicillium cf. restrictum DAOM 241058, Penicillium cf. restrictum DAOM 241051, Penicillium cf. pulvillorum UFMGCB8036, Penicillium cf. malodoratum UFMGCB 5881, Penicillium chrysogenum species complex, Penicillium cf. minioluteum B1/2/2/3/A1, Penicillium cf. miczynskii WO2007149699, Penicillium cf. griseofulvum UFMGCB 6741, Penicillium cf. parviverrucosum CMV-2014, Penicillium cf. parviverrucosum CMV-2013, Penicillium aff. janthinellum IR-5Su-1-10-3
Thymidine
Deoxythymidine, also known as 2-deoxy-5-methyluridine or 5-methyl-2-deoxyuridine, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine is soluble (in water) and a very weakly acidic compound (based on its pKa). Deoxythymidine can be synthesized from thymine. Deoxythymidine is also a parent compound for other transformation products, including but not limited to, tritiated thymidine, alpha-tritiated thymidine, and 5,6-dihydrothymidine. Deoxythymidine can be found in a number of food items such as butternut squash, mammee apple, catjang pea, and climbing bean, which makes deoxythymidine a potential biomarker for the consumption of these food products. Deoxythymidine can be found primarily in most biofluids, including blood, amniotic fluid, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Deoxythymidine exists in all living species, ranging from bacteria to humans. In humans, deoxythymidine is involved in the pyrimidine metabolism. Deoxythymidine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, deoxythymidine is found to be associated with canavan disease and degenerative disc disease. Thymidine (deoxythymidine; other names deoxyribosylthymine, thymine deoxyriboside) is a pyrimidine deoxynucleoside. Deoxythymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in G1/early S phase . Thymidine, also known as deoxythymidine or deoxyribosylthymine or thymine deoxyriboside, is a pyrimidine deoxynucleoside. It consists of the nucleobase thymine attached to deoxyribose through a beta N- glycosidic bond. Thymidine also belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxythymidine (or thymidine) is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. Therefore, thymidine is essential to all life. Indeed, thymidine exists in all living species, ranging from bacteria to plants to humans. Within humans, thymidine participates in a number of enzymatic reactions. In particular, thymidine can be biosynthesized from 5-thymidylic acid through its interaction with the enzyme cytosolic purine 5-nucleotidase. In addition, thymidine can be converted into 5-thymidylic acid; which is catalyzed by the enzyme thymidine kinase. Deoxythymidine can be phosphorylated with one, two or three phosphoric acid groups, creating dTMP (deoxythymidine monophosphate), dTDP, or dTTP (for the di- and tri- phosphates, respectively). dTMP can be incorporated into DNA via DNA polymerases. In cell biology, thymidine can be used to synchronize the cells in S phase. Derivatives of thymidine are used in a number of drugs, including Azidothymidine (AZT), which is used in the treatment of HIV infection. AZT inhibits the process of reverse transcription in the human immunodeficiency virus. Thymidine is a pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. It is functionally related to a thymine. It is an enantiomer of a telbivudine. Thymidine is a pyrimidine deoxynucleoside. Thymidine is the DNA nucleoside T, which pairs with deoxyadenosine (A) in double-stranded DNA. In cell biology it is used to synchronize the cells in S phase. Thymidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Thymidine is a natural product found in Fritillaria thunbergii, Saussurea medusa, and other organisms with data available. Thymidine is a pyrimidine nucleoside that is composed of the pyrimidine base thymine attached to the sugar deoxyribose. As a constituent of DNA, thymidine pairs with adenine in the DNA double helix. (NCI04) Thymidine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside in which THYMINE is linked to DEOXYRIBOSE. A pyrimidine 2-deoxyribonucleoside having thymine as the nucleobase. KEIO_ID T014; [MS2] KO009272 KEIO_ID T014 Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3]. Thymidine, a specific precursor of deoxyribonucleic acid, is used as a cell synchronizing agent. Thymidine is a DNA synthesis inhibitor that can arrest cell at G1/S boundary, prior to DNA replication[1][2][3].
Gentisate
Gentisic acid, also known as gentisate or 2,5-dioxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. Gentisic acid is also classified as a dihydroxybenzoic acid. It is a derivative of benzoic acid and a minor (1\\\\\%) product of the metabolic break down of aspirin, which is excreted by the kidneys. Gentisic acid is found in essentially all organisms ranging from bacteria to fungi to plants to animals. Gentisic acid has been associated with a number of useful effects on human health and exhibits anti-inflammatory, antigenotoxic, hepatoprotective, neuroprotective, antimicrobial, and especially antioxidant activities (PMID: 31825145). It is widely distributed in plants as a secondary plant product such as Gentiana spp., Citrus spp., Vitis vinifera, Pterocarpus santalinus, Helianthus tuberosus, Hibiscus rosa-sinensis, Olea europaea, and Sesamum indicum and in fruits such as avocados, batoko plum, kiwi fruits, apple, bitter melon, black berries, pears, and some mushrooms (PMID: 31825145). Gentisic acid is found in higher concentrations in a number of foods such as tarragons, common thymes, and common sages and in a lower concentration in grape wines, rosemaries, and sweet marjorams. Gentisic acid has also been shown to act as a pathogen-inducible signal for the activation of plant defenses in tomato plants and cucumbers (PMID: 16321412; https://doi.org/10.1094/MPMI.1999.12.3.227). Gentisic acid is a dihydroxybenzoic acid. It is a crystalline powder that forms monoclinic prism in water solution. Gentisic acid is an active metabolite of salicylic acid degradation. There is an increasing amount of evidence indicating that gentisic acid has a broad spectrum of biological activity, such as anti-inflammatory, antirheumatic and antioxidant properties. Gentisic acid is also a byproduct of tyrosine and benzoate metabolism. [HMDB]. Gentisic acid is found in many foods, some of which are common sage, common grape, nutmeg, and dill. 2,5-dihydroxybenzoic acid is a dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. It has a role as a MALDI matrix material, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a human metabolite, a fungal metabolite and a mouse metabolite. It is functionally related to a benzoic acid. It is a conjugate acid of a 2,5-dihydroxybenzoate. 2,5-Dihydroxybenzoic acid is a natural product found in Persicaria mitis, Tilia tomentosa, and other organisms with data available. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates A dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. 2,5-Dihydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-79-9 (retrieved 2024-07-01) (CAS RN: 490-79-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors. 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors.
Orsellinic_acid
O-orsellinic acid is a dihydroxybenzoic acid that is 2,4-dihydroxybenzoic acid in which the hydrogen at position 6 is replaced by a methyl group. It has a role as a metabolite, a marine metabolite and a fungal metabolite. It is a dihydroxybenzoic acid and a member of resorcinols. It is a conjugate acid of an o-orsellinate. 2,4-Dihydroxy-6-methylbenzoic acid is a natural product found in Nidularia pulvinata, Hypoxylon rubiginosum, and other organisms with data available. A dihydroxybenzoic acid that is 2,4-dihydroxybenzoic acid in which the hydrogen at position 6 is replaced by a methyl group. Orsellinic acid is a compound produced by Lecanoric acid treated with alcohols. Lecanoric acid is a lichen depside isolated from a Parmotrema tinctorum specimen[1].
1,2,3-Trihydroxybenzene
1,2,3-trihydroxybenzene, also known as pyrogallic acid or 1,2,3-benzenetriol, is a member of the class of compounds known as 5-unsubstituted pyrrogallols. 5-unsubstituted pyrrogallols are pyrrogallols that are unsubstituted at th5-position of the benzene ring. 1,2,3-trihydroxybenzene is soluble (in water) and a very weakly acidic compound (based on its pKa). 1,2,3-trihydroxybenzene can be found in arabica coffee, beer, cocoa powder, and coffee, which makes 1,2,3-trihydroxybenzene a potential biomarker for the consumption of these food products. 1,2,3-trihydroxybenzene can be found primarily in blood, feces, and urine. 1,2,3-trihydroxybenzene is an organic compound with the formula C6H3(OH)3. It is a white water-soluble solid although samples are typically brownish because of its sensitivity toward oxygen. It is one of three isomeric benzenetriols . Pyrogallic acid is an odorless white to gray solid. Sinks and mixes with water. (USCG, 1999) Pyrogallol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 3. It has a role as a plant metabolite. It is a phenolic donor and a benzenetriol. Pyrogallol is a natural product found in Gunnera perpensa, Nigella glandulifera, and other organisms with data available. A trihydroxybenzene or dihydroxy phenol that can be prepared by heating GALLIC ACID. See also: Stevia rebaudiuna Leaf (part of); Alchemilla monticola whole (part of); Agrimonia eupatoria flowering top (part of). 1,2,3-Trihydroxybenzene, or pyrogallol is a benzenetriol. It is a white crystalline powder and a powerful reducing agent. It was first prepared by Scheele 1786 by heating gallic acid. An alternate preparation is heating para-chlorophenoldisulphonic acid with potassium hydroxide. 1,2,3-Trihydroxybenzene has been found to be a metabolite of Aspergillus (https://www.tandfonline.com/doi/pdf/10.1080/00021369.1982.10865473). A benzenetriol carrying hydroxy groups at positions 1, 2 and 3. D020011 - Protective Agents > D000975 - Antioxidants Pyrogallol is a polyphenol compound, which has anti-fungal and anti-psoriatic properties. Pyrogallol is a reductant that is able to generate free radicals, in particular superoxide anions. Pyrogallol is a polyphenol compound, which has anti-fungal and anti-psoriatic properties. Pyrogallol is a reductant that is able to generate free radicals, in particular superoxide anions.
4-Hydroxybenzoic acid
4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in Açaí oil, obtained from the fruit of the açaí palm (Euterpe oleracea), at relatively high concetrations (892±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843).
Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid
Parietin
Physcion is a dihydroxyanthraquinone that is 9,10-anthraquinone bearing hydroxy substituents at positions 1 and 8, a methoxy group at position 3, and a methyl group at position 6. It has been widely isolated and characterised from both terrestrial and marine sources. It has a role as an apoptosis inducer, an antineoplastic agent, a hepatoprotective agent, an anti-inflammatory agent, an antibacterial agent, an antifungal agent and a metabolite. It is functionally related to a 2-methylanthraquinone. Physcion is a natural product found in Rumex dentatus, Ageratina altissima, and other organisms with data available. See also: Reynoutria multiflora root (part of); Frangula purshiana Bark (part of). A dihydroxyanthraquinone that is 9,10-anthraquinone bearing hydroxy substituents at positions 1 and 8, a methoxy group at position 3, and a methyl group at position 6. It has been widely isolated and characterised from both terrestrial and marine sources. [Raw Data] CBA82_Physcion_pos_10eV.txt [Raw Data] CBA82_Physcion_pos_30eV.txt [Raw Data] CBA82_Physcion_pos_50eV.txt [Raw Data] CBA82_Physcion_pos_40eV.txt [Raw Data] CBA82_Physcion_pos_20eV.txt
Tyrosol
Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285). 2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol. 2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available. Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents A phenol substituted at position 4 by a 2-hydroxyethyl group. D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].
Ergosterol
Ergosterol is a phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. It has a role as a fungal metabolite and a Saccharomyces cerevisiae metabolite. It is a 3beta-sterol, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. A steroid of interest both because its biosynthesis in FUNGI is a target of ANTIFUNGAL AGENTS, notably AZOLES, and because when it is present in SKIN of animals, ULTRAVIOLET RAYS break a bond to result in ERGOCALCIFEROL. Ergosterol is a natural product found in Gladiolus italicus, Ramaria formosa, and other organisms with data available. ergosterol is a metabolite found in or produced by Saccharomyces cerevisiae. A steroid occurring in FUNGI. Irradiation with ULTRAVIOLET RAYS results in formation of ERGOCALCIFEROL (vitamin D2). See also: Reishi (part of). Ergosterol, also known as provitamin D2, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, ergosterol is considered to be a sterol lipid molecule. Ergosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Ergosterol is the biological precursor to vitamin D2. It is turned into viosterol by ultraviolet light, and is then converted into ergocalciferol, which is a form of vitamin D. Ergosterol is a component of fungal cell membranes, serving the same function that cholesterol serves in animal cells. Ergosterol is not found in mammalian cell membranes. A phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. Ergosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-87-4 (retrieved 2024-07-12) (CAS RN: 57-87-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.
3-Hydroxybenzaldehyde
3-hydroxybenzaldehyde is a hydroxybenzaldehyde carrying a hydroxy substituent at position 3. 3-Hydroxybenzaldehyde is a natural product found in Rhytidoponera metallica, Marchantia polymorpha, and other organisms with data available. 3-Hydroxybenzaldehyde, also known as 3-hydroxybenzaldehyde or m-hydroxybenzaldehyde, is an organic compound belonging to the class of aromatic aldehydes. Its chemical formula is C7H6O2 and it is characterized by a benzene ring with a hydroxyl group (-OH) and an aldehyde group (-CHO) attached at the meta position on the ring. Biologically, 3-hydroxybenzaldehyde has been found to possess several interesting properties: 1. **Antioxidant Activity**: It exhibits antioxidant properties, which means it can neutralize harmful free radicals in the body. This can be beneficial in reducing oxidative stress, which is associated with various diseases and aging. 2. **Antimicrobial Effects**: 3-Hydroxybenzaldehyde has shown antimicrobial activity against a range of microorganisms, including bacteria and fungi. This makes it a potential candidate for the development of new antimicrobial agents. 3. **Anti-inflammatory Properties**: Some studies have indicated that this compound may have anti-inflammatory effects, which could be useful in the treatment of inflammatory conditions. 4. **Cytotoxicity**: It has been observed to have cytotoxic effects on certain types of cancer cells, suggesting a potential role in cancer therapy. However, more research is needed in this area. 5. **Enzyme Inhibition**: 3-Hydroxybenzaldehyde can inhibit the activity of certain enzymes, which may have implications in the management of conditions where these enzymes play a pathological role. It's important to note that while 3-hydroxybenzaldehyde has these biological properties, its use in practical applications, especially in a medical context, is still largely experimental and requires further research. The compound's effects and safety profile need to be thoroughly evaluated before it can be considered for widespread use in therapeutic or preventive treatments. 3-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=100-83-4 (retrieved 2024-08-06) (CAS RN: 100-83-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1].
Orcinol
Orcinol is a 5-alkylresorcinol in which the alkyl group is specified as methyl. It has a role as an Aspergillus metabolite. It is a 5-alkylresorcinol and a dihydroxytoluene. Orcinol is a natural product found in Calluna vulgaris, Rumex patientia, and other organisms with data available. A 5-alkylresorcinol in which the alkyl group is specified as methyl. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.272 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.266 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.263 KEIO_ID O013
4-hydroxyphenylacetate
p-Hydroxyphenylacetic acid, also known as 4-hydroxybenzeneacetate, is classified as a member of the 1-hydroxy-2-unsubstituted benzenoids. 1-Hydroxy-2-unsubstituted benzenoids are phenols that are unsubstituted at the 2-position. p-Hydroxyphenylacetic acid is considered to be slightly soluble (in water) and acidic. p-Hydroxyphenylacetic acid can be synthesized from acetic acid. It is also a parent compound for other transformation products, including but not limited to, methyl 2-(4-hydroxyphenyl)acetate, ixerochinolide, and lactucopicrin 15-oxalate. p-Hydroxyphenylacetic acid can be found in numerous foods such as olives, cocoa beans, oats, and mushrooms. p-Hydroxyphenylacetic acid can be found throughout all human tissues and in all biofluids. Within a cell, p-hydroxyphenylacetic acid is primarily located in the cytoplasm and in the extracellular space. p-Hydroxyphenylacetic acid is also a microbial metabolite produced by Acinetobacter, Clostridium, Klebsiella, Pseudomonas, and Proteus. Higher levels of this metabolite are associated with an overgrowth of small intestinal bacteria from Clostridia species including C. difficile, C. stricklandii, C. lituseburense, C. subterminale, C. putrefaciens, and C. propionicum (PMID: 476929, 12173102). p-Hydroxyphenylacetic acid is detected after the consumption of whole grain. 4-hydroxyphenylacetic acid is a monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. It has a role as a plant metabolite, a fungal metabolite, a human metabolite and a mouse metabolite. It is a monocarboxylic acid and a member of phenols. It is functionally related to an acetic acid. It is a conjugate acid of a 4-hydroxyphenylacetate. 4-Hydroxyphenylacetic acid is a natural product found in Guanomyces polythrix, Forsythia suspensa, and other organisms with data available. 4-Hydroxyphenylacetic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. Constituent of sweet clover (Melilotus officinalis) and yeast Hydroxyphenylacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=156-38-7 (retrieved 2024-07-02) (CAS RN: 156-38-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].
Indole-3-carboxaldehyde
Indole-3-carboxaldehyde (IAld or I3A), also known as 3-formylindole or 3-indolealdehyde, belongs to the class of organic compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. In humans, I3A is a biologically active metabolite which acts as a receptor agonist at the aryl hydrocarbon receptor in intestinal immune cells. It stimulates the production of interleukin-22 which facilitates mucosal reactivity (PMID:27102537). I3A is a microbially derived tryptophan metabolite produced by Clostridium and Lactobacillus (PMID:30120222, 27102537). I3A has also been found in the urine of patients with untreated phenylketonuria (PMID:5073866). I3A has been detected, but not quantified, in several different foods, such as beans, Brussels sprouts, cucumbers, cereals and cereal products, and white cabbages. This could make I3A a potential biomarker for the consumption of these foods. Indole-3-carbaldehyde is a heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. It has a role as a plant metabolite, a human xenobiotic metabolite, a bacterial metabolite and a marine metabolite. It is a heteroarenecarbaldehyde, an indole alkaloid and a member of indoles. Indole-3-carboxaldehyde is a natural product found in Euphorbia hirsuta, Derris ovalifolia, and other organisms with data available. A heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. Found in barley and tomato seedlings and cotton Indole-3-carboxaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-89-8 (retrieved 2024-07-02) (CAS RN: 487-89-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].
Bovinocidin
3-nitropropionic acid appears as golden crystals (from chloroform). (NTP, 1992) 3-nitropropanoic acid is a C-nitro compound that is propanoic acid in which one of the methyl hydrogens has been replaced by a nitro group. It has a role as a neurotoxin, an EC 1.3.5.1 [succinate dehydrogenase (quinone)] inhibitor, an antimycobacterial drug and a mycotoxin. It is functionally related to a propionic acid. It is a conjugate acid of a 3-nitropropanoate. It is a tautomer of a 3-aci-nitropropanoic acid. 3-Nitropropionic acid is a natural product found in Indigofera suffruticosa, Coscinoderma, and other organisms with data available. Bovinocidin is isolated from Aspergillus sp. and moulds contaminating foodBovinocidin belongs to the family of Beta Amino Acids and Derivatives. These are amino acids having a (-NH2) group attached to the beta carbon atom. D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants Bovinocidin is isolated from Aspergillus sp. and moulds contaminating foo D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Isolated from Aspergillus species and moulds contaminating food. 3-Nitropropanoic acid (β-Nitropropionic acid) is an irreversible inhibitor of succinate dehydrogenase. 3-Nitropropanoic acid exhibits potent antimycobacterial activity with a MIC value of 3.3 μM[1][2].
Bis(2-ethylhexyl) phthalate
Di(2-ethylhexyl) phthlate (DEHP) is a manufactured chemical that is commonly added to plastics to make them flexible. DEHP is a colorless liquid with almost no odor. DEHP is present in plastic products such as wall coverings, tablecloths, floor tiles, furniture upholstery, shower curtains, garden hoses, swimming pool liners, rainwear, baby pants, dolls, some toys, shoes, automobile upholstery and tops, packaging film and sheets, sheathing for wire and cable, medical tubing, and blood storage bags. Di(2-ethylhexyl) phthalate is a colorless to pale yellow oily liquid. Nearly odorless. (USCG, 1999) Bis(2-ethylhexyl) phthalate is a phthalate ester that is the bis(2-ethylhexyl) ester of benzene-1,2-dicarboxylic acid. It has a role as an apoptosis inhibitor, an androstane receptor agonist and a plasticiser. It is a phthalate ester and a diester. Dioctyl phthalate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=8033-53-2 (retrieved 2024-10-11) (CAS RN: 117-81-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Dibutyl phthalate
Di-n-phtalate is a manufactured chemical that does not occur naturally. It is an odorless and oily liquid that is colorless to faint yellow in color. It is slightly soluble in water and does not evaporate easily. Di-n-phtalate is used to make plastics more flexible and is also in carpet backings, paints, glue, insect repellents, hair spray, nail polish, and rocket fuel. N-butyl phthalate is a colorless oily liquid. It is insoluble in water. The primary hazard is the threat to the environment. Immediate steps should be taken to limit its spread to the environment. Since it is a liquid it can easily penetrate the soil and contaminate groundwater and nearby streams. It is combustible though it may take some effort to ignite. It is used in paints and plastics and as a reaction media for chemical reactions. Dibutyl phthalate is a phthalate ester that is the diester obtained by the formal condensation of the carboxy groups of phthalic acid with two molecules of butan-1-ol. Although used extensively as a plasticiser, it is a ubiquitous environmental contaminant that poses a risk to humans. It has a role as an environmental contaminant, a teratogenic agent, a plasticiser, a metabolite and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a phthalate ester and a diester. It is functionally related to a butan-1-ol. Dibutyl phthalate is used in making flexible plastics that are found in a variety of consumer products. It appears to have relatively low acute (short-term) and chronic (long-term) toxicity. No information is available regarding the effects in humans from inhalation or oral exposure to dibutyl phthalate, and only minimal effects have been noted in animals exposed by inhalation. No studies are available on the reproductive, developmental, or carcinogenic effects of dibutyl phthalate in humans. Animal studies have reported developmental and reproductive effects from oral exposure. EPA has classified dibutyl phthalate as a Group D, not classifiable as to human carcinogenicity. Dibutyl phthalate is a natural product found in Scutellaria amoena, Eleutherococcus sessiliflorus, and other organisms with data available. Dibutyl phthalate is found in cloves. DBP was added to the California Proposition 65 (1986) list of suspected teratogens in November 2006. It is a suspected endocrine disruptor. It was used in some nail polishes; all major producers began eliminating this chemical from nail polishes in the Fall of 2006. Dibutyl phthalate (DBP) is a commonly used plasticizer. It is also used as an additive to adhesives or printing inks. It is soluble in various organic solvents, e.g. in alcohol, ether and benzene. DBP is also used as an ectoparasiticide. A plasticizer used in most plastics and found in water, air, soil, plants and animals. It may have some adverse effects with long-term exposure. DBP was added to the California Proposition 65 (1986) list of suspected teratogens in November 2006. It is a suspected endocrine disruptor. It was used in some nail polishes; all major producers began eliminating this chemical from nail polishes in the Fall of 2006.; Dibutyl phthalate (DBP) is a commonly used plasticizer. It is also used as an additive to adhesives or printing inks. It is soluble in various organic solvents, e.g. in alcohol, ether and benzene. DBP is also used as an ectoparasiticide. Dibutyl phthalate is found in kohlrabi and cloves. Dibutyl phthalate is found in cloves. DBP was added to the California Proposition 65 (1986) list of suspected teratogens in November 2006. It is a suspected endocrine disruptor. It was used in some nail polishes; all major producers began eliminating this chemical from nail polishes in the Fall of 2006. Dibutyl phthalate (DBP) is a commonly used plasticizer. It is also used as an additive to adhesives or printing inks. It is soluble in various organic solvents, e.g. in alcohol, ether and benzene. DBP is also used as an ectoparasiticide. A phthalate ester that is the diester obtained by the formal condensation of the carboxy groups of phthalic acid with two molecules of butan-1-ol. Although used extensively as a plasticiser, it is a ubiquitous environmental contaminant that poses a risk to humans. P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010968 - Plasticizers ATC code: P03BX03 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10079; ORIGINAL_PRECURSOR_SCAN_NO 10075 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10082; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10083; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10016; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10065; ORIGINAL_PRECURSOR_SCAN_NO 10063 CONFIDENCE standard compound; INTERNAL_ID 823; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10036; ORIGINAL_PRECURSOR_SCAN_NO 10031 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3670 EAWAG_UCHEM_ID 3670; CONFIDENCE standard compound INTERNAL_ID 4180; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 4180 CONFIDENCE standard compound; INTERNAL_ID 8224 CONFIDENCE standard compound; INTERNAL_ID 199
Diethyltoluamide
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents D010575 - Pesticides > D007302 - Insect Repellents CONFIDENCE standard compound; EAWAG_UCHEM_ID 213 CONFIDENCE standard compound; INTERNAL_ID 3353 CONFIDENCE standard compound; INTERNAL_ID 4176 CONFIDENCE standard compound; INTERNAL_ID 8223 CONFIDENCE standard compound; INTERNAL_ID 8797 D020011 - Protective Agents D016573 - Agrochemicals Same as: D02379
2-Pyrocatechuic acid
2-Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma (PMID 16351159), and is normally found with increased levels after consumption of many nutrients and drugs, i.e.: cranberry juice (PMID 14733499), aspirin ingestion. (PMID 3342084) It has been found associated with idiopathic oro-facial pain due to stress (oxidative stress might enhance the production of free radicals); it has been suggested that OH radicals are responsible for the production of many systemic and local tissue injury diseases which may initially manifest as pain syndrome, and 2-Pyrocatechuic acid is a biological marker for the detection and quantification of OH radicals, and patients had significantly increased circulating levels of 2-Pyrocatechuic acid after aspirin ingestion than control subjects. (PMID 7748148). D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Occurs in Gentiana lutea (yellow gentian) Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
Gentisate aldehyde
Gentisate aldehyde is a substrate of the enzyme aldehyde oxidase 1 [EC:1.2.3.1] in Valine, leucine and isoleucine degradation, Tyrosine metabolism, Tryptophan metabolism, Vitamin B6 metabolism and Nicotinate and nicotinamide metabolism. (KEGG) [HMDB] Gentisate aldehyde is a substrate of the enzyme aldehyde oxidase 1 [EC:1.2.3.1] in Valine, leucine and isoleucine degradation, Tyrosine metabolism, Tryptophan metabolism, Vitamin B6 metabolism and Nicotinate and nicotinamide metabolism. (KEGG). 2,5-Dihydroxybenzaldehyde (Gentisaldehyde) is a naturally occurring antimicrobial that inhibits the growth of Mycobacterium avium subsp. paratuberculosis. 2,5-Dihydroxybenzaldehyde is active against S. aureus strains with a MIC50 of 500 mg/L[1][2].
3-hydroxybenzyl alcohol
A hydroxybenzyl alcohol that is phenol substituted at position C-3 by a hydroxymethyl group. KSD 2405 is an endogenous metabolite.
Methyl indole-3-acetate
Indole-3-methyl acetate, also known as methyl indole-3-acetate (methyl-IAA), is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 30120222). Pediatric enthesitis-related arthritis (ERA) patients (i.e. spondyloarthropathy associated with inflammatory bowel disease) have intestinal inflammation and decreased gut microbial diversity. Such alterations in the gut microbiota resulted in the reduction of tryptophan metabolism and several tryptophan metabolites in pediatric ERA fecal samples, including indole-3-methyl acetate (PMID: 27786174). Indole-3-methyl acetate is found in apple, and has been isolated from immature seeds of beach pea (Lathyrus maritimus), Vicia amurensis, wild soybean (Glycine soja), lobiya (Vigna catiang var. sinensis) and hyacinth bean (Dolichos lablab). Isolated from immature seeds of beach pea (Lathyrus maritimus), Vicia amurensis, wild soybean (Glycine soja), lobiya (Vigna catiang variety sinensis) and hyacinth bean (Dolichos lablab). Indole-3-methyl acetate is found in many foods, some of which are gram bean, yellow wax bean, common bean, and sweet orange. Methyl 2-(1H-indol-3-yl)acetate is an endogenous metabolite.
Ochratoxin A
Ochratoxin A is found in barley. Mycotoxin. Ochratoxin A is produced by Aspergillus melleus, Aspergillus sulphureus and Penicillium viridicatum.Potential contaminant of foodstuffs, especially cereals. Ochratoxin A is found in stored grain products in UK (1997).Ochratoxin A, a toxin produced by Aspergillus ochraceus and Penicillium verrucosum, is one of the most abundant food-contaminating mycotoxins in the world. Human exposure occurs mainly through consumption of improperly stored food products, particularly contaminated grain and pork products, as well as coffee, wine grapes and dried grapes. The toxin has been found in the tissues and organs of animals, including human blood and breast milk. Ochratoxin A toxicity has large species- and sex-specific differences Mycotoxin. Production by Aspergillus melleus, Aspergillus sulphureus and Penicillium viridicatum.Potential contaminant of foodstuffs, especially cereals. Found in stored grain products in UK (1997) D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D009676 - Noxae > D011042 - Poisons > D009793 - Ochratoxins D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D000077264 - Calcium-Regulating Hormones and Agents D009676 - Noxae > D002273 - Carcinogens D049990 - Membrane Transport Modulators
Thymine
Thymine, also known as 5-methyluracil, belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Thymine was first isolated in 1893 by Albrecht Kossel and Albert Neumann from calves thymus glands, hence its name. Thymine is one of the 4 nuelcoebases found in DNA and is essential to all life. Thymine exists in all living species, ranging from bacteria to plants to humans. Thymine combined with deoxyribose creates the nucleoside deoxythymidine (also called thymidine) which when phosphorylated to dTDP can be incorporated into DNA via DNA polymerases. Thymidine can be phosphorylated with up to three phosphoric acid groups, producing dTMP (deoxythymidine monophosphate) dTDP and/or dTTP. In RNA thymine is replaced with uracil in most cases. In DNA, thymine binds to adenine via two hydrogen bonds to assist in stabilizing the nucleic acid structures. Within humans, thymine participates in a number of enzymatic reactions. In particular, thymine and deoxyribose 1-phosphate can be biosynthesized from thymidine through its interaction with the enzyme thymidine phosphorylase. In addition, thymine can be converted into dihydrothymine; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. One of the pyrimidine bases of living matter. Derivation: Hydrolysis of deoxyribonucleic acid, from methylcyanoacetylurea by catalytic reduction. Use: Biochemical research. (Hawleys Condensed Chemical Dictionary) Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus KEIO_ID T015 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.
N-Acetyltryptophan
N-Acetyl-L-tryptophan or N-Acetyltryptophan, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltryptophan can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltryptophan is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tryptophan. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\\% of all human proteins and 68\\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltryptophan can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tryptophan can also occur. Many N-acetylamino acids, including N-acetyltryptophan are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyltryptophan has also been used as a protein stabilizer. It prevents protein molecules from oxidative degradation by scavenging oxygen dissolved in protein solutions (PMID: 21903216 ). N-Acetyltryptophan has been identified as a catabolite of tryptophan generated by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 28916042). N-Acetyltryptophan is an inhibitor of cytochrome c release and an antagonist of the neurokinin 1 receptor (NK-1R). These inhibitory effects are thought have a useful role in neuroprotection. For instance, in mouse models of amyotrophic lateral sclerosis (ALS) the administration of N-Acetyltryptophan has been shown delay disease onset, extend survival, and ameliorate deterioration in motor performance ALS transgenic mice (PMID: 25986728). N-acetyltryptophan has been shown to significantly reduce blood-brain barrier permeability and improve functional outcome in rat models of traumatic brain injury (PMID: 29256408). N-Acetyltryptophan has also been shown to have a role in preventing hepatic ischemia-reperfusion injury. This is thought to occur through de-activation of the RIP2/caspase/IL-1beta signaling pathway (PMID: 31184936). D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite. N-Acetyl-L-tryptophan is an endogenous metabolite.
Mycophenolic acid
Mycophenolic acid is an an immunosuppresant drug and potent anti-proliferative, and can be used in place of the older anti-proliferative azathioprine. It is usually used as part of triple therapy including a calcineurin inhibitor (ciclosporin or tacrolimus) and prednisolone. It is also useful in research for the selection of animal cells that express the E. coli gene coding for XGPRT (xanthine guanine phosphoribosyltransferase). L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C471 - Enzyme Inhibitor > C2087 - Inosine Monophosphate Dehydrogenase Inhibitor C308 - Immunotherapeutic Agent > C574 - Immunosuppressant CONFIDENCE standard compound; INTERNAL_ID 8577 CONFIDENCE standard compound; INTERNAL_ID 2698 CONFIDENCE standard compound; INTERNAL_ID 4128 COVID info from COVID-19 Disease Map D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Mycophenolic acid is a potent uncompetitive inosine monophosphate dehydrogenase (IMPDH) inhibitor with an EC50 of 0.24 μM.?Mycophenolic acid demonstrates antiviral effects against a wide range of RNA viruses including influenza. Mycophenolic acid is an immunosuppressive agent. Antiangiogenic and antitumor effects[1][2].
Griseofulvin
Griseofulvin is only found in individuals that have used or taken this drug. It is an antifungal antibiotic. Griseofulvin may be given by mouth in the treatment of tinea infections. [PubChem]Griseofulvin is fungistatic, however the exact mechanism by which it inhibits the growth of dermatophytes is not clear. It is thought to inhibit fungal cell mitosis and nuclear acid synthesis. It also binds to and interferes with the function of spindle and cytoplasmic microtubules by binding to alpha and beta tubulin. It binds to keratin in human cells, then once it reaches the fungal site of action, it binds to fungal microtubes thus altering the fungal process of mitosis. D - Dermatologicals > D01 - Antifungals for dermatological use > D01B - Antifungals for systemic use > D01BA - Antifungals for systemic use D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Griseofulvin(Gris-PEG; Grifulvin) is a spirocyclic fungal natural product used in treatment of fungal dermatophytes; Antifungal drug.
Emodin
Emodin appears as orange needles or powder. (NTP, 1992) Emodin is a trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8 and by a methyl group at position 6. It is present in the roots and barks of numerous plants (particularly rhubarb and buckthorn), moulds, and lichens. It is an active ingredient of various Chinese herbs. It has a role as a tyrosine kinase inhibitor, an antineoplastic agent, a laxative and a plant metabolite. It is functionally related to an emodin anthrone. It is a conjugate acid of an emodin(1-). Emodin has been investigated for the treatment of Polycystic Kidney. Emodin is a natural product found in Rumex dentatus, Rhamnus davurica, and other organisms with data available. Emodin is found in dock. Emodin is present in Cascara sagrada.Emodin is a purgative resin from rhubarb, Polygonum cuspidatum, the buckthorn and Japanese Knotweed (Fallopia japonica). The term may also refer to any one of a series of principles isomeric with the emodin of rhubarb. (Wikipedia) Emodin has been shown to exhibit anti-inflammatory, signalling, antibiotic, muscle building and anti-angiogenic functions (A3049, A7853, A7854, A7855, A7857). Purgative anthraquinone found in several plants, especially RHAMNUS PURSHIANA. It was formerly used as a laxative, but is now used mainly as a tool in toxicity studies. See also: Reynoutria multiflora root (part of); Frangula purshiana Bark (part of). A trihydroxyanthraquinone that is 9,10-anthraquinone which is substituted by hydroxy groups at positions 1, 3, and 8 and by a methyl group at position 6. It is present in the roots and barks of numerous plants (particularly rhubarb and buckthorn), moulds, and lichens. It is an active ingredient of various Chinese herbs. Emodin is found in dock. Emodin is present in Cascara sagrada.Emodin is a purgative resin from rhubarb, Polygonum cuspidatum, the buckthorn and Japanese Knotweed (Fallopia japonica). The term may also refer to any one of a series of principles isomeric with the emodin of rhubarb. (Wikipedia C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics Present in Cascara sagrada CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 ORIGINAL_PRECURSOR_SCAN_NO 5094; CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 999; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 [Raw Data] CB029_Emodin_pos_50eV_CB000015.txt [Raw Data] CB029_Emodin_pos_10eV_CB000015.txt [Raw Data] CB029_Emodin_pos_20eV_CB000015.txt [Raw Data] CB029_Emodin_pos_30eV_CB000015.txt [Raw Data] CB029_Emodin_pos_40eV_CB000015.txt [Raw Data] CB029_Emodin_neg_50eV_000008.txt [Raw Data] CB029_Emodin_neg_20eV_000008.txt [Raw Data] CB029_Emodin_neg_40eV_000008.txt [Raw Data] CB029_Emodin_neg_30eV_000008.txt [Raw Data] CB029_Emodin_neg_10eV_000008.txt CONFIDENCE standard compound; ML_ID 38 Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3]. Emodin (Frangula emodin), an anthraquinone derivative, is an anti-SARS-CoV compound. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 (ACE2) interaction[1]. Emodin inhibits casein kinase-2 (CK2). Anti-inflammatory and anticancer effects[2]. Emodin is a potent selective 11β-HSD1 inhibitor with the IC50 of 186 and 86 nM for human and mouse 11β-HSD1, respectively. Emodin ameliorates metabolic disorder in diet-induced obese mice[3].
Gluconic acid
Gluconic acid, also known as D-gluconic acid, D-gluconate or (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoic acid (also named dextronic acid), is the C1-oxidized form of D-glucose where the aldehyde group has become oxidized to the corresponding carboxylic acid. Gluconic acid belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. In aqueous solution, gluconic acid exists in equilibrium with the cyclic ester glucono delta-lactone. Gluconic acid occurs naturally in fruit, honey, kombucha tea and wine. The salts of gluconic acid are known as "gluconates". Gluconic acid, gluconate salts, and gluconate esters occur widely in nature because such species arise from the oxidation of glucose. Gluconic acid exists in all living species, ranging from bacteria to plants to humans. The metabolism of gluconate is well characterized in prokaryotes where it is known to be degraded following phosphorylation by gluconokinase. Glucokinase activity has also been detected in mammals, including humans (PMID: 24896608). Gluconic acid is produced in the gluconate shunt pathway. In the gluconate shunt, glucose is oxidized by glucose dehydrogenase (also called glucose oxidase) to furnish gluconate, the form in which D-gluconic acid is present at physiological pH. Subsequently, gluconate is phosphorylated by the action of gluconate kinase to produce 6-phosphogluconate, which is the second intermediate of the pentose phosphate pathway. This gluconate shunt is mainly found in plants, algae, cyanobacteria and some bacteria, which all use the Entner–Doudoroff pathway to degrade glucose or gluconate; this generates 2-keto-3-deoxygluconate-6-phosphate, which is then cleaved to generate pyruvate and glyceraldehyde 3-phosphate. Glucose dehydrogenase and gluconate kinase activities are also present in mammals, fission yeast, and flies. Gluconic acid has many industrial uses. It is used as a drug as part of electrolyte supplementation in total parenteral nutrition. It is also used in cleaning products where it helps cleaning up mineral deposits. Gluconic acid or Gluconic acid is used to maintain the cation-anion balance on electrolyte solutions. In humans, gluconic acid is involved in the metabolic disorder called the transaldolase deficiency. Gluconic acid has been found to be a metabolite in Aspergillus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). [Spectral] D-Gluconic acid (exact mass = 196.0583) and Guanine (exact mass = 151.04941) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement, acidity regulator approved in Japan. Component of bottle rinsing formulations Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G031
Palmitoleic acid
Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as mixed nuts, carrot, hedge mustard, and chanterelle, which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. Palmitoleic acid, or (9Z)-hexadec-9-enoic acid, is an omega-7 monounsaturated fatty acid (16:1n-7) with the formula CH3(CH2)5CH=CH(CH2)7COOH that is a common constituent of the glycerides of human adipose tissue. Present in all tissues, it is generally found in higher concentrations in the liver. Macadamia oil (Macadamia integrifolia) and sea buckthorn oil (Hippophae rhamnoides) are botanical sources of palmitoleic acid, containing 22 and 40\\\\\% respectively. Palmitoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Palmitoleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=373-49-9 (retrieved 2024-07-15) (CAS RN: 373-49-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.
Geranylgeranyl-PP
Geranylgeranyl pyrophosphate, also known as geranylgeranyl-PP or GGPP, is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. This compound belongs to the family of acyclic diterpenes. These are diterpenes (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, GGPP is considered to be an isoprenoid lipid molecule. GGPP is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Geranylgeranyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. [HMDB]. Geranylgeranyl-PP is found in many foods, some of which are burdock, longan, calabash, and cloves.
Homogentisic acid
Homogentisic acid, also known as melanic acid, is an intermediate in the breakdown or catabolism of tyrosine and phenylalanine. It is generated from the compound p-hydroxyphenylpyruvate through the enzyme p-hydroxyphenylpyruvate dehydrogenase. The resulting homogentisic acid is then broken down into 4-maleylacetoacetate via the enzyme homogentisate 1,2-dioxygenase. Homogentisic acid is also found in other organisms. For instance, it can found in Arbutus unedo (strawberry-tree) honey, in the bacterial plant pathogen Xanthomonas campestris as well as in the yeast Yarrowia lipolytica where it is associated with the production of brown pigments. Homogentisic acid can be oxidatively dimerized to form hipposudoric acid, one of the main constituents of the blood sweat of hippopotamuses. When present in sufficiently high levels, homogentisic acid can function as an osteotoxin and a renal toxin. An osteotoxin is a substance that causes damage to bones and/or joints. A renal toxin causes damage to the kidneys. Chronically high levels of homogentisic acid are associated with alkaptonuria (OMIM: 203500), an inborn error of metabolism. Alkaptonuria is a rare inherited genetic disorder in which the body cannot process the amino acids phenylalanine and tyrosine. It is caused by a mutation in the enzyme homogentisate 1,2-dioxygenase (EC 1.13.11.5), which leads to an accumulation of homogentisic acid in the blood and tissues. Homogentisic acid and its oxidized form benzoquinone acetic acid are excreted in the urine, giving it an unusually dark color. The accumulating homogentisic acid (and benzoquinone acetic acid) causes damage to cartilage (ochronosis, leading to osteoarthritis) and heart valves as well as precipitating as kidney stones and stones in other organs. More specifically, homogentisic acid can be converted to benzoquinone acetic acid (BQA), and the resulting BQA can be readily converted to polymers that resemble the dark skin pigment melanin. These polymers are deposited in the collagen, a connective tissue protein, of particular tissues such as cartilage. This process is called ochronosis (as the tissue looks ochre); ochronotic tissue is stiffened and unusually brittle, impairing its normal function and causing damage. Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae. 2-(3,6-dihydroxyphenyl)acetic acid, also known as homogentisic acid or homogentisate, is a member of the class of compounds known as 2(hydroxyphenyl)acetic acids. 2(hydroxyphenyl)acetic acids are phenylacetic acids that carry a hydroxyl group at the 2-position. 2-(3,6-dihydroxyphenyl)acetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-(3,6-dihydroxyphenyl)acetic acid can be found in a number of food items such as gooseberry, angelica, chinese broccoli, and cucumber, which makes 2-(3,6-dihydroxyphenyl)acetic acid a potential biomarker for the consumption of these food products. 2-(3,6-dihydroxyphenyl)acetic acid can be found primarily in blood, feces, and urine, as well as in human cartilage, connective tissue and kidney tissues. In humans, 2-(3,6-dihydroxyphenyl)acetic acid is involved in few metabolic pathways, which include disulfiram action pathway, phenylalanine and tyrosine metabolism, and tyrosine metabolism. 2-(3,6-dihydroxyphenyl)acetic acid is also involved in several metabolic disorders, some of which include dopamine beta-hydroxylase deficiency, tyrosinemia type 3 (TYRO3), alkaptonuria, and tyrosinemia type 2 (or richner-hanhart syndrome). Moreover, 2-(3,6-dihydroxyphenyl)acetic acid is found to be associated with alkaptonuria. 2-(3,6-dihydroxyphenyl)acetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Apart from treatment of the complications (such as pain relief using NSAIDs and joint replacement for the cartilage damage), vitamin C has been used to reduce the ochronosis and lowering of the homogentisic acid levels may be attempted with a low-protein diet. Recently the drug nitisinone has been found to suppress homogentisic acid production. Nitrisinone inhibits the enzyme, 4-hydroxyphenylpyruvate dioxygenase, responsible for converting tyrosine to homogentisic acid, thereby blocking the production and accumulation of homogentisic acid. Nitisinone treatment has been shown to cause a 95\\\\% reduction in plasma and urinary homogentisic acid (T3DB). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 118 KEIO_ID H060 Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria. Homogentisic acid is a specific metabolite in urine and serum, which is used for diagnosis of alkaptonuria.
Ellagic acid
Ellagic acid appears as cream-colored needles (from pyridine) or yellow powder. Odorless. (NTP, 1992) Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite, an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor and a geroprotector. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It is functionally related to a gallic acid. Ellagic acid is present in several fruits such as cranberries, strawberries, raspberries, and pomegranates. In pomegranates, there are several therapeutic compounds but ellagic acid is the most active and abundant. Ellagic acid is also present in vegetables. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative effects. Ellagic acid is a natural product found in Fragaria chiloensis, Metrosideros perforata, and other organisms with data available. Ellagic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A fused four ring compound occurring free or combined in galls. Isolated from the kino of Eucalyptus maculata Hook and E. Hemipholia F. Muell. Activates Factor XII of the blood clotting system which also causes kinin release; used in research and as a dye. Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It derives from a gallic acid. Ellagic acid, also known as ellagate, belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. The antiproliferative and antioxidant properties of ellagic acid have spurred preliminary research into the potential health benefits of ellagic acid consumption. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative/anti-cancer effects. Ellagic acid is found, on average, in the highest concentration within a few different foods, such as chestnuts, common walnuts, and japanese walnuts and in a lower concentration in whiskies, arctic blackberries, and cloudberries. Ellagic acid has also been detected, but not quantified in several different foods, such as lowbush blueberries, bilberries, guava, strawberry guava, and bog bilberries. An organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. Widely distributed in higher plants especies dicotyledons. Intestinal astringent, dietary role disputed. Nutriceutical with anticancer and antioxidation props. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.
Erythritol
Erythritol is a sugar alcohol (or polyol), used as a food additive and sugar substitute. It is naturally occurring and is made from corn using enzymes and fermentation. Its formula is C4H10O4, or HO(CH2)(CHOH)2(CH2)OH; specifically, one particular stereoisomer with that formula. Erythritol is 60–70\\\\\% as sweet as sucrose (table sugar), yet it is almost noncaloric and does not affect blood sugar or cause tooth decay. Erythritol occurs widely in nature and has been found to occur naturally in several foods including wine, sake, beer, watermelon, pear, grape, and soy sauce. Evidence indicates that erythritol also exists endogenously in the tissues and body fluids of humans and animals. Erythritol is absorbed from the proximal intestine by passive diffusion in a manner similar to that of many low molecular weight organic molecules which do not have associated active transport systems. The rate of absorption is related to their molecular size. It passes through the intestinal membranes at a faster rate than larger molecules such as mannitol or glucose. In diabetics, erythritol has also been shown to be rapidly absorbed and excreted unchanged in the urine. Following absorption, ingested erythritol is rapidly distributed throughout the body and has been reported to occur in hepatocytes, pancreatic cells, and vascular smooth muscle cells. Erythritol also has been reported to cross the human placenta and to pass slowly from the plasma into the brain and cerebrospinal fluid (PMID:9862657). Erythritol is found to be associated with ribose-5-phosphate isomerase deficiency, which is an inborn error of metabolism. Bulk sweetener with good taste props. Not metabolised, excreted unchanged in urine. Less sweet than sucrose. Use not yet permitted in most countries (1997). GRAS status for use as a sweetener, thickener, stabiliser, humectant, etc. in food meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1]. meso-Erythritol is a sugar alcohol that occurs naturally in a variety of foods (e.g., pear, watermelon), is 60-80\% as sweet as sucrose, and is an approved low-calorie sweetener food additive[1].
albendazole S-oxide
Albendazole s-oxide is part of the Steroid hormone biosynthesis, Linoleic acid metabolism, Retinol metabolism, and Bile secretion pathways. It is a substrate for: Cytochrome P450 3A4. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent
Pravastatin
Pravastatin is a member of the drug class of statins, used for lowering cholesterol and preventing cardiovascular disease. Pravastatin was identified originally in a mold called Nocardia autotrophica by researchers of the Sankyo Pharma Inc; An antilipemic fungal metabolite isolated from cultures of Nocardia autotrophica. It acts as a competitive inhibitor of HMG CoA reductase (hydroxymethylglutaryl CoA reductases); In medicine and pharmacology, pravastatin (Pravachol or Selektine) is a member of the drug class of statins, used for lowering cholesterol and preventing cardiovascular disease. C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AA - Hmg coa reductase inhibitors Pravastatin is a member of the drug class of statins, used for lowering cholesterol and preventing cardiovascular disease. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2859 EAWAG_UCHEM_ID 2859; CONFIDENCE standard compound D009676 - Noxae > D000963 - Antimetabolites
Citrinin
Citrinin is a mycotoxin originally isolated from Penicillium citrinum. It has since been found to be produced by a variety of other fungi which are found or used in the production of human foods, such as grain, cheese, sake and red pigments. Citrinin has also been found in commercial red yeast rice supplements, and also in Aspergillus niveus and Aspergillus terreus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Citrinin is a mycotoxin which causes contamination in the food and is associated with different toxic effects. Citrinin is usually found together with another nephrotoxic mycotoxin, Ochratoxin A. Citrinin is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro[1][2].
Uracil
Uracil, also known as U, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Uracil is a common naturally occurring pyrimidine found in RNA. It base pairs with adenine and is replaced by thymine in DNA. Uracil is one of the four nucleobases in RNA that are represented by the letters A, G, C and U. Methylation of uracil produces thymine. The name "uracil" was coined in 1885 by the German chemist Robert Behrend, who was attempting to synthesize derivatives of uric acid. Originally discovered in 1900, uracil was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. Uracil exists in all living species, ranging from bacteria to plants to humans. Uracils use in the body is to help carry out the synthesis of many enzymes necessary for cell function through bonding with riboses and phosphates. Uracil serves as an allosteric regulator and a coenzyme for many important biochemical reactions. Uracil (via the nucleoside uridine) can be phosphorylated by various kinases to produce UMP, UDP and UTP. UDP and UTP regulate carbamoyl phosphate synthetase II (CPSase II) activity in animals. Uracil is also involved in the biosynthesis of polysaccharides and in the transport of sugars containing aldehydes. Within humans, uracil participates in a number of enzymatic reactions. In particular, uracil and ribose 1-phosphate can be biosynthesized from uridine; which is mediated by the enzyme uridine phosphorylase 2. In addition, uracil can be converted into dihydrouracil through the action of the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. Uracil is rarely found in DNA, and this may have been an evolutionary change to increase genetic stability. This is because cytosine can deaminate spontaneously to produce uracil through hydrolytic deamination. Therefore, if there were an organism that used uracil in its DNA, the deamination of cytosine (which undergoes base pairing with guanine) would lead to formation of uracil (which would base pair with adenine) during DNA synthesis. Uracil can be used for drug delivery and as a pharmaceutical. When elemental fluorine reacts with uracil, it produces 5-fluorouracil. 5-Fluorouracil is an anticancer drug (antimetabolite) that mimics uracil during the nucleic acid (i.e. RNA) synthesis and transcription process. Because 5-fluorouracil is similar in shape to, but does not undergo the same chemistry as, uracil, the drug inhibits RNA replication enzymes, thereby blocking RNA synthesis and stopping the growth of cancerous cells. Uracil is a common and naturally occurring pyrimidine derivative. Originally discovered in 1900, it was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. It is a planar, unsaturated compound that has the ability to absorb light. Uracil. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=66-22-8 (retrieved 2024-07-01) (CAS RN: 66-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.
Oleic acid
Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].
Linoleic acid
Linoleic acid is a doubly unsaturated fatty acid, also known as an omega-6 fatty acid, occurring widely in plant glycosides. In this particular polyunsaturated fatty acid (PUFA), the first double bond is located between the sixth and seventh carbon atom from the methyl end of the fatty acid (n-6). Linoleic acid is an essential fatty acid in human nutrition because it cannot be synthesized by humans. It is used in the biosynthesis of prostaglandins (via arachidonic acid) and cell membranes (From Stedman, 26th ed). Linoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5] Linoleic acid is a polyunsaturated, omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from Latin linum 'flax', and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.
Indolin-2-one
1,3-Dihydro-(2H)-indol-2-one, also known as 2-oxindole or 2-indolinone, belongs to the class of organic compounds known as indolines. Indolines are compounds containing an indole moiety, which consists of pyrrolidine ring fused to benzene to form 2,3-dihydroindole. CONFIDENCE standard compound; INTERNAL_ID 2508 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors. Oxindole (Indolin-2-one) is an aromatic heterocyclic building block. 2-indolinone derivatives have become lead compounds in the research of kinase inhibitors.
Indole-3-carboxylic acid
Indole-3-carboxylic acid, also known as 3-carboxyindole or 3-indolecarboxylate, belongs to the class of organic compounds known as indolecarboxylic acids and derivatives. Indolecarboxylic acids and derivatives are compounds containing a carboxylic acid group (or a derivative thereof) linked to an indole. Naphthylmethylindoles: Any compound containing a 1H-indol-3-yl-(1-naphthyl)methane structure with substitution at the nitrogen atom of the indole ring by an alkyl, haloalkyl, alkenyl, cycloalkylmethyl, cycloalkylethyl, 1-(N-methyl-2-piperidinyl)methyl, or 2-(4-morpholinyl)ethyl group whether or not further substituted in the indole ring to any extent and whether or not substituted in the naphthyl ring to any extent. One example given is JWH-250. Outside of the human body, indole-3-carboxylic acid has been detected, but not quantified in several different foods, such as brassicas, broccoli, pulses, common beets, and barley. This could make indole-3-carboxylic acid a potential biomarker for the consumption of these foods. Notice the pentyl group substituted onto the nitrogen atom of the indole ring. Note that this definition encompasses only those compounds that have OH groups attached to both the phenyl and the cyclohexyl rings, and so does not include compounds such as O-1871 which lacks the cyclohexyl OH group, or compounds such as JWH-337 or JWH-344 which lack the phenolic OH group. Present in plants, e.g. apple (Pyrus malus), garden pea (Pisum sativum) and brassicas Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2]. Indole-3-carboxylic acid is a normal urinary indolic tryptophan metabolite and has been found elevated in patients with liver diseases[1][2].
Phenylacetic acid
Phenylacetic acid, also known as phenylacetate or alpha-toluic acid, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. Phenylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Phenylacetic acid can be synthesized from acetic acid. Phenylacetic acid is also a parent compound for other transformation products, including but not limited to, hydratropic acid, 2,4,5-trihydroxyphenylacetic acid, and mandelamide. Phenylacetic acid is a sweet, civet, and floral tasting compound and can be found in a number of food items such as hyssop, cowpea, endive, and shea tree, which makes phenylacetic acid a potential biomarker for the consumption of these food products. Phenylacetic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), saliva, feces, and blood. Phenylacetic acid exists in all living species, ranging from bacteria to humans. In humans, phenylacetic acid is involved in the phenylacetate metabolism. Moreover, phenylacetic acid is found to be associated with kidney disease and phenylketonuria. Phenylacetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylacetic acid is a drug which is used for use as adjunctive therapy for the treatment of acute hyperammonemia and associated encephalopathy in patients with deficiencies in enzymes of the urea cycle. Phenyl acetate (or phenylacetate) is a carboxylic acid ester that has been found in the biofluids of patients with nephritis and/or hepatitis as well as patients with phenylketonuria (PKU), an inborn error of metabolism. Phenyl acetate has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Excess phenylalanine in the body can be disposed of through a transamination process leading to the production of phenylpyruvate. The phenylpyruvate can be further metabolized into a number of products. Decarboxylation of phenylpyruvate gives phenylacetate, while a reduction reaction gives phenyllactate. The phenylacetate can be further conjugated with glutamine to give phenylacetyl glutamine. All of these metabolites can be detected in serum and urine of PKU patients. Phenyl acetate is also produced endogenously as the metabolite of 2-Phenylethylamine, which is mainly metabolized by monoamine oxidase to form phenyl acetate. 2-phenylethylamine is an "endogenous amphetamine" which may modulate central adrenergic functions, and the urinary phenyl acetate levels have been postulated as a marker for depression. (PMID: 17978765 , 476920 , 6857245). Phenylacetate is also found in essential oils, e.g. neroli, rose oil, free and as esters and in many fruits. As a result it is used as a perfumery and flavoring ingredient. Phenyl acetate is a microbial metabolite. D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents
Agroclavine
An ergot alkaloid that is ergoline which contains a double bond between positions 8 and 9, and which is substituted by methyl groups at positions 6 and 8.
penicillic acid
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE isolated standard
Citreoviridin A
Citreoviridin A is a metabolite of Penicillium citreo-viride, Penicillium toxicarium, Penicillium ochrosalmoneum and Aspergillus terreus. It is isolated from mouldy rice. Toxin formerly responsible for epidemic-like occurrences of cardiac beriberi in East Asi
Lignoceric acid (C24)
Lignoceric acid, also known as N-tetracosanoic acid or tetraeicosanoate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, lignoceric acid is considered to be a fatty acid lipid molecule. Lignoceric acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Lignoceric acid can be found in a number of food items such as hazelnut, cheese, rye bread, and cetacea (dolphin, porpoise, whale), which makes lignoceric acid a potential biomarker for the consumption of these food products. Lignoceric acid can be found primarily in blood and feces, as well as in human fibroblasts tissue. Lignoceric acid exists in all eukaryotes, ranging from yeast to humans. In humans, lignoceric acid is involved in a couple of metabolic pathways, which include adrenoleukodystrophy, x-linked and beta oxidation of very long chain fatty acids. Lignoceric acid is also involved in carnitine-acylcarnitine translocase deficiency, which is a metabolic disorder. Lignoceric acid, or tetracosanoic acid, is the saturated fatty acid with formula C23H47COOH. It is found in wood tar, various cerebrosides, and in small amounts in most natural fats. The fatty acids of peanut oil contain small amounts of lignoceric acid (1.1\\\\% – 2.2\\\\%). This fatty acid is also a byproduct of lignin production . Tetracosanoic acid is a C24 straight-chain saturated fatty acid. It has a role as a volatile oil component, a plant metabolite, a human metabolite and a Daphnia tenebrosa metabolite. It is a very long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetracosanoate. Tetracosanoic acid, also known as N-tetracosanoate or lignoceric acid, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Tetracosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tetracosanoic acid is a potentially toxic compound. Acquisition and generation of the data is financially supported in part by CREST/JST. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].
Valerate
Valeric acid, or pentanoic acid, is a straight chain alkyl carboxylic acid with the chemical formula CH3(CH2)3COOH. Like other low molecular weight carboxylic acids, it has a very unpleasant odor. Valeric acid is commonly found in human feces, with an average concentration of 2.4 umol/g feces (range of 0.6-3.8 umol/g) (PMID:6740214). Valeric acid is produced by the gut microbiota, typically Clostridia species and other gut bacterial species such as Megasphaera massiliensis MRx0029 (PMID:30052654) via the condensation of ethanol with propionic acid (PMID:18116989). Valeric acid is largely considered as a gut microbial metabolite. Recently, valeric acid has been found to exert strong gut protective effects. Studies involving mice that received high doses of radiation showed that valeric acid replenishment (via oral gavage) elevated the survival rate of irradiated mice, protected hematogenic organs (such as the thymus and spleen), improved gastrointestinal (GI) tract function and enhanced intestinal epithelial integrity (PMID:31931652 ). Valeric acid was also found to restore the enteric bacteria taxonomic proportions and reprogram the small intestinal protein profile to normal levels. Valeric acid, like butyric acid, also appears to be a potent histone deacetylase (HDAC) inhibitor. High levels of HDAC proteins have been implicated in a variety of disease pathologies, from cancer and colitis to cardiovascular disease and neurodegeneration (PMID:30052654). Valeric acid is also found in certain plants, specifically in the perennial flowering plant valerian (Valeriana officinalis), from which it gets its name. Industrially valeric acid is primarily used is in the synthesis of its esters. Volatile esters of valeric acid tend to have pleasant odors and are used in perfumes and cosmetics. Ethyl valerate and pentyl valerate are used as food additives because of their fruity flavours. Hydrolysis of these valerate-containing food additives in the gut can also lead to the appearance of valerate in blood, urine and stool samples. Minor constituent of biological systems e.g. yeast fat, some plant oilsand is also present in blue cheeses, wines, apple, banana, morello cherry, cooked shrimp, scallop, roasted peanut, roasted filberts and other foodstuffs. Flavouring agent. Pentanoic acid is found in many foods, some of which are red raspberry, pepper (c. frutescens), tea, and fats and oils. KEIO_ID V002
Compactin
A carboxylic ester that is pravastatin that is lacking the allylic hydroxy group. A hydroxymethylglutaryl-CoA reductase inhibitor (statin) isolated from Penicillium citrinum and from Penicillium brevicompactum, its clinical use as a lipid-regulating drug ceased following reports of toxicity in animals. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D004791 - Enzyme Inhibitors > D019161 - Hydroxymethylglutaryl-CoA Reductase Inhibitors C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C471 - Enzyme Inhibitor > C1655 - HMG-CoA Reductase Inhibitor D009676 - Noxae > D000963 - Antimetabolites Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment[1][2][3]. Mevastatin (Compactin) is a first HMG-CoA reductase inhibitor that belongs to the statins class. Mevastatin is a lipid-lowering agent, and induces apoptosis, arrests cancer cells in G0/G1 phase. Mevastatin also increases endothelial nitric oxide synthase (eNOS) mRNA and protein levels. Mevastatin has antitumor activity and has the potential for cardiovascular diseases treatment[1][2][3].
Adenylsuccinic acid
Adenylsuccinic acid, also known as adenylosuccinate, succinyladenosine or aspartyl adenylate, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenylsuccinic acid is found in all living organisms, ranging from bacteria to plants to animals. Adenylsuccinic acid is an important intermediate in the de novo purine biosynthesis pathway. Specifically, adenylsuccinic acid is an intermediate in the interconversion of purine nucleotides inosine monophosphate (IMP) and adenosine monophosphate (AMP). The enzyme adenylosuccinate synthase carries out the reaction by the addition of aspartate to IMP. This reaction requires the input of energy from a phosphoanhydride bond in the form of guanosine triphosphate (GTP). Adenylsuccinic acid is a substrate least one other important metabolic reaction in purine biosynthesis. In particular, adenylsuccinic acid can be converted into fumaric acid through its interaction with the enzyme known as adenylosuccinate lyase (or adenylosuccinase). Adenylosuccinate lyase deficiency, is a rare autosomal recessive metabolic disorder characterized by the appearance of succinylaminoimidazolecarboxamide riboside (SAICA riboside) and adenylsuccinic acid in cerebrospinal fluid and urine (PMID: 8412002). Adenylosuccinate lyase deficiency presents with varying degrees of psychomotor retardation, autism, muscle wasting, and epilepsy. The exact cause of the symptoms is unknown, but possibilities include not enough purine nucleotide synthesis for cell replication, malfunctioning of the purine nucleotide cycle, and a buildup of substrates to toxic levels. Adenylsuccinic acid is a substrate of the enzyme adenylosuccinase [EC 4.3.2.2] in purine metabolism pathway. The accumulation of adenylsuccinic acid in body fluids occurs due to a deficiency of adenylosuccinase. (KEGG; PMID 8412002) [HMDB] D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID A037; [MS2] KO008839 KEIO_ID A037; [MS3] KO008840 KEIO_ID A037
Cholesterol
Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
6-Aminopenicillanic acid
D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams 6-Aminopenicillanic acid is a metabolite of penicillin v; penicillin g.
Patulin
Patulin is found in pomes. Mycotoxin, found as a contaminant of foods, e.g. apple juice. Sometimes detd. in apple juice Patulin is a mycotoxin produced by a variety of molds, particularly Aspergillus and Penicillium. It is commonly found in rotting apples, and the amount of patulin in apple products is generally viewed as a measure of the quality of the apples used in production. It is not a particularly potent toxin, but a number of studies have shown that it is genotoxic, which has led to some theories that it may be a carcinogen, though animal studies have remained inconclusive. Patulin is also an antibiotic. Several countries have instituted patulin restrictions in apple products. The World Health Organization recommends a maximum concentration of 50 µg/L in apple juice Mycotoxin, found as a contaminant of foods, e.g. apple juice. Sometimes detd. in apple juice D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D009153 - Mutagens Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].