Classification Term: 170326
Simple phenolic acids (ontology term: d74405484a0f87d928e6f8c9ed15f933)
found 500 associated metabolites at sub_class
metabolite taxonomy ontology rank level.
Ancestor: Phenolic acids (C6-C1)
Child Taxonomies: There is no child term of current ontology term.
Gastrodin
Gastrodin is a glycoside. Gastrodin is a natural product found in Cyrtosia septentrionalis, Dactylorhiza hatagirea, and other organisms with data available. See also: Gastrodia elata tuber (part of). Gastrodin, a main constituent of a Chinese herbal medicine Tianma, has been known to display anti-inflammatory effects. Gastrodin, has long been used for treating dizziness, epilepsy, stroke and dementia. Gastrodin, a main constituent of a Chinese herbal medicine Tianma, has been known to display anti-inflammatory effects. Gastrodin, has long been used for treating dizziness, epilepsy, stroke and dementia.
Protocatechuic acid
Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.
Salicylic acid
Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. It is a colorless solid, it is a precursor to and a metabolite of aspirin (acetylsalicylic acid). It is a plant hormone. The name is from Latin salix for willow tree. It is an ingredient in some anti-acne products. Salts and esters of salicylic acid are known as salicylates. Salicylic acid modulates COX1 enzymatic activity to decrease the formation of pro-inflammatory prostaglandins. Salicylate may competitively inhibit prostaglandin formation. Salicylates antirheumatic (nonsteroidal anti-inflammatory) actions are a result of its analgesic and anti-inflammatory mechanisms. Salicylic acid works by causing the cells of the epidermis to slough off more readily, preventing pores from clogging up, and allowing room for new cell growth. Salicylic acid inhibits the oxidation of uridine-5-diphosphoglucose (UDPG) competitively with nicotinamide adenosine dinucleotide and noncompetitively with UDPG. It also competitively inhibits the transferring of glucuronyl group of uridine-5-phosphoglucuronic acid to the phenolic acceptor. The wound-healing retardation action of salicylates is probably due mainly to its inhibitory action on mucopolysaccharide synthesis. Salicylic acid is biosynthesized from the amino acid phenylalanine. In Arabidopsis thaliana, it can be synthesized via a phenylalanine-independent pathway. Salicylic acid is an odorless white to light tan solid. Sinks and mixes slowly with water. (USCG, 1999) Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. Salicylic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Salicylic Acid is a beta hydroxy acid that occurs as a natural compound in plants. It has direct activity as an anti-inflammatory agent and acts as a topical antibacterial agent due to its ability to promote exfoliation. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. A compound obtained from the bark of the white willow and wintergreen leaves. It has bacteriostatic, fungicidal, and keratolytic actions. See also: Benzoic Acid (has active moiety); Methyl Salicylate (active moiety of); Benzyl salicylate (is active moiety of) ... View More ... A monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. Salicylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-72-7 (retrieved 2024-06-29) (CAS RN: 69-72-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].
(R)-mandelic Acid
(R)-mandelic acid is the (R)-enantiomer of mandelic acid. It has a role as a human xenobiotic metabolite. It is a conjugate acid of a (R)-mandelate. It is an enantiomer of a (S)-mandelic acid. (r)-Mandelic acid is a natural product found in Pisolithus tinctorius, Pisolithus arhizus, and other organisms with data available. (R)-mandelic Acid, also known as (R)-2-Hydroxy-2-phenylacetic acid or (-)-(R)-Mandelate, is classified as a benzene or a Benzene derivative. Benzenes are aromatic compounds containing one monocyclic ring system consisting of benzene. (R)-mandelic Acid is considered to be soluble (in water) and acidic The (R)-enantiomer of mandelic acid. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M068 D-(-)-Mandelic acid is a natural compound isolated from bitter almonds. D-(-)-Mandelic acid is a natural compound isolated from bitter almonds.
3-Hydroxybenzaldehyde
3-hydroxybenzaldehyde is a hydroxybenzaldehyde carrying a hydroxy substituent at position 3. 3-Hydroxybenzaldehyde is a natural product found in Rhytidoponera metallica, Marchantia polymorpha, and other organisms with data available. 3-Hydroxybenzaldehyde, also known as 3-hydroxybenzaldehyde or m-hydroxybenzaldehyde, is an organic compound belonging to the class of aromatic aldehydes. Its chemical formula is C7H6O2 and it is characterized by a benzene ring with a hydroxyl group (-OH) and an aldehyde group (-CHO) attached at the meta position on the ring. Biologically, 3-hydroxybenzaldehyde has been found to possess several interesting properties: 1. **Antioxidant Activity**: It exhibits antioxidant properties, which means it can neutralize harmful free radicals in the body. This can be beneficial in reducing oxidative stress, which is associated with various diseases and aging. 2. **Antimicrobial Effects**: 3-Hydroxybenzaldehyde has shown antimicrobial activity against a range of microorganisms, including bacteria and fungi. This makes it a potential candidate for the development of new antimicrobial agents. 3. **Anti-inflammatory Properties**: Some studies have indicated that this compound may have anti-inflammatory effects, which could be useful in the treatment of inflammatory conditions. 4. **Cytotoxicity**: It has been observed to have cytotoxic effects on certain types of cancer cells, suggesting a potential role in cancer therapy. However, more research is needed in this area. 5. **Enzyme Inhibition**: 3-Hydroxybenzaldehyde can inhibit the activity of certain enzymes, which may have implications in the management of conditions where these enzymes play a pathological role. It's important to note that while 3-hydroxybenzaldehyde has these biological properties, its use in practical applications, especially in a medical context, is still largely experimental and requires further research. The compound's effects and safety profile need to be thoroughly evaluated before it can be considered for widespread use in therapeutic or preventive treatments. 3-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=100-83-4 (retrieved 2024-08-06) (CAS RN: 100-83-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1].
Tremulacin
Tremulacin is a glycoside. Tremulacin is a natural product found in Populus tremula, Populus tomentosa, and other organisms with data available.
Benzyl butyl phthalate
CONFIDENCE standard compound; INTERNAL_ID 837; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10079; ORIGINAL_PRECURSOR_SCAN_NO 10074 CONFIDENCE standard compound; INTERNAL_ID 837; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10050; ORIGINAL_PRECURSOR_SCAN_NO 10045 CONFIDENCE standard compound; INTERNAL_ID 837; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10050; ORIGINAL_PRECURSOR_SCAN_NO 10048 CONFIDENCE standard compound; INTERNAL_ID 837; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10020; ORIGINAL_PRECURSOR_SCAN_NO 10018 CONFIDENCE standard compound; INTERNAL_ID 837; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10069; ORIGINAL_PRECURSOR_SCAN_NO 10066 CONFIDENCE standard compound; INTERNAL_ID 837; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9995; ORIGINAL_PRECURSOR_SCAN_NO 9990 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3597 CONFIDENCE standard compound; INTERNAL_ID 8369 D009676 - Noxae > D013723 - Teratogens
3-hydroxybenzyl alcohol
A hydroxybenzyl alcohol that is phenol substituted at position C-3 by a hydroxymethyl group. KSD 2405 is an endogenous metabolite.
2,6-Dimethoxyphenol
2,6-Dimethoxyphenol, also known as syringol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 2,6-Dimethoxyphenol is a bacon, balsamic, and medicine tasting compound. Isolated from maople syrup. Flavouring ingredient.
Phenol
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives C - Cardiovascular system > C05 - Vasoprotectives > C05B - Antivaricose therapy > C05BB - Sclerosing agents for local injection An organic hydroxy compound that consists of benzene bearing a single hydroxy substituent. The parent of the class of phenols. R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics D019999 - Pharmaceutical Solutions > D012597 - Sclerosing Solutions N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local D000890 - Anti-Infective Agents D002317 - Cardiovascular Agents D004202 - Disinfectants CONFIDENCE standard compound; INTERNAL_ID 225
Phenoxyacetic acid
Phenoxyacetic acid is found in cocoa and cocoa products. Phenoxyacetic acid is a flavouring ingredient. Phenoxyacetic acid is present in cocoa bean Phenoxyacetic acid is a flavouring ingredient. It is found in cocoa and cocoa products. COVID info from PDB, Protein Data Bank KEIO_ID P129 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Phenoxyacetic acid is an endogenous metabolite.
Vanilloyl glucose
Vanilloyl glucose is a member of the class of compounds known as hydrolyzable tannins. Hydrolyzable tannins are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. Vanilloyl glucose is soluble (in water) and a very weakly acidic compound (based on its pKa). Vanilloyl glucose can be found in a number of food items such as orange bell pepper, yellow bell pepper, pepper (c. annuum), and red bell pepper, which makes vanilloyl glucose a potential biomarker for the consumption of these food products.
Benzyl alcohol
Benzyl alcohol is a colorless liquid with a sharp burning taste and slight odor. It is used as a local anesthetic and to reduce pain associated with Lidocaine injection. Also, it is used in the manufacture of other benzyl compounds, as a pharmaceutical aid, and in perfumery and flavoring. Benzyl Alcohol is an aromatic alcohol used in a wide variety of cosmetic formulations as a fragrance component, preservative, solvent, and viscosity-decreasing agent. Benzyl alcohol is metabolized to Benzoic Acid, which reacts with glycine and excreted as hippuric acid in the human body. Acceptable daily intakes were established by the World Health Organization at 5 mg/kg for Benzyl alcohol. No adverse effects of benzyl alcohol have been seen in chronic exposure animal studies using rats and mice. Effects of Benzyl Alcohol in chronic exposure animal studies are limited to reduced feed intake and reduced growth. Some differences have been noted in one reproductive toxicity study using mice, but these were limited to lower maternal body weights and decreased mean litter weights. Another study also noted that fetal weight was decreased compared to controls, but a third study showed no differences between control and benzyl alcohol-treated groups. Benzyl alcohol has been associated with an increased number of resorptions and malformations in hamsters, but there have been no reproductive or developmental toxicity findings in studies using mice and rats. Genotoxicity tests for benzyl alcohol are mostly negative, but there were some assays that were positive. Carcinogenicity studies, however, were negative. Clinical data indicates that benzyl alcohol can produce nonimmunologic contact urticaria and nonimmunologic immediate contact reactions, characterized by the appearance of wheals, erythema, and pruritis. 5\\\\% benzyl alcohol can elicit a reaction. Benzyl alcohol is not a sensitizer at 10\\\\%. Benzyl alcohol could be used safely at concentrations up to 5\\\\%, but that manufacturers should consider the nonimmunologic phenomena when using benzyl alcohol in cosmetic formulations designed for infants and children. Additionally, Benzyl alcohol is considered safe up to 10\\\\% for use in hair dyes. The limited body exposure, the duration of use, and the frequency of use are considered in concluding that the nonimmunologic reactions would not be a concern. Because of the wide variety of product types in which benzyl alcohol may be used, it is likely that inhalation may be a route of exposure. The available safety tests are not considered sufficient to support the safety of benzyl alcohol in formulations where inhalation is a route of exposure. Inhalation toxicity data are needed to complete the safety assessment of benzyl alcohol where inhalation can occur. (PMID:11766131). Constituent of jasmine and other ethereal oils, both free and as estersand is also present in cherry, orange juice, mandarin peel oil, guava fruit, feijoa fruit, pineapple, leek, cinnamon, cloves, mustard, fermented tea, basil and red sage. Flavouring ingredient P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor. Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor.
Anisole
Anisole is a flavouring agent Anisole is a precursor to perfumes, insect pheromones, and pharmaceuticals. For example, synthetic anethole is prepared from anisole. Anisole undergoes electrophilic aromatic substitution reaction more quickly than does benzene, which in turn reacts more quickly than nitrobenzene. The methoxy group is an ortho/para directing group, which means that electrophilic substitution preferentially occurs at these three sites. The enhanced nucleophilicity of anisole vs benzene reflects the influence of the methoxy group, which renders the ring more electron-rich. The methoxy group strongly affects the pi cloud of the ring, moreso than the inductive effect of the electronegative oxygen. Flavouring agent
6-Methylsalicylic acid
A monohydroxybenzoic acid that is salicylic acid in which the hydrogen ortho to the carboxylic acid group is substituted by a methyl group. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates
Methyl benzoate
Methyl benzoate is an ester with the chemical formula C6H5COOCH3. It is formed by the condensation of methanol and benzoic acid. It is a colorless to slightly yellow liquid that is insoluble with water, but miscible with most organic solvents. Methyl benzoate is found in allspice. Methyl benzoate is present in various flower oils, banana, cherry, pimento berry, ceriman (Monstera deliciosa), clove bud and stem, mustard, coffee, black tea, dill, starfruit and cherimoya (Annona cherimola). Methyl benzoate is used in flavourings. It is one of many compounds that is attractive to males of various species of orchid bees, who apparently gather the chemical to synthesize pheromones; it is commonly used as bait to attract and collect these bees for study. Present in various flower oils, banana, cherry, pimento berry, ceriman (Monstera deliciosa), clove bud and stem, mustard, coffee, black tea, dill, starfruit and cherimoya (Annona cherimola). It is used in flavourings
Phenol
Phenol, is a toxic, colourless crystalline solid with a sweet tarry odor that resembles a hospital smell. It is commonly used as an antiseptic and disinfectant. It is active against a wide range of micro-organisms including some fungi and viruses, but is only slowly effective against spores. It has been used to disinfect skin and to relieve itching. Phenol is also used in the preparation of cosmetics including sunscreens, hair dyes, and skin lightening preparations. It is also used in the production of drugs (it is the starting material in the industrial production of aspirin), weedkillers, and synthetic resins. Phenol can be found in areas with high levels of motor traffic, therefore, people living in crowded urban areas are frequently exposed to traffic-derived phenol vapor. The average (mean +/- SD) phenol concentration in urine among normal individuals living in urban areas is 7.4 +/- 2.2 mg/g of creatinine. Exposure of the skin to concentrated phenol solutions causes chemical burns which may be severe; in laboratories where it is used, it is usually recommended that polyethylene glycol solution is kept available for washing off splashes. Notwithstanding the effects of concentrated solutions, it is also used in cosmetic surgery as an exfoliant, to remove layers of dead skin (Wikipedia). In some bacteria phenol can be directly synthesized from tyrosine via the enzyme tyrosine phenol-lyase [EC:4.1.99.2]. It can be produced by Escherichia and Pseudomonas. Phenol has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). It is used as a flavouring agent in a few foods, at maximum levels below 10 ppm
4-Hydroxyphenyl acetate
This compound belongs to the family of Phenol Esters. These are aromatic compounds containing a benzene ring substituted by an hydroxyl group and an ester group. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
3-bromo-4,5-Dihydroxybenzoic acid
A dihydroxybenzoic acid that is 4,5-dihydroxybenzoic acid carrying an additional bromo substituent at position 3.
Propylparaben
Propyl-4-hydroxybenzoate appears as colorless crystals or white powder or chunky white solid. Melting point 95-98 °C. Odorless or faint aromatic odor. Low toxicity, Tasteless (numbs the tongue). pH: 6.5-7.0 (slightly acidic) in solution. Propylparaben is the benzoate ester that is the propyl ester of 4-hydroxybenzoic acid. Preservative typically found in many water-based cosmetics, such as creams, lotions, shampoos and bath products. Also used as a food additive. It has a role as an antifungal agent and an antimicrobial agent. It is a benzoate ester, a member of phenols and a paraben. It is functionally related to a propan-1-ol and a 4-hydroxybenzoic acid. Propylparaben is used in allergenic testing. Propylparaben is a Standardized Chemical Allergen. The physiologic effect of propylparaben is by means of Increased Histamine Release, and Cell-mediated Immunity. Propylparaben is a natural product found in Microtropis fokienensis, Soymida febrifuga, and other organisms with data available. Propylparaben is an antimicrobial agent, preservative, flavouring agent. Propylparaben belongs to the family of Hydroxybenzoic Acid Derivatives. These are compounds containing an hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxylic acid. Propylparaben, also known as propyl chemosept or propyl parasept, belongs to the class of organic compounds known as p-hydroxybenzoic acid alkyl esters. These are aromatic compounds containing a benzoic acid, which is esterified with an alkyl group and para-substituted with a hydroxyl group. Propylparaben is a sweet, burnt, and hawthorn tasting compound. Propylparaben is a potentially toxic compound. Propylparaben is an antimicrobial agent, preservative, flavouring agent. D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Antimicrobial agent, preservative, flavouring agent Propylparaben (Propyl parahydroxybenzoate) is an antimicrobial preservative which can be produced naturally by plants and bacteria. Propylparaben is prevalently used in cosmetics, pharmaceuticals, and foods. Propylparaben disrupts antral follicle growth and steroidogenic function by altering the cell-cycle, apoptosis, and steroidogenesis pathways. Propylparaben also decreases sperm number and motile activity in rats[1][2][3]. Propylparaben (Propyl parahydroxybenzoate) is an antimicrobial preservative which can be produced naturally by plants and bacteria. Propylparaben is prevalently used in cosmetics, pharmaceuticals, and foods. Propylparaben disrupts antral follicle growth and steroidogenic function by altering the cell-cycle, apoptosis, and steroidogenesis pathways. Propylparaben also decreases sperm number and motile activity in rats[1][2][3].
Ethyl gallate
Ethyl gallate is a gallate ester obtained by the formal condensation of gallic acid with ethanol. It has a role as a plant metabolite. Ethyl gallate is a natural product found in Limonium axillare, Dimocarpus longan, and other organisms with data available. Ethyl gallate occurs, inter alia, in Indian gooseberry (Phyllanthus emblica). Ethyl gallate is found in many foods, some of which include grape wine, fruits, guava, and vinegar. Occurs, inter alia, in Indian gooseberry (Phyllanthus emblica). Ethyl gallate is found in many foods, some of which are grape wine, fruits, guava, and vinegar. A gallate ester obtained by the formal condensation of gallic acid with ethanol. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide.
3-Hydroxybenzyl alcohol
3-Hydroxybenzyl alcohol (CAS Number 620-24-6) is a hydroxybenzyl alcohol that is phenol substituted at position C-3 by a hydroxymethyl group. It is a pink or beige to brown crystalline powder, soluble in water. KSD 2405 is an endogenous metabolite.
2,4-Dihydroxybenzoic acid
2,4-Dihydroxybenzoic acid is found in alcoholic beverages. 2,4-Dihydroxybenzoic acid is found in avocado, beer, wine and coffee. 2,4-Dihydroxybenzoic acid is a food flavour ingredient and flavour modifie Found in avocado, beer, wine and coffee. Food flavour ingredient and flavour modifier 2,4-Dihydroxybenzoic acid is a degradation product of cyaniding glycoside from tart cheeries in cell culture. 2,4-Dihydroxybenzoic acid is a degradation product of cyaniding glycoside from tart cheeries in cell culture.
3,4-Dimethylbenzoic acid
Trimethylobenzene is metabolized mainly to dimethylbenzoic (DMBA) acid. Trimethylobenzene (TMB) is a common ingredient of many organic solvents used in industry. DMBA and dimethylhippuric (DMHA) acids, excreted in urine can be used as biological indicators of exposure to TMB. (PMID: 8170375). Isolated from Eryngium foetidum (culantro) 3,4-Dimethylbenzoic acid acts as a product of dimethylbenzoate metabolism by Rhodococcus rhodochrous N75[1].
Butylparaben
Butylparaben, also known as butyl par asept or tegosept b, belongs to the class of organic compounds known as p-hydroxybenzoic acid alkyl esters. These are aromatic compounds containing a benzoic acid, which is esterified with an alkyl group and para-substituted with a hydroxyl group. Butylparaben displayed the most competitive binding to rat estrogen receptors when tested along with methyl, ethyl, and propylparabens. Butylparaben is a very faint and phenolic tasting compound. Butylparaben is a potentially toxic compound. However, parabens have not been proven to cause breast cancer. It has been used in cosmetic products since the 1940s and in pharmaceutical products since 1924. D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens Preservative and flavouring agent
3-Methoxysalicylic acid
2-hydroxy-3-methoxybenzoic acid, also known as O-vanillic acid or O-vanillate, belongs to M-methoxybenzoic acids and derivatives class of compounds. Those are benzoic acids in which the hydrogen atom at position 3 of the benzene ring is replaced by a methoxy group. 2-hydroxy-3-methoxybenzoic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 2-hydroxy-3-methoxybenzoic acid can be found in evening primrose, which makes 2-hydroxy-3-methoxybenzoic acid a potential biomarker for the consumption of this food product. 3-Methoxysalicylic acid (CAS Number 877-22-5) is a beige fine crystalline powder. Its melting point is 147-150 C.
Dihydromelilotoside
Dihydromelilotoside is found in herbs and spices. Dihydromelilotoside is isolated from Chinese cinnamon. Isolated from Chinese cinnamon. Dihydromelilotoside is found in herbs and spices.
(3,4,5,6-tetrahydroxyoxan-2-yl)methyl 4-hydroxybenzoate
3-Methoxy-4,5-methylenedioxybenzoic acid
3-Methoxy-4,5-methylenedioxybenzoic acid is found in green vegetables. 3-Methoxy-4,5-methylenedioxybenzoic acid is isolated from seeds of Apium graveolen
2,3,5-trihydroxy-6-(hydroxymethyl)oxan-4-yl 3,4,5-trihydroxybenzoate
4-Hydroxy-3-prenylbenzoic acid glucoside
4-Hydroxy-3-prenylbenzoic acid glucoside is found in nuts. 4-Hydroxy-3-prenylbenzoic acid glucoside is a constituent of almond hulls (Prunus amygdalus). Constituent of almond hulls (Prunus amygdalus). 4-Hydroxy-3-prenylbenzoic acid glucoside is found in nuts.
cis-3-Hexenyl benzoate
cis-3-Hexenyl benzoate is found in fruits. cis-3-Hexenyl benzoate is a constituent of black tea aroma. Also present in bilberry, lingon berry, cowberry and feijoa fruit and peel. cis-3-Hexenyl benzoate is a flavouring agent. Constituent of black tea aromaand is also present in bilberry, lingon berry, cowberry and feijoa fruit and peel. Flavouring agent. cis-3-Hexenyl benzoate is found in tea and fruits.
Prenyl benzoate
Prenyl benzoate belongs to the class of organic compounds known as benzoic acid esters. These are ester derivatives of benzoic acid. Prenyl benzoate is a balsam, chocolate, and fruity tasting compound. Prenyl benzoate is used as a food additive (EAFUS: Everything Added to Food in the United States).
Phenethyl salicylate
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Phenethyl salicylate is used imitation fruit flavour It is used imitation fruit flavours
Isoamyl salicylate
Isoamyl salicylate is found in alcoholic beverages. Isoamyl salicylate is isolated from fruit aromas. Also present in rum and black tea. Isoamyl salicylate is a flavouring agent. Isolated from fruit aromasand is) also present in rum and black tea. Flavouring agent. Isoamyl salicylate is found in tea, alcoholic beverages, and fruits. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates
Lavendustin A
C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors
Chakanoside I
Chakanoside i is a member of the class of compounds known as alkyl-phenylketones. Alkyl-phenylketones are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. Chakanoside i is soluble (in water) and a very weakly acidic compound (based on its pKa). Chakanoside i can be found in tea, which makes chakanoside i a potential biomarker for the consumption of this food product.
Glucosyringic acid
Glucosyringic acid, also known as glucosyringate, is a member of the class of compounds known as hydrolyzable tannins. Hydrolyzable tannins are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. Glucosyringic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Glucosyringic acid can be found in fennel, which makes glucosyringic acid a potential biomarker for the consumption of this food product.
Vacciniin
Vacciniin, also known as 6-O-benzoyl-D-glucopyranoside, is a member of the class of compounds known as benzoic acid esters. Benzoic acid esters are ester derivatives of benzoic acid. Vacciniin is soluble (in water) and a very weakly acidic compound (based on its pKa). Vacciniin can be found in american cranberry, which makes vacciniin a potential biomarker for the consumption of this food product.
PHENYLACETIC ACID
D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents
Orsellic acid
Orsellinic acid is a compound produced by Lecanoric acid treated with alcohols. Lecanoric acid is a lichen depside isolated from a Parmotrema tinctorum specimen[1].
2,4-DICHLOROBENZOIC ACID
A chlorobenzoic acid that is benzoic acid in which the ring hydrogens at positions 2 and 4 are substituted by chloro groups.
3-Methoxysalicylic acid
Benzoic acid substituted with a hydroxy group at position C-2 and a methoxy group at position C-3.
ethyl protocatechuate
Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect[1][2][3][4]. Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect[1][2][3][4]. Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect[1][2][3][4].
METHYL BENZOATE
A benzoate ester obtained by condensation of benzoic acid and methanol.
Ethyl 3,4-dihydroxybenzoate
Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect[1][2][3][4]. Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect[1][2][3][4]. Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect[1][2][3][4].
Stipitatic acid
CONFIDENCE isolated standard
Lavendustin A
C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor D004791 - Enzyme Inhibitors
Methyl 3,4,5-trimethoxybenzoate
Methyl 3,4,5-trimethoxybenzoate can be synthesized from Gallic acid. Methyl 3,4,5-trimethoxybenzoate is mainly used in the production of Trimethoprim (TMP), Sulfa synergistic intermediates, and many other agents. Methyl 3,4,5-trimethoxybenzoate can be synthesized from Gallic acid. Methyl 3,4,5-trimethoxybenzoate is mainly used in the production of Trimethoprim (TMP), Sulfa synergistic intermediates, and many other agents.
METHYL 2,4-DIHYDROXYBENZOATE
Methyl 2,4-dihydroxybenzoate is an active compound. Methyl 2,4-dihydroxybenzoate can be used for the research of various biochemical studies[1].
m-Anisic-acid
[Raw Data] CB243_m-Anisic-acid_pos_50eV_rep000008.txt [Raw Data] CB243_m-Anisic-acid_pos_40eV_rep000008.txt [Raw Data] CB243_m-Anisic-acid_pos_30eV_rep000008.txt [Raw Data] CB243_m-Anisic-acid_pos_20eV_rep000008.txt [Raw Data] CB243_m-Anisic-acid_pos_10eV_rep000008.txt 3-Methoxybenzoic acid can be used in the synthesis of 3-methoxybenzoates of europium (III) and gadolinium (III).
BUTYLPARABEN
D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens CONFIDENCE standard compound; INTERNAL_ID 839; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4733; ORIGINAL_PRECURSOR_SCAN_NO 4731 CONFIDENCE standard compound; INTERNAL_ID 839; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4751; ORIGINAL_PRECURSOR_SCAN_NO 4749 CONFIDENCE standard compound; INTERNAL_ID 839; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4709; ORIGINAL_PRECURSOR_SCAN_NO 4706 CONFIDENCE standard compound; INTERNAL_ID 839; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4734; ORIGINAL_PRECURSOR_SCAN_NO 4732 CONFIDENCE standard compound; INTERNAL_ID 839; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4776; ORIGINAL_PRECURSOR_SCAN_NO 4775 CONFIDENCE standard compound; INTERNAL_ID 839; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4768; ORIGINAL_PRECURSOR_SCAN_NO 4767 CONFIDENCE standard compound; INTERNAL_ID 2368 CONFIDENCE standard compound; INTERNAL_ID 4234 CONFIDENCE standard compound; INTERNAL_ID 8639 CONFIDENCE standard compound; INTERNAL_ID 4158
benzyl alcohol
Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor. Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor.
2,3-Dihydroxybenzoic acid
A dihydroxybenzoic acid that is benzoic acid substituted by hydroxy groups at positions 2 and 3. It occurs naturally in Phyllanthus acidus and in the aquatic fern Salvinia molesta. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
PHENYLACETIC ACID
A monocarboxylic acid that is toluene in which one of the hydrogens of the methyl group has been replaced by a carboxy group. D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents
Methyl Salicylate
Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4]. Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4].
3-(5-formyl-2-hydroxyphenoxy)-4-methoxybenzoic acid
Propylparaben
CONFIDENCE standard compound; INTERNAL_ID 989; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4056; ORIGINAL_PRECURSOR_SCAN_NO 4053 D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens CONFIDENCE standard compound; INTERNAL_ID 989; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4153; ORIGINAL_PRECURSOR_SCAN_NO 4151 CONFIDENCE standard compound; INTERNAL_ID 989; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4142; ORIGINAL_PRECURSOR_SCAN_NO 4139 CONFIDENCE standard compound; INTERNAL_ID 989; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3966; ORIGINAL_PRECURSOR_SCAN_NO 3964 CONFIDENCE standard compound; INTERNAL_ID 989; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3985; ORIGINAL_PRECURSOR_SCAN_NO 3983 CONFIDENCE standard compound; INTERNAL_ID 989; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4151; ORIGINAL_PRECURSOR_SCAN_NO 4148 CONFIDENCE standard compound; INTERNAL_ID 2372 CONFIDENCE standard compound; INTERNAL_ID 8646 Propylparaben (Propyl parahydroxybenzoate) is an antimicrobial preservative which can be produced naturally by plants and bacteria. Propylparaben is prevalently used in cosmetics, pharmaceuticals, and foods. Propylparaben disrupts antral follicle growth and steroidogenic function by altering the cell-cycle, apoptosis, and steroidogenesis pathways. Propylparaben also decreases sperm number and motile activity in rats[1][2][3]. Propylparaben (Propyl parahydroxybenzoate) is an antimicrobial preservative which can be produced naturally by plants and bacteria. Propylparaben is prevalently used in cosmetics, pharmaceuticals, and foods. Propylparaben disrupts antral follicle growth and steroidogenic function by altering the cell-cycle, apoptosis, and steroidogenesis pathways. Propylparaben also decreases sperm number and motile activity in rats[1][2][3].
Homovanillic Acid
Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency. Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency.
2-Pyrocatechuic acid
Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.
Piperonylic acid
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Piperonylic acid is a natural molecule bearing a methylenedioxy function that closely mimics the structure of trans-cinnamic acid. Piperonylic Acid is a selective, mechanism-based inactivator of the trans-cinnamate 4-Hydroxylase[1]. Piperonylic acid is a natural molecule bearing a methylenedioxy function that closely mimics the structure of trans-cinnamic acid. Piperonylic Acid is a selective, mechanism-based inactivator of the trans-cinnamate 4-Hydroxylase[1].
4-Acetoxyphenol
A phenyl acetate obtained by formal condensation of the carboxy group of acetic acid with one of the hydroxy groups of hydroquinone. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Vanillyl alcohol
Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1]. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1].
W-Salicoylsalicin
4'-O-Galloylsucrose
5-O-Galloylhamamelofuranose
4-Hydroxy-3-prenylbenzoic acid glucoside
Isobutyl benzoate
A benzoate ester obtained by the formal condensation of benzoic acid with isobutanol.
Amburoside A
A beta-D-glucoside in which a beta-D-glucopyranosyl residue is attached at position 4 of 4-hydroxybenzyl 3,4-dihydroxybenzoate via a glycosidic linkage. It is isolated from the trunk barks of Amburana cearensis and exhibits antimalarial, neuroprotective, hepatoprotective and antioxidant activities.
Phenoxyethanol
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents
3-Formylphenol
3-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=100-83-4 (retrieved 2024-08-06) (CAS RN: 100-83-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1]. 3-Hydroxybenzaldehyde?is a precursor compound for phenolic compounds, such as Protocatechualdehyde (HY-N0295). 3-Hydroxybenzaldehyde is a substrate of aldehyde dehydrogenase (ALDH) in rats and humans (ALDH2). 3-Hydroxybenzaldehyde has vasculoprotective effects?in vitro and in vivo[1].
3-(5-Formyl-2-hydroxyphenoxy)-4-methoxybenzoic acid
Sucrose 6-benzoate
SALICYLALDEHYDE
A hydroxybenzaldehyde carrying a hydroxy substituent at position 2.
4-Methylbenzoic acid
p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc. p-Toluic acid (4-Methylbenzoic acid) is a substituted?benzoic acid?and can be used as an intermediate for the synthesis of para-aminomethylbenzoic acid (PAMBA), p-tolunitrile, etc.
PHENOXYACETIC ACID
A monocarboxylic acid that is the O-phenyl derivative of glycolic acid. A metabolite of 2-phenoxyethanol, it is used in the manufacture of pharmaceuticals, pesticides, fungicides and dyes. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Phenoxyacetic acid is an endogenous metabolite.
(5S,6S)-5,6-dihydroxycyclohexa-1,3-diene-1-carboxylic acid
2,4-dihydroxybenzoic acid
2,4-Dihydroxybenzoic acid is a degradation product of cyaniding glycoside from tart cheeries in cell culture. 2,4-Dihydroxybenzoic acid is a degradation product of cyaniding glycoside from tart cheeries in cell culture.
3-METHOXYBENZOIC ACID
A methoxybenzoic acid that is benzoic acid substituted by a methoxy group at position 3. 3-Methoxybenzoic acid can be used in the synthesis of 3-methoxybenzoates of europium (III) and gadolinium (III).
isoamyl salicylate
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates
Phenethyl salicylate
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates
2,3,5-trihydroxy-6-(hydroxymethyl)oxan-4-yl 3,4,5-trihydroxybenzoate
(3,4,5,6-tetrahydroxyoxan-2-yl)methyl 4-hydroxybenzoate
(2s,3r,4s,5r,6r)-3,5-dihydroxy-2-(2-{[(1s)-1-hydroxy-6-oxocyclohex-2-ene-1-carbonyloxy]methyl}phenoxy)-6-(hydroxymethyl)oxan-4-yl benzoate
(2-{[(2s,3r,4s,5s,6r)-6-[(benzoyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-5-hydroxyphenyl)methyl 2-hydroxybenzoate
4-{[(2s,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-methoxyoxan-2-yl]oxy}-3-methoxy-5-(3-methylbut-2-en-1-yl)benzoic acid
benzyl 2-{[(2s,3r,4s,5s,6r)-3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxybenzoate
(1r,2s,5s,6s)-5-[(benzoyloxy)methyl]-2,5,6-trihydroxycyclohex-3-en-1-yl benzoate
3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl benzoate
5-hydroxy-2-[(2z)-6-methylhept-2-en-2-yl]benzoic acid
2-[2-(3-oxobutan-2-ylidene)hydrazin-1-yl]benzoic acid
3-hydroxy-2-(2-hydroxy-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoyl)-5-(hydroxymethyl)benzoic acid
4-{[(2s,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-methoxyoxan-2-yl]oxy}-3-methoxybenzoic acid
(2-hydroxy-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl 2,6-dimethoxybenzoate
methyl 3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoate
(2r,3r)-3-hydroxy-2-(2-hydroxypropan-2-yl)-2,3-dihydro-1-benzofuran-5-carboxylic acid
(1r,3r,4s,5r)-1,3-dihydroxy-4,5-bis(4-hydroxy-3-methoxybenzoyloxy)cyclohexane-1-carboxylic acid
[(2r,3s,4s,5r,6r)-3,4,6-trihydroxy-5-(4-hydroxybenzoyloxy)oxan-2-yl]methyl 3,4,5-trihydroxybenzoate
(1r,4s,5r,6r)-3-[(benzoyloxy)methyl]-4,5,6-trihydroxycyclohex-2-en-1-yl benzoate
(2z)-2-(n-hydroxyimino)-3-(4-hydroxyphenyl)propanoic acid
2-[(1-hydroxy-2,2-dimethylbut-3-en-1-ylidene)amino]benzoic acid
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl 3,4,5-trihydroxybenzoate
3-[(3,7-dimethylocta-2,6-dien-1-yl)oxy]-4-hydroxybenzoic acid
2-{[hydroxy(2-hydroxyphenyl)methylidene]amino}-4-methoxybenzoic acid
(1r,2r,3s,4s,5s,6s)-1-[(benzoyloxy)methyl]-2,4,5-trihydroxy-7-oxabicyclo[4.1.0]heptan-3-yl benzoate
(3,4,5,6-tetrahydroxyoxan-2-yl)methyl 4-hydroxy-2-(hydroxymethyl)benzoate
[(2r,3r,4s,5r,6s)-6-(4-acetyl-2-methoxyphenoxy)-3,4,5-trihydroxyoxan-2-yl]methyl 4-hydroxybenzoate
5-hydroxy-2-{[(3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoic acid
(2s,3r,4s,5s,6r)-4,5-dihydroxy-2-(2-hydroxy-6-{[(1r)-1-hydroxy-6-oxocyclohex-2-ene-1-carbonyloxy]methyl}phenoxy)-6-(hydroxymethyl)oxan-3-yl benzoate
(2s,3r,4s,5r,6r)-3,5-dihydroxy-2-{4-hydroxy-2-[(1-hydroxy-6-oxocyclohex-2-ene-1-carbonyloxy)methyl]phenoxy}-6-(hydroxymethyl)oxan-4-yl benzoate
methyl (2e)-7-[(e)-benzoyloxy]-6-hydroxy-4-oxohept-2-enoate
4-[6-(ethoxycarbonyl)-2,3-dihydroxy-4-methoxyphenoxy]-3,5-dihydroxybenzoic acid
(2s,3r)-3-hydroxy-2-(prop-1-en-2-yl)-2,3-dihydro-1-benzofuran-5-carboxylic acid
methyl 3,4-dihydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoate
2-{[(2s,3r,4s,5r,6r)-3,4-bis(acetyloxy)-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxybenzoic acid
4-hydroxy-2-propyl-6-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoic acid
3-(4-hydroxy-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)propanoic acid
(4z)-6-[(z)-benzoyloxy]-2,3-dihydroxy-2-(hydroxymethyl)hex-4-en-1-yl benzoate
(5-hydroxy-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl 2-(2-oxo-2-phenylethyl)benzoate
6-(acetyloxy)-2-[(benzoyloxy)methyl]-4,5-dihydroxycyclohex-2-en-1-yl benzoate
3-hydroxy-2-(c-hydroxycarbonimidoyl)-6-methoxy-5-methyl-4-[(1e)-prop-1-en-1-yl]benzoic acid
(2s,3r,5r,6s)-2,3,5,6-tetrahydroxycyclohexyl 3,4,5-trihydroxybenzoate
(2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl 2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoate
[(2r,3s,4s,5r,6s)-6-(4-acetyl-2-methoxyphenoxy)-3,4,5-trihydroxyoxan-2-yl]methyl 4-hydroxybenzoate
(3r,5r)-1,4-dihydroxy-3,5-bis(4-hydroxy-3-methoxybenzoyloxy)cyclohexane-1-carboxylic acid
3-[2-(2-{[3-(2-{2-[(3,4-dihydroxybutanoyl)oxy]propyl}-4,6-dihydroxybenzoyloxy)butanoyl]oxy}propyl)-4,6-dihydroxybenzoyloxy]butanoic acid
(2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl 3-hydroxy-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoate
(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-(2-methoxybenzoyloxy)oxan-2-yl 2-methoxybenzoate
[(2r,3s,4s,5r,6s)-6-(4-acetyl-2-methoxyphenoxy)-3,4,5-trihydroxyoxan-2-yl]methyl 4-hydroxy-3-methoxybenzoate
2-formyl-4-hydroxy-3-(hydroxymethyl)-6-methoxy-5-methylbenzoic acid
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoate
3-hydroxy-4-[(1-hydroxyethylidene)amino]benzoic acid
(6-{[3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl benzoate
4-[(2e)-but-2-enoyl]-3-methoxy-5-methylbenzoic acid
[(2s,3r,4r,5s,6s)-3,4,5-trihydroxy-6-methoxyoxan-2-yl]methyl benzoate
methyl 2-hydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoate
[(2r,3s,4r,5s)-3,4,5-trihydroxyoxan-2-yl]methyl 3,4,5-trihydroxybenzoate
5-[(benzoyloxy)methyl]-4-ethoxy-5,6-dihydroxycyclohex-2-en-1-yl benzoate
3-hydroxy-5,7-dimethoxy-2-methyl-2,3-dihydro-1-benzofuran-6-carboxylic acid
2-hydroxy-5-(3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoyloxy)benzoic acid
3-hydroxy-4-(6-hydroxy-6-methylhept-2-en-2-yl)benzoic acid
3-{[(2e)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-4-hydroxybenzoic acid
(3-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl 3,4-dihydroxybenzoate
(5-hydroxy-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl 2,6-dimethoxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoate
(2z)-3-[3-methoxy-2-(methoxycarbonyl)-5-methylphenyl]prop-2-enoic acid
(2r,3s)-2-[(3,4-dihydroxyphenyl)methyl]-2-hydroxy-3-(4-hydroxybenzoyloxy)butanedioic acid
2,4-dihydroxy-6-[(12s)-12-hydroxyheptadecyl]benzoic acid
2,4-dihydroxy-6-(12-hydroxyheptadecyl)benzoic acid
(1s,4r,5s,6s)-4-[(benzoyloxy)methyl]-4,5,6-trihydroxycyclohex-2-en-1-yl benzoate
2-hydroxy-3-methoxy-4-methyl-5-(3-methylbut-2-en-1-yl)benzoic acid
(2r,3s,4s,5s,6r)-2-[2-chloro-4-hydroxy-6-(hydroxymethyl)phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
3-hydroxy-2-(2-hydroxypropan-2-yl)-2,3-dihydro-1-benzofuran-5-carboxylic acid
2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoic acid
2,4-dihydroxy-6-[(14r)-14-hydroxypentadecyl]benzoic acid
(2s,3r,4s,5s,6r)-2-[2-hydroxy-4-(hydroxymethyl)phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol
(1r,4s,5s,6s)-4-[(benzoyloxy)methyl]-4,5,6-trihydroxycyclohex-2-en-1-yl benzoate
(3r,4r,5r)-3,4,5-trihydroxycyclohex-1-ene-1-carboxylic acid
(3-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl 4-hydroxy-3-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoate
methyl 2-methoxy-5-[4-(methoxycarbonyl)phenoxy]benzoate
4-hydroxy-2-{[hydroxy(2-hydroxyphenyl)methylidene]amino}benzoic acid
(4-hydroxy-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl 3-hydroxy-2,6-dimethoxybenzoate
(2s,3r,4r,5s,6r)-2-(hydroxymethyl)-6-[2-(hydroxymethyl)phenoxy]oxane-3,4,5-triol
(1s,3r,4s,5r)-1,3,5-trihydroxy-4-(3,4,5-trihydroxybenzoyloxy)cyclohexane-1-carboxylic acid
(4-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl benzoate
(3s,4r,5s,6s,7r,16s,17r,18s,19s,20r)-4,5,6,17,18,19-hexahydroxy-27,30-dimethoxy-2,9,15,22,29,32-hexaoxapentacyclo[22.2.2.2¹¹,¹⁴.1³,⁷.1¹⁶,²⁰]dotriaconta-1(26),11,13,24,27,30-hexaene-10,23-dione
[(3s,4r,5r)-3,4-dihydroxy-5-{[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-[4-(hydroxymethyl)-2-methoxyphenoxy]oxan-2-yl]methoxy}oxolan-3-yl]methyl 4-methoxybenzoate
3-methoxy-4-methyl-5-[(3-methylbut-2-en-1-yl)oxy]benzene-1,2-dicarboxylic acid
3,4,6-tribromo-5-[(2,3,6-tribromo-4,5-dihydroxyphenyl)methyl]benzene-1,2-diol
4-{2-hydroxy-4-[2-methoxy-3,5,6-trimethyl-4-(sulfooxy)benzoyloxy]-3,5,6-trimethylbenzoyloxy}-2-methoxy-3,5,6-trimethylbenzoic acid
(1s,4r,5s,6s)-6-[(benzoyloxy)methyl]-4,5,6-trihydroxycyclohex-2-en-1-yl benzoate
[(2r,3s,4s,5r,6s)-6-(3,4-dihydroxyphenoxy)-3,4,5-trihydroxyoxan-2-yl]methyl benzoate
(2e)-3,7-dimethylocta-2,6-dien-1-yl 3,4-dimethoxybenzoate
[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(4-hydroxy-2-{[(1r,2r,6r)-1,2,6-trihydroxy-5-oxocyclohex-3-ene-1-carbonyloxy]methyl}phenoxy)oxan-2-yl]methyl benzoate
2,6-dihydroxy-3-[(5-hydroxy-2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl]benzoic acid
3,4,6-tribromo-5-[2-(2,3,6-tribromo-4,5-dihydroxyphenyl)ethyl]benzene-1,2-diol
2-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoic acid
[(2r,3r,4r,5r)-3,4,5-trihydroxy-4-(hydroxymethyl)oxolan-2-yl]methyl 3,4,5-trihydroxybenzoate
[(3s,4r,5s)-5-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-2-(4-hydroxyphenoxy)oxan-3-yl]oxy}-3,4-dihydroxyoxolan-3-yl]methyl benzoate
(2-{[4-(benzoyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxyphenyl)methyl 2-hydroxybenzoate
2-hydroxy-5-({3,4,5-trihydroxy-6-[(4-hydroxy-3-methoxybenzoyloxy)methyl]oxan-2-yl}oxy)benzoic acid
(2r)-2-{[hydroxy(2-hydroxyphenyl)methylidene]amino}butanedioic acid
4-(4-carboxy-2-methoxyphenoxy)-5-methoxybenzene-1,2-dicarboxylic acid
2-hydroxy-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoic acid
(2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl 3-hydroxy-2,6-dimethoxybenzoate
(1s,3r,4s,5r)-3,4,5-trihydroxy-1-(3,4,5-trimethoxybenzoyloxy)cyclohexane-1-carboxylic acid
methyl 3-[(3-hydroxy-2-methylpropanoyl)oxy]-4-methoxybenzoate
4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3-methoxybenzoic acid
(2s)-2-(2-hydroxypropan-2-yl)-2,3-dihydro-1-benzofuran-5-carboxylic acid
(1r,2s,3s,6r)-3-[(benzoyloxy)methyl]-2,3,6-trihydroxy-4-oxocyclohexyl benzoate
[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(4-hydroxy-2-{[(1r)-1-hydroxy-6-oxocyclohex-2-ene-1-carbonyloxy]methyl}phenoxy)oxan-2-yl]methyl benzoate
(2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl 2,6-dimethoxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}benzoate
methyl 3,5-dimethoxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]benzoate
2-(hydroxymethyl)-6-[2-(methoxymethyl)phenoxy]oxane-3,4,5-triol
7-methoxy-2,2-dimethylchromene-6-carboxylic acid
{"Ingredient_id": "HBIN013308","Ingredient_name": "7-methoxy-2,2-dimethylchromene-6-carboxylic acid","Alias": "NA","Ingredient_formula": "C13H14O4","Ingredient_Smile": "CC1(C=CC2=CC(=C(C=C2O1)OC)C(=O)O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "13833","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}