NCBI Taxonomy: 5250

Ceratobasidiaceae (ncbi_taxid: 5250)

found 47 associated metabolites at family taxonomy rank level.

Ancestor: Cantharellales

Child Taxonomies: Thanatephorus, Uthatobasidium, Ceratobasidium, Scotomyces, Moniliopsis, Rhizoctonia, Ceratorhiza, Heteroacanthella, environmental samples, unclassified Ceratobasidiaceae

4-Hydroxybenzoic acid

4-hydroxybenzoic acid

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in A√ßa√≠ oil, obtained from the fruit of the a√ßa√≠ palm (Euterpe oleracea), at relatively high concetrations (892¬±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843). Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid DVN38-Z and 2,4-Hexadienoic acid GMZ10-P. The taste is more detectable than for those preservatives. Effectiveness increases with chain length of the alcohol, but for some microorganisms this reduces cell permeability and thus counteracts the increased efficiency. 4-Hydroxybenzoic acid is found in many foods, some of which are chicory, corn, rye, and black huckleberry. 4-hydroxybenzoic acid is a monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. It has a role as a plant metabolite and an algal metabolite. It is a conjugate acid of a 4-hydroxybenzoate. 4-Hydroxybenzoic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). See also: Vaccinium myrtillus Leaf (part of); Galium aparine whole (part of); Menyanthes trifoliata leaf (part of) ... View More ... A monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. 4-Hydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-96-7 (retrieved 2024-07-01) (CAS RN: 99-96-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

Ergosterol

(1R,3aR,7S,9aR,9bS,11aR)-1-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1H,2H,3H,3aH,6H,7H,8H,9H,9aH,9bH,10H,11H,11aH-cyclopenta[a]phenanthren-7-ol

C28H44O (396.3392)


Ergosterol is a phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. It has a role as a fungal metabolite and a Saccharomyces cerevisiae metabolite. It is a 3beta-sterol, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. A steroid of interest both because its biosynthesis in FUNGI is a target of ANTIFUNGAL AGENTS, notably AZOLES, and because when it is present in SKIN of animals, ULTRAVIOLET RAYS break a bond to result in ERGOCALCIFEROL. Ergosterol is a natural product found in Gladiolus italicus, Ramaria formosa, and other organisms with data available. ergosterol is a metabolite found in or produced by Saccharomyces cerevisiae. A steroid occurring in FUNGI. Irradiation with ULTRAVIOLET RAYS results in formation of ERGOCALCIFEROL (vitamin D2). See also: Reishi (part of). Ergosterol, also known as provitamin D2, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, ergosterol is considered to be a sterol lipid molecule. Ergosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Ergosterol is the biological precursor to vitamin D2. It is turned into viosterol by ultraviolet light, and is then converted into ergocalciferol, which is a form of vitamin D. Ergosterol is a component of fungal cell membranes, serving the same function that cholesterol serves in animal cells. Ergosterol is not found in mammalian cell membranes. A phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. Ergosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-87-4 (retrieved 2024-07-12) (CAS RN: 57-87-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.

   

4-hydroxyphenylacetate

2-(4-hydroxyphenyl)acetic acid

C8H8O3 (152.0473)


p-Hydroxyphenylacetic acid, also known as 4-hydroxybenzeneacetate, is classified as a member of the 1-hydroxy-2-unsubstituted benzenoids. 1-Hydroxy-2-unsubstituted benzenoids are phenols that are unsubstituted at the 2-position. p-Hydroxyphenylacetic acid is considered to be slightly soluble (in water) and acidic.  p-Hydroxyphenylacetic acid can be synthesized from acetic acid. It is also a parent compound for other transformation products, including but not limited to, methyl 2-(4-hydroxyphenyl)acetate, ixerochinolide, and lactucopicrin 15-oxalate.  p-Hydroxyphenylacetic acid can be found in numerous foods such as olives, cocoa beans, oats, and mushrooms. p-Hydroxyphenylacetic acid can be found throughout all human tissues and in all biofluids. Within a cell, p-hydroxyphenylacetic acid is primarily located in the cytoplasm and in the extracellular space. p-Hydroxyphenylacetic acid is also a microbial metabolite produced by Acinetobacter, Clostridium, Klebsiella, Pseudomonas, and Proteus. Higher levels of this metabolite are associated with an overgrowth of small intestinal bacteria from Clostridia species including C. difficile, C. stricklandii, C. lituseburense, C. subterminale, C. putrefaciens, and C. propionicum (PMID: 476929, 12173102). p-Hydroxyphenylacetic acid is detected after the consumption of whole grain. 4-hydroxyphenylacetic acid is a monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. It has a role as a plant metabolite, a fungal metabolite, a human metabolite and a mouse metabolite. It is a monocarboxylic acid and a member of phenols. It is functionally related to an acetic acid. It is a conjugate acid of a 4-hydroxyphenylacetate. 4-Hydroxyphenylacetic acid is a natural product found in Guanomyces polythrix, Forsythia suspensa, and other organisms with data available. 4-Hydroxyphenylacetic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group. Constituent of sweet clover (Melilotus officinalis) and yeast Hydroxyphenylacetic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=156-38-7 (retrieved 2024-07-02) (CAS RN: 156-38-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].

   

3-Hydroxyphenylacetic acid

(3-Hydroxy-phenyl)-acetic acid

C8H8O3 (152.0473)


3-Hydroxyphenylacetic acid is a rutin metabolite and an antioxidant. It has a protective biological activity in human. It is a substrate of enzyme 4-hydroxyphenylacetate 3-monooxygenase [EC 1.14.13.3] in the pathway tyrosine metabolism (KEGG, PMID 155437). 3-Hydroxyphenylacetic acid is found to be associated with phenylketonuria, which is an inborn error of metabolism. It is also a marker of gut Clostridium species. Higher levels are associated with higher levels of Clostridia (PMID: 27123458). 3-Hydroxyphenylacetic acid can also be found in Klebsiella (PMID: 1851804). 3-Hydroxyphenylacetic acid is a rutin metabolite and an antioxidant. It has a protective biological activity in human. It is a substrate of enzyme 4-hydroxyphenylacetate 3-monooxygenase [EC 1.14.13.3] in the pathway tyrosine metabolism. (KEGG, PMID 155437) [HMDB] CONFIDENCE standard compound; INTERNAL_ID 156 CONFIDENCE standard compound; INTERNAL_ID 45 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Hydroxyphenylacetic acid is an endogenous metabolite.

   

3-Hydroxybenzoic acid

3-hydroxybenzoic acid

C7H6O3 (138.0317)


3-Hydroxybenzoic acid, also known as 3-hydroxybenzoate or 3-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3-Hydroxybenzoic acid exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 3-hydroxybenzoic acid is found, on average, in the highest concentration in american cranberries and beers. 3-hydroxybenzoic acid has also been detected, but not quantified in a few different foods, such as bilberries, citrus, and corns. As well, 3-Hydroxybenzoic Acid can be found in the pineapple fruit. It can also be formed by a Pseudomonas species from 3-Chlorobenzoic acid. 3-Hydroxybenzoic acid is a monohydroxybenzoic acid. 3-Hydroxybenzoic acid can be obtained by the alkali fusion of 3-sulfobenzoic acid between 210-220 °C. 3-Hydroxybenzoic acid is a component of castoreum, the exudate from the castor sacs of the mature North American beaver (Castor canadensis) and the European beaver (Castor fiber), used in perfumery. Present in fruits. Isolated from Citrus paradisi (grapefruit) CONFIDENCE standard compound; ML_ID 13 KEIO_ID H019 3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.

   

Swainsonine

1,2,8-INDOLIZINETRIOL, OCTAHYDRO-, (1S-(1.ALPHA.,2.ALPHA.,8.BETA.,8A.BETA.))-

C8H15NO3 (173.1052)


Swainsonine is an indolizidine alkaloid isolated from the plant Swainsona canescens with three hydroxy substituents at positions 1, 2 and 8. It has a role as an antineoplastic agent, an immunological adjuvant, an EC 3.2.1.114 (mannosyl-oligosaccharide 1,3-1,6-alpha-mannosidase) inhibitor and a plant metabolite. An indolizidine alkaloid from the plant Swainsona canescens that is a potent alpha-mannosidase inhibitor. Swainsonine also exhibits antimetastatic, antiproliferative, and immunomodulatory activity. Swainsonine is a natural product found in Slafractonia leguminicola, Astragalus whitneyi, and other organisms with data available. Swainsonine is a plant toxin found in locoweed (families Fabaceae, Oxytropis, Astragalus and Swainsona) and some fungi (Metarhizium anisopliae, Rizoctonia leguminicola). It has been known to cause a potentially lethal central nervous system condition in livestock known as locoism and is a significant cause of economic losses in livestock industries. Along with slaframine, the other biologially active compound of R. leguminicola, it may contribute to a condition called "slobbers syndrome" in livestock that has ingested contaminated feed. (L1248, A3092) An indolizidine alkaloid from the plant Swainsona canescens that is a potent alpha-mannosidase inhibitor. Swainsonine also exhibits antimetastatic, antiproliferative, and immunomodulatory activity. An indolizidine alkaloid isolated from the plant Swainsona canescens with three hydroxy substituents at positions 1, 2 and 8. C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent > C2117 - Carbohydrate Processing Inhibitor C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent C471 - Enzyme Inhibitor > C2119 - Golgi Alpha-Mannosidase II Inhibitor C274 - Antineoplastic Agent > C2196 - Antimetastatic Agent D000970 - Antineoplastic Agents D007155 - Immunologic Factors D004791 - Enzyme Inhibitors

   

Betavulgarin

7-(2-hydroxyphenyl)-9-methoxy-2H,8H-[1,3]dioxolo[4,5-g]chromen-8-one

C17H12O6 (312.0634)


Betavulgarin, also known as 2-hydroxy-5-methoxy-6,7-methylenedioxyisoflavone, is a member of the class of compounds known as isoflavones. Isoflavones are polycyclic compounds containing a 2-isoflavene skeleton which bears a ketone group at the C4 carbon atom. Thus, betavulgarin is considered to be a flavonoid lipid molecule. Betavulgarin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Betavulgarin can be found in chickpea, common beet, and red beetroot, which makes betavulgarin a potential biomarker for the consumption of these food products.

   

Lentiginosine

Lentiginosine

C8H15NO2 (157.1103)


   

Dihydroisorhamnetin

3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C16H14O7 (318.0739)


Dihydroisorhamnetin is found in beverages. Dihydroisorhamnetin is isolated from Dillenia indica (elephant apple). Isolated from Dillenia indica (elephant apple). Dihydroisorhamnetin is found in beverages and fruits.

   

Betavulgarin glucoside

9-methoxy-7-(2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-2H,8H-[1,3]dioxolo[4,5-g]chromen-8-one

C23H22O11 (474.1162)


Betavulgarin glucoside is found in root vegetables. Betavulgarin glucoside is isolated from Beta vulgaris (suger beet) infected with Rhizoctonia solani as a phytoalexin. Isolated from Beta vulgaris (suger beet) infected with Rhizoctonia solani as a phytoalexin. Betavulgarin glucoside is found in root vegetables.

   

8,8a-Diepiswainsonine

octahydroindolizine-1,2,8-triol

C8H15NO3 (173.1052)


   

3-Hydroxyphenylacetic acid

2-(3-hydroxyphenyl)acetic acid

C8H8O3 (152.0473)


A monocarboxylic acid that is phenylacetic acid in which the hydrogen at position 3 on the benzene ring is replaced by a hydroxy group. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Hydroxyphenylacetic acid is an endogenous metabolite.

   

Octahydroindolizine-1,2-diol

Octahydroindolizine-1,2-diol

C8H15NO2 (157.1103)


   

3-Hydroxybenzoicacid

3-Hydroxybenzoic acid

C7H6O3 (138.0317)


A monohydroxybenzoic acid that is benzoic acid substituted by a hydroxy group at position 3. It has been isolated from Taxus baccata. It is used as an intermediate in the synthesis of plasticisers, resins, pharmaceuticals, etc. 3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.

   

4-Hydroxyphenylacetic acid

p-Hydroxyphenyl acetic acid

C8H8O3 (152.0473)


4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1]. 4-hydroxyphenylacetic acid, a major microbiota-derived metabolite of polyphenols, is involved in the antioxidative action. 4-hydroxyphenylacetic acid induces expression of Nrf2[1].

   

Betavulgarin

7-(2-hydroxyphenyl)-9-methoxy-pyrano[2,3-f][1,3]benzodioxol-8-one

C17H12O6 (312.0634)


A hydroxyisoflavone that is isoflavone substituted by a hydroxy group at position 2, a methoxy group at position 5 and a methylenedioxy group across positions 6 and 7 respectively.

   

Ergosterol

(3S,9S,10R,13R,14R,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H44O (396.3392)


Indicator of fungal contamination, especies in cereals. Occurs in yeast and fungi. The main fungal steroidand is also found in small amts. in higher plant prods., e.g. palm oil [DFC]. D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.

   

4-hydroxybenzoate

4-Hydroxybenzoic acid

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

p-Hydroxybenzoic acid

p-Hydroxybenzoic acid

C7H6O3 (138.0317)


4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

3-Hydroxyphenylacetic acid

3-Hydroxyphenylacetic acid

C8H8O3 (152.0473)


3-Hydroxyphenylacetic acid is an endogenous metabolite.

   

3-Hydroxybenzoic acid

3-Hydroxybenzoic acid

C7H6O3 (138.0317)


   

Dormin

(2E,4E)-5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-methylpenta-2,4-dienoic acid

C15H20O4 (264.1362)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D006133 - Growth Substances > D010937 - Plant Growth Regulators (±)-Abscisic acid is an orally active plant hormone that is present also in animals. (±)-Abscisic acid (ABA) contributes to the regulation of glycemia in mammals[1]. (±)-Abscisic acid is an orally active plant hormone that is present also in animals. (±)-Abscisic acid (ABA) contributes to the regulation of glycemia in mammals[1]. Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2]. Abscisic acid ((S)-(+)-Abscisic acid), an orally active phytohormone in fruits and vegetables, is an endogenously produced mammalian hormone. Abscisic acid is a growth inhibitor and can regulate many aspects of plant growth and development. Abscisic acid inhibits proton pump (H+-ATPase) and leads to the plasma membrane depolarization in a Ca2+-dependent manner. Abscisic acid, a LANCL2 natural ligand, is a potent insulin-sensitizing compound and has the potential for pre-diabetes, type 2 diabetes and metabolic syndrome[1][2].

   

Betavulgarin glucoside

9-methoxy-7-(2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-2H,8H-[1,3]dioxolo[4,5-g]chromen-8-one

C23H22O11 (474.1162)


   

piperidine-2-carboxylic acid

piperidine-2-carboxylic acid

C6H11NO2 (129.079)


   

(11r,12r)-12-hydroxy-2-methoxy-11-phenyl-4,6,10-trioxatricyclo[7.4.0.0³,⁷]trideca-1(9),2,7-trien-13-one

(11r,12r)-12-hydroxy-2-methoxy-11-phenyl-4,6,10-trioxatricyclo[7.4.0.0³,⁷]trideca-1(9),2,7-trien-13-one

C17H14O6 (314.079)


   

(1r,2r,5r,6r,9r,10r,13s,15r)-5-[(2s,3e,5r)-5,6-dimethylhept-3-en-2-yl]-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0¹,⁹.0²,⁶.0¹⁰,¹⁵]nonadec-18-en-13-ol

(1r,2r,5r,6r,9r,10r,13s,15r)-5-[(2s,3e,5r)-5,6-dimethylhept-3-en-2-yl]-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0¹,⁹.0²,⁶.0¹⁰,¹⁵]nonadec-18-en-13-ol

C28H44O3 (428.329)


   

(4e)-5-[(1s)-1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoic acid

(4e)-5-[(1s)-1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoic acid

C15H20O4 (264.1362)


   

n-[(1s)-1-(acetyloxy)-octahydroindolizin-6-yl]ethanimidic acid

n-[(1s)-1-(acetyloxy)-octahydroindolizin-6-yl]ethanimidic acid

C12H20N2O3 (240.1474)


   

2-epilentiginosine

2-epilentiginosine

C8H15NO2 (157.1103)


   

2-furyl hydroxymethyl ketone

2-furyl hydroxymethyl ketone

C6H6O3 (126.0317)


   

(1r,5r)-2-[(2s,3r,3ar,6s)-1,3-diformyl-6-hydroxy-3a-methyl-2,3,4,5,6,7-hexahydroinden-2-yl]-5-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-1-methylcyclopent-2-ene-1-carboxylic acid

(1r,5r)-2-[(2s,3r,3ar,6s)-1,3-diformyl-6-hydroxy-3a-methyl-2,3,4,5,6,7-hexahydroinden-2-yl]-5-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-1-methylcyclopent-2-ene-1-carboxylic acid

C28H40O5 (456.2876)


   

5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C20H20O9 (404.1107)


   

5-hydroxy-7-methoxy-2-(4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}phenyl)-2,3-dihydro-1-benzopyran-4-one

5-hydroxy-7-methoxy-2-(4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}phenyl)-2,3-dihydro-1-benzopyran-4-one

C21H22O9 (418.1264)


   

(2r,3r)-3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-2,3-dihydro-1-benzopyran-4-one

(2r,3r)-3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-2,3-dihydro-1-benzopyran-4-one

C16H14O7 (318.0739)


   

(1r,5r)-2-[(2s,3s,3ar,6s)-1,3-diformyl-6-hydroxy-3a-methyl-2,3,4,5,6,7-hexahydroinden-2-yl]-5-[(2r,5r)-5,6-dimethylhept-3-en-2-yl]-1-methylcyclopent-2-ene-1-carboxylic acid

(1r,5r)-2-[(2s,3s,3ar,6s)-1,3-diformyl-6-hydroxy-3a-methyl-2,3,4,5,6,7-hexahydroinden-2-yl]-5-[(2r,5r)-5,6-dimethylhept-3-en-2-yl]-1-methylcyclopent-2-ene-1-carboxylic acid

C28H40O5 (456.2876)


   

5-hydroxy-2-(2-hydroxy-6-methoxy-4-methylbenzoyl)-3-methoxybenzoic acid

5-hydroxy-2-(2-hydroxy-6-methoxy-4-methylbenzoyl)-3-methoxybenzoic acid

C17H16O7 (332.0896)


   

2-(1,3-diformyl-6-hydroxy-3a-methyl-2,3,4,5,6,7-hexahydroinden-2-yl)-5-(5,6-dimethylhept-3-en-2-yl)-1-methylcyclopent-2-ene-1-carboxylic acid

2-(1,3-diformyl-6-hydroxy-3a-methyl-2,3,4,5,6,7-hexahydroinden-2-yl)-5-(5,6-dimethylhept-3-en-2-yl)-1-methylcyclopent-2-ene-1-carboxylic acid

C28H40O5 (456.2876)


   

1,4-bis(furan-2-yl)-2,3-dihydroxybutane-1,4-dione

1,4-bis(furan-2-yl)-2,3-dihydroxybutane-1,4-dione

C12H10O6 (250.0477)


   

(2r,3s)-1,4-bis(furan-2-yl)-2,3-dihydroxybutane-1,4-dione

(2r,3s)-1,4-bis(furan-2-yl)-2,3-dihydroxybutane-1,4-dione

C12H10O6 (250.0477)


   

9-methoxy-7-(2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-2h-[1,3]dioxolo[4,5-g]chromen-8-one

9-methoxy-7-(2-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-2h-[1,3]dioxolo[4,5-g]chromen-8-one

C23H22O11 (474.1162)


   

4-({4-[(2-{[2-amino-5-(4-carboxy-n-hydroxy-3-methylbut-2-enamido)-1-hydroxypentylidene]amino}-5-(4-carboxy-n-hydroxy-3-methylbut-2-enamido)-1-hydroxypentylidene)amino]-4-carboxybutyl}(hydroxy)carbamoyl)-3-methylbut-3-enoic acid

4-({4-[(2-{[2-amino-5-(4-carboxy-n-hydroxy-3-methylbut-2-enamido)-1-hydroxypentylidene]amino}-5-(4-carboxy-n-hydroxy-3-methylbut-2-enamido)-1-hydroxypentylidene)amino]-4-carboxybutyl}(hydroxy)carbamoyl)-3-methylbut-3-enoic acid

C33H50N6O16 (786.3283)


   

(1s,6s)-6-amino-octahydroindolizin-1-yl acetate

(1s,6s)-6-amino-octahydroindolizin-1-yl acetate

C10H18N2O2 (198.1368)


   

5-(5,6-dimethylhept-3-en-2-yl)-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0¹,⁹.0²,⁶.0¹⁰,¹⁵]nonadec-18-en-13-ol

5-(5,6-dimethylhept-3-en-2-yl)-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0¹,⁹.0²,⁶.0¹⁰,¹⁵]nonadec-18-en-13-ol

C28H44O3 (428.329)


   

12-hydroxy-2-methoxy-11-phenyl-4,6,10-trioxatricyclo[7.4.0.0³,⁷]trideca-1(9),2,7-trien-13-one

12-hydroxy-2-methoxy-11-phenyl-4,6,10-trioxatricyclo[7.4.0.0³,⁷]trideca-1(9),2,7-trien-13-one

C17H14O6 (314.079)


   

(3z)-4-{[(4s)-4-{[(2s)-2-{[(2s)-2-amino-5-[(2z)-4-carboxy-n-hydroxy-3-methylbut-2-enamido]-1-hydroxypentylidene]amino}-5-[(2z)-4-carboxy-n-hydroxy-3-methylbut-2-enamido]-1-hydroxypentylidene]amino}-4-carboxybutyl](hydroxy)carbamoyl}-3-methylbut-3-enoic acid

(3z)-4-{[(4s)-4-{[(2s)-2-{[(2s)-2-amino-5-[(2z)-4-carboxy-n-hydroxy-3-methylbut-2-enamido]-1-hydroxypentylidene]amino}-5-[(2z)-4-carboxy-n-hydroxy-3-methylbut-2-enamido]-1-hydroxypentylidene]amino}-4-carboxybutyl](hydroxy)carbamoyl}-3-methylbut-3-enoic acid

C33H50N6O16 (786.3283)


   

(3e)-5-(3,4-dihydroxyphenyl)-3-[(3,4-dihydroxyphenyl)methylidene]furan-2-one

(3e)-5-(3,4-dihydroxyphenyl)-3-[(3,4-dihydroxyphenyl)methylidene]furan-2-one

C17H12O6 (312.0634)


   

9-methoxy-6-phenyl-2h-[1,3]dioxolo[4,5-g]chromen-8-one

9-methoxy-6-phenyl-2h-[1,3]dioxolo[4,5-g]chromen-8-one

C17H12O5 (296.0685)