Classification Term: 3362
Hydroxybenzoic acid derivatives (ontology term: CHEMONTID:0001248)
Compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups." []
found 26 associated metabolites at category
metabolite taxonomy ontology rank level.
Ancestor: Benzoic acids and derivatives
Child Taxonomies: Salicylic acid and derivatives, Gallic acid and derivatives
Gentisate
Gentisic acid, also known as gentisate or 2,5-dioxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. Gentisic acid is also classified as a dihydroxybenzoic acid. It is a derivative of benzoic acid and a minor (1\\\\\%) product of the metabolic break down of aspirin, which is excreted by the kidneys. Gentisic acid is found in essentially all organisms ranging from bacteria to fungi to plants to animals. Gentisic acid has been associated with a number of useful effects on human health and exhibits anti-inflammatory, antigenotoxic, hepatoprotective, neuroprotective, antimicrobial, and especially antioxidant activities (PMID: 31825145). It is widely distributed in plants as a secondary plant product such as Gentiana spp., Citrus spp., Vitis vinifera, Pterocarpus santalinus, Helianthus tuberosus, Hibiscus rosa-sinensis, Olea europaea, and Sesamum indicum and in fruits such as avocados, batoko plum, kiwi fruits, apple, bitter melon, black berries, pears, and some mushrooms (PMID: 31825145). Gentisic acid is found in higher concentrations in a number of foods such as tarragons, common thymes, and common sages and in a lower concentration in grape wines, rosemaries, and sweet marjorams. Gentisic acid has also been shown to act as a pathogen-inducible signal for the activation of plant defenses in tomato plants and cucumbers (PMID: 16321412; https://doi.org/10.1094/MPMI.1999.12.3.227). Gentisic acid is a dihydroxybenzoic acid. It is a crystalline powder that forms monoclinic prism in water solution. Gentisic acid is an active metabolite of salicylic acid degradation. There is an increasing amount of evidence indicating that gentisic acid has a broad spectrum of biological activity, such as anti-inflammatory, antirheumatic and antioxidant properties. Gentisic acid is also a byproduct of tyrosine and benzoate metabolism. [HMDB]. Gentisic acid is found in many foods, some of which are common sage, common grape, nutmeg, and dill. 2,5-dihydroxybenzoic acid is a dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. It has a role as a MALDI matrix material, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a human metabolite, a fungal metabolite and a mouse metabolite. It is functionally related to a benzoic acid. It is a conjugate acid of a 2,5-dihydroxybenzoate. 2,5-Dihydroxybenzoic acid is a natural product found in Persicaria mitis, Tilia tomentosa, and other organisms with data available. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates A dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. 2,5-Dihydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-79-9 (retrieved 2024-07-01) (CAS RN: 490-79-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors. 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors.
Protocatechuic acid
Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.
4-Hydroxybenzoic acid
4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in Açaí oil, obtained from the fruit of the açaí palm (Euterpe oleracea), at relatively high concetrations (892±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843).
Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid
4-Hydroxy-3-methylbenzoic acid
4-Hydroxy-3-methylbenzoic acid, also known as 4,3-cresotic acid or 4-hydroxy-m-toluic acid, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and hydroxyl groups. 4-Hydroxy-3-methylbenzoic acid is a normal organic acid identified in urine specimens from a healthy population. (PMID 8087979) [HMDB] 4-Hydroxy-3-methylbenzoic acid is a normal organic acid identified in urine specimens from a healthy population.
3-Hydroxyanthranilic acid
3-Hydroxyanthranilic acid, also known as 2-amino-3-hydroxy-benzoate or 3-ohaa, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3-Hydroxyanthranilic acid is a drug. 3-Hydroxyanthranilic acid exists in all living species, ranging from bacteria to humans. Within humans, 3-hydroxyanthranilic acid participates in a number of enzymatic reactions. In particular, 3-hydroxyanthranilic acid and L-alanine can be biosynthesized from L-3-hydroxykynurenine through the action of the enzyme kynureninase. In addition, 3-hydroxyanthranilic acid can be converted into cinnavalininate through the action of the enzyme catalase. 3-Hydroxyanthranilic acid is an intermediate in the metabolism of tryptophan. In humans, 3-hydroxyanthranilic acid is involved in tryptophan metabolism. Outside of the human body, 3-hydroxyanthranilic acid has been detected, but not quantified in brassicas. This could make 3-hydroxyanthranilic acid a potential biomarker for the consumption of these foods. It is new antioxidant isolated from methanol extract of tempeh. It is effective in preventing autoxidation of soybean oil and powder, while antioxidant 6,7,4-trihydroxyisoflavone is not. D000975 - Antioxidants > D016166 - Free Radical Scavengers [Raw Data] CBA14_3-OH-anthranili_pos_30eV_1-6_01_808.txt [Raw Data] CBA14_3-OH-anthranili_neg_40eV_1-6_01_832.txt [Raw Data] CBA14_3-OH-anthranili_pos_40eV_1-6_01_809.txt [Raw Data] CBA14_3-OH-anthranili_neg_20eV_1-6_01_830.txt [Raw Data] CBA14_3-OH-anthranili_neg_10eV_1-6_01_829.txt [Raw Data] CBA14_3-OH-anthranili_pos_10eV_1-6_01_806.txt [Raw Data] CBA14_3-OH-anthranili_pos_20eV_1-6_01_807.txt [Raw Data] CBA14_3-OH-anthranili_neg_30eV_1-6_01_831.txt D020011 - Protective Agents > D000975 - Antioxidants Isolated from Brassica oleracea (cauliflower) 3-Hydroxyanthranilic acid is a tryptophan metabolite in the kynurenine pathway.
3-Hydroxybenzoic acid
3-Hydroxybenzoic acid, also known as 3-hydroxybenzoate or 3-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3-Hydroxybenzoic acid exists in all living organisms, ranging from bacteria to humans. Outside of the human body, 3-hydroxybenzoic acid is found, on average, in the highest concentration in american cranberries and beers. 3-hydroxybenzoic acid has also been detected, but not quantified in a few different foods, such as bilberries, citrus, and corns. As well, 3-Hydroxybenzoic Acid can be found in the pineapple fruit. It can also be formed by a Pseudomonas species from 3-Chlorobenzoic acid. 3-Hydroxybenzoic acid is a monohydroxybenzoic acid. 3-Hydroxybenzoic acid can be obtained by the alkali fusion of 3-sulfobenzoic acid between 210-220 °C. 3-Hydroxybenzoic acid is a component of castoreum, the exudate from the castor sacs of the mature North American beaver (Castor canadensis) and the European beaver (Castor fiber), used in perfumery. Present in fruits. Isolated from Citrus paradisi (grapefruit) CONFIDENCE standard compound; ML_ID 13 KEIO_ID H019 3-Hydroxybenzoic acid is an endogenous metabolite. 3-Hydroxybenzoic acid is an endogenous metabolite.
3-Amino-4-hydroxybenzoic acid
3-Amino-4-hydroxybenzoic acid is an endogenous metabolite.
3-Polyprenyl-4,5-dihydroxybenzoate
This compound belongs to the family of Hydroxybenzoic Acid Derivatives. These are compounds containing an hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxylic acid.
3,5-Dihydroxybenzoic acid
3,5-Dihydroxybenzoic acid (3,5-DHBA) is a primary metabolite of alkylresorcinols which has been hydrolyzed by liver enzymes during phase I metabolism after several cycles of beta-oxidation. 3,5-Dihydroxybenzoic acid is a potential urinary biomarker of whole grain intake (PMID: 15282102). Constituent of Arachis hypogaea (peanuts) and Cicer arietinum (chickpea). 3,5-Dihydroxybenzoic acid is found in many foods, some of which are peanut, pulses, nuts, and beer. 3,5-Dihydroxybenzoic acid a potential biomarker for the consumption of many food products, including beer, nuts, peanut, and pulses. 3,5-Dihydroxybenzoic acid a potential biomarker for the consumption of many food products, including beer, nuts, peanut, and pulses.
2,4-Dihydroxybenzoic acid
2,4-Dihydroxybenzoic acid is found in alcoholic beverages. 2,4-Dihydroxybenzoic acid is found in avocado, beer, wine and coffee. 2,4-Dihydroxybenzoic acid is a food flavour ingredient and flavour modifie Found in avocado, beer, wine and coffee. Food flavour ingredient and flavour modifier 2,4-Dihydroxybenzoic acid is a degradation product of cyaniding glycoside from tart cheeries in cell culture. 2,4-Dihydroxybenzoic acid is a degradation product of cyaniding glycoside from tart cheeries in cell culture.
Methyl 2,4,6-trihydroxybenzoate
Methyl 2,4,6-trihydroxybenzoate is found in onion-family vegetables. Methyl 2,4,6-trihydroxybenzoate is isolated from onion ski Methyl 2,4,6-trihydroxybenzoate is a metabolite of 2,4,6-trihydroxybenzoate and exhibits properties as an antioxidant, lipid lowering and anticancer activities[1].
Chamaemeloside
Chamaemeloside is found in herbs and spices. Chamaemeloside is a constituent of the flowers of Chamaemelum nobile (Roman chamomile). Constituent of the flowers of Chamaemelum nobile (Roman chamomile). Chamaemeloside is found in roman camomile and herbs and spices.
D8'-Merulinic acid A
D8-Merulinic acid A is isolated from pistachio shells. Isolated from pistachio shells
2,4,6-Trihydroxybenzoic acid
Isolated from onion skin (Allium species). 2,4,6-Trihydroxybenzoic acid is found in garden onion and onion-family vegetables. 2,4,6-Trihydroxybenzoic acid is found in garden onion. 2,4,6-Trihydroxybenzoic acid is isolated from onion skin (Allium sp. 2,4,6-Trihydroxybenzoic acid, the flavonoid metabolite, is a CDK inhibitor. 2,4,6-Trihydroxybenzoic acid can be used for the research of cancer[1].
(Z)-2,4-Dihydroxy-6-(8-pentadecenyl)benzoic acid
(Z)-2,4-Dihydroxy-6-(8-pentadecenyl)benzoic acid is found in fats and oils. (Z)-2,4-Dihydroxy-6-(8-pentadecenyl)benzoic acid is a constituent of Ginkgo biloba (ginkgo). Constituent of Ginkgo biloba (ginkgo). (Z)-2,4-Dihydroxy-6-(8-pentadecenyl)benzoic acid is found in fats and oils.
6-Methoxy-2-naphthylacetic acid
6-Methoxy-2-naphthylacetic acid is a metabolite of nabumetone. Nabumetone is a non-steroidal anti-inflammatory drug (NSAID), the only 1-naphthaleneacetic acid derivative. Nabumetone has been developed by Beecham. It is available under numerous brand names, such as Relafen, Relifex and Gambaran. (Wikipedia)
6-O-Desmethyl-mycophenolic acid
6-O-Desmethyl-mycophenolic acid is a metabolite of mycophenolic acid. Mycophenolic acid or mycophenolate is an immunosuppressant drug used to prevent rejection in organ transplantation. It inhibits an enzyme needed for the growth of T cells and B cells. It was initially marketed as the prodrug mycophenolate mofetil (MMF) to improve oral bioavailability. More recently, the salt mycophenolate sodium has also been introduced. Mycophenolic acid is commonly marketed under the trade names CellCept and Myfortic. (Wikipedia)
3,5-Di-tert-butyl-4-hydroxybenzoic acid
3,5-Di-tert-butyl-4-hydroxybenzoic acid, also known as BHT-COOH or 4-carboxy-2,6-di-tert-butylphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. BHT-COOH is a metabolite of 2,6-di-tert-butyl-4-methylphenol (BHA), a synthetic phenolic antioxidant (SPA). SPAs are a family of chemicals used widely in foods, polymers, and cosmetics as radical trapping agents to slow down degradation due to oxidation. Given their widespread use, human exposure is unavoidable and there is public concern regarding environmental contamination by these chemicals. BHT-OH was detected in human urine (PMID: 31265952). D010592 - Pharmaceutic Aids > D011310 - Preservatives, Pharmaceutical > D010226 - Parabens
(1Ar,2Z,4E,14R,15aR)-8-chloro-9,11-dihydroxy-14-methyl-15,15a-dihydro-1aH-benzo[c]oxireno[2,3-k][1]oxacyclotetradecine-6,12(7H,14H)-dione
Cannabidiolic acid
Cladosporin
D004791 - Enzyme Inhibitors
N-(3',4'-Dihydroxycinnamoyl)-5-hydroxyanthranilic acid
(R)-3,4-Dihydro-6,8-dihydroxy-3-methyl-1H-2-benzopyran-1-one
(r)-3,4-dihydro-6,8-dihydroxy-3-methyl-1h-2-benzopyran-1-one belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups (r)-3,4-dihydro-6,8-dihydroxy-3-methyl-1h-2-benzopyran-1-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). (r)-3,4-dihydro-6,8-dihydroxy-3-methyl-1h-2-benzopyran-1-one can be found in carrot and wild carrot, which makes (r)-3,4-dihydro-6,8-dihydroxy-3-methyl-1h-2-benzopyran-1-one a potential biomarker for the consumption of these food products.
cannabigerolate
Cannabigerolic acid, CBGA, is a phytocannabinoid that belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. CBGA is a dihydroxybenzoic acid derived from olivetolic acid on which the hydrogen at position 3 is substituted by a geranyl group. CBGA is a molecule of mixed biosynthetic origin, in which its aromatic moiety (derived from olivetolic acid) occurs through the polyketide biosynthetic pathway while the prenylated sidechain derives from the MEP pathway of the terpenoids (DOI: 10.1016/B978-0-12-800756-3.00002-8). As such, CBGA can be considered a polyketide, a monoterpenoid and a resorcinol, due to the meta arrangement of its two hydroxyl groups on the benzene ring. CBGA is a key biosynthetic precursor of Delta (9)-tetrahydrocannabinol, the main psychoactive component of Cannabis sativa. As mentioned above, olivetolic acid and geranyl diphosphate are synthesized into CBGA. The CBGA is converted in the plant by CBCA synthase, cannabidiolic acid synthase (CBDA synthase) and tetrahydrocannabinolic acid synthase (THCA synthase) into CBCA, CBDA and tetrahydrocannabinolic acid (THCA).The THCA can be decarboxylated into THC by drying and heating plant material. Therefore, CBGA is an important cannabinoid found in cannabis. Because of its biosynthetic relationship to other psychoactive compounds, many efforts have been addressed to find alternative ways of producing it, particularly in yeast (PMID: 28694184) Additionally, cannabigerolic acid has shown antibiotic properties (PMID: 6991645). Cannabigerolate, also known as cannabigerolic acid, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. Cannabigerolate is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Cannabigerolate can be found in a number of food items such as malabar plum, wheat, dill, and green bell pepper, which makes cannabigerolate a potential biomarker for the consumption of these food products.