NCBI Taxonomy: 3881
Onobrychis (ncbi_taxid: 3881)
found 33 associated metabolites at genus taxonomy rank level.
Ancestor: Hedysareae
Child Taxonomies: Onobrychis montana, Onobrychis alba, Onobrychis cyri, Onobrychis major, Onobrychis elata, Onobrychis aurea, Onobrychis verae, Onobrychis viciifolia, Onobrychis fallax, Onobrychis armena, Onobrychis supina, Onobrychis amoena, Onobrychis lanata, Onobrychis ornata, Onobrychis gaubae, Onobrychis argaea, Onobrychis hamata, Onobrychis lunata, Onobrychis bungei, Onobrychis cadmea, Onobrychis argyrea, Onobrychis grandis, Onobrychis reuteri, Onobrychis acaulis, Onobrychis aucheri, Onobrychis cornuta, Onobrychis sojakii, Onobrychis susiana, Onobrychis persica, Onobrychis araxina, Onobrychis echinus, Onobrychis humilis, Onobrychis echidna, Onobrychis iberica, Onobrychis inermis, Onobrychis petraea, Onobrychis radiata, Onobrychis pisidica, Onobrychis cilicica, Onobrychis oxyptera, Onobrychis arenaria, Onobrychis aragatzi, Onobrychis argentea, Onobrychis plantago, Onobrychis bobrovii, Onobrychis buhseana, Onobrychis dealbata, Onobrychis gracilis, Onobrychis huetiana, Onobrychis pallasii, Onobrychis oxyodonta, Onobrychis pulchella, Onobrychis saxatilis, Onobrychis micrantha, Onobrychis afghanica, Onobrychis stewartii, Onobrychis squarrosa, Onobrychis vaginalis, Onobrychis gypsicola, Onobrychis iranensis, Onobrychis komarovii, Onobrychis altissima, Onobrychis laxiflora, Onobrychis hajastana, Onobrychis subnitens, Onobrychis densijuga, Onobrychis ebenoides, Onobrychis ferganica, Onobrychis paucijuga, Onobrychis pindicola, Onobrychis sulphurea, Onobrychis kachetica, Onobrychis michauxii, Onobrychis szovitsii, Onobrychis splendida, Onobrychis avajensis, Onobrychis pyrenaica, Onobrychis hypargyrea, Onobrychis atropatana, Onobrychis ptolemaica, Onobrychis arnacantha, Onobrychis stenorhiza, Onobrychis kemulariae, Onobrychis kotschyana, Onobrychis elymaitica, Onobrychis nummularia, Onobrychis heliocarpa, Onobrychis sintenisii, Onobrychis cadevallii, Onobrychis maassoumii, Onobrychis andalanica, Onobrychis sosnowskyi, Onobrychis microptera, Onobrychis talagonica, Onobrychis meschetica, Onobrychis subacaulis, Onobrychis avanakensis, Onobrychis carduchorum, Onobrychis kermanensis, Onobrychis galegifolia, Onobrychis alamutensis, Onobrychis kuchanensis, Onobrychis schahuensis, Onobrychis luristanica, Onobrychis marandensis, Onobrychis dasycephala, Onobrychis depauperata, Onobrychis iranshahrii, Onobrychis megataphros, Onobrychis caput-galli, Onobrychis schugnanica, Onobrychis eubrychidea, Onobrychis takhtajanii, Onobrychis lasiostachya, Onobrychis merxmuelleri, Onobrychis crista-galli, Onobrychis scrobiculata, Onobrychis meshhedensis, Onobrychis chorassanica, Onobrychis stenostachya, unclassified Onobrychis, Onobrychis melanotricha, Onobrychis heterophylla, Onobrychis aequidentata, Onobrychis ptychophylla, Onobrychis shahpurensis, Onobrychis transcaspica, Onobrychis tournefortii, Onobrychis saravschanica, Onobrychis vassilczenkoi, Onobrychis mozaffarianii, Onobrychis mazanderanica, Onobrychis haussknechtii, Onobrychis gontscharowii, Onobrychis sanandajensis, Onobrychis biebersteinii, Onobrychis rechingerorum, Onobrychis psoraleifolia, Onobrychis hohenackeriana, Onobrychis neychalanensis, Onobrychis transcaucasica, Onobrychis oshnaviyehensis, Onobrychis tavernierifolia
L-Leucine
Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
Liquiritigenin
Liquiritigenin is a dihydroxyflavanone compound having the two hydroxy substituents at the 4- and 7-positions. Isolated from the root of Glycyrrhizae uralensis, it is a selective agonist for oestrogen receptor beta. It has a role as a hormone agonist and a plant metabolite. 5-deoxyflavanone is a solid. This compound belongs to the flavanones. These are compounds containing a flavan-3-one moiety, whose structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. MF101 is a novel estrogen receptor beta (ERβ) selective agonist and unlike currently available hormone therapies, does not activate the estrogen receptor alpha (ERα), known to be implicated in tumor formation. MF101 is an oral drug designed for the treatment of hot flashes and night sweats in peri-menopausal and menopausal women. Liquiritigenin is a natural product found in Dracaena draco, Pterocarpus marsupium, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Glycyrrhiza, Medicago, Myroxylon, Cicer and all Leguminosae subspecies Several glycosides, particularly the rutinoside and neohesperidoside, are important in influencing citrus fruit flavour [DFC]. Liquiritigenin is found in many foods, some of which are sorrel, roselle, pepper (c. annuum), and black crowberry. Liquiritigenin is found in alfalfa. Liquiritigenin is isolated from Glycyrrhiza, Medicago, Myroxylon, Cicer, and all Leguminosae species. Several glycosides, particularly rutinoside and neohesperidoside, are important in influencing citrus fruit flavour. A dihydroxyflavanone compound having the two hydroxy substituents at the 4- and 7-positions. Isolated from the root of Glycyrrhizae uralensis, it is a selective agonist for oestrogen receptor beta. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc.
D-Pinitol
Widely distributed in plants. Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-Pinitol is found in many foods, some of which are ginkgo nuts, carob, soy bean, and common pea. D-Pinitol is found in carob. D-Pinitol is widely distributed in plants.Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. (Wikipedia). D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].
Afzelin
Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
L-Allothreonine
L-allothreonine is the L-enantiomer of allothreonine. It has a role as an Escherichia coli metabolite and a Saccharomyces cerevisiae metabolite. It is an enantiomer of a D-allothreonine. It is a tautomer of a L-allothreonine zwitterion. Allothreonine is the substrate of the enzyme Serine hydroxymethyltransferase1 (SHMT, EC 2.1.2.1), a human cytoplasmic mRNA binding protein. SHMT uses pyridoxal 5-phosphate (PLP) and tetrahydropteroylglutamate (H4PteGlu) as coenzymes and catalyzes the reversible interconversion of serine and glycine. In addition to these physiological reactions, SHMT also catalyzes, in the absence of H4PteGlu, the retroaldol cleavage of several 3-hydroxyamino acids, such as allothreonine. Allothreonine is a plant metabolite that appears in the human diet in variable concentrations depending on: plant species, physiological changes during plant growth, senescence, and reactions to environmental stress or to changes due to plant transformation (PMID:10858298, 10952545). Allothreonine is the substrate of the enzyme Serine hydroxymethyltransferase1 (SHMT, EC 2.1.2.1), a human cytoplasmic mRNA binding protein. SHMT uses pyridoxal 5-phosphate (PLP) and tetrahydropteroylglutamate (H4PteGlu) as coenzymes and catalyzes the reversible interconversion of serine and glycine. In addition to these physiological reactions, SHMT also catalyzes, in the absence of H4PteGlu, the retroaldol cleavage of several 3-hydroxyamino acids, such as allothreonine. Allothreonine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=144-98-9 (retrieved 2024-07-15) (CAS RN: 144-98-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). D-Allothreonine is the D type stereoisomer of Allothreonine. D-Allothreonine is a peptido-lipid derived from bacteria. D-Allothreonine, amide-linked to the D-galacturonic acid, is also a constituent in the polysaccharide[1][2]. L-Allothreonine (H-allo-Thr-OH) is an endogenous metabolite.
Leucine
A branched-chain amino acid that consists of glycine in which one of the hydrogens attached to the alpha-carbon is substituted by an isobutyl group. Leucine (symbol Leu or L)[3] is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG. Leucine is named after the Greek word for "white": λευκός (leukós, "white"), after its common appearance as a white powder, a property it shares with many other amino acids.[4] Like valine and isoleucine, leucine is a branched-chain amino acid. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other.[5] It is the most important ketogenic amino acid in humans.[6] Leucine and β-hydroxy β-methylbutyric acid, a minor leucine metabolite, exhibit pharmacological activity in humans and have been demonstrated to promote protein biosynthesis via the phosphorylation of the mechanistic target of rapamycin (mTOR).[7][8] L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
Liquiritigenin
4,7-dihydroxyflavanone is a dihydroxyflavanone in which the two hydroxy substituents are located at positions 4 and 7. It has a role as a Brassica napus metabolite and a fungal xenobiotic metabolite. It is a dihydroxyflavanone, a polyphenol and a member of 4-hydroxyflavanones. It is functionally related to a flavanone. 4H-1-Benzopyran-4-one, 2,3-dihydro-7-hydroxy-2-(4-hydroxyphenyl)- is a natural product found in Pterocarpus marsupium, Pterocarpus macrocarpus, and other organisms with data available. A dihydroxyflavanone in which the two hydroxy substituents are located at positions 4 and 7. (±)-Liquiritigenin ((±)-4',7-Dihydroxyflavanone) is isolated from Angelica keiskei, a hardy perennial herb of the Umbelliferae family. (±)-Liquiritigenin promotes cell proliferation, has cytoprotective activity and reduces cytotoxicity, and also has antioxidant stress effects[1]. (±)-Liquiritigenin ((±)-4',7-Dihydroxyflavanone) is isolated from Angelica keiskei, a hardy perennial herb of the Umbelliferae family. (±)-Liquiritigenin promotes cell proliferation, has cytoprotective activity and reduces cytotoxicity, and also has antioxidant stress effects[1].
Manghaslin
Isolated from Glycine max (soybean) and Humulus lupulus (hops). Quercetin 3-(2G-rhamnosylrutinoside) is found in many foods, some of which are pulses, redcurrant, alcoholic beverages, and soy bean. Manghaslin is found in alcoholic beverages. Manghaslin is isolated from Glycine max (soybean) and Humulus lupulus (hops).
Quercimeritrin
C21H20O12 (464.09547200000003)
Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].
3h-Sucrose
C12H22O11 (342.11620619999997)
Sweetening agent and food source assimilated by most organismsand is also used in food products as a preservative, antioxidant, moisture control agent, stabiliser and thickening agent. Widespread in seeds, leaves, fruits, flowers and roots of plants, where it functions as an energy store for metabolism and as a carbon source for biosynth. Annual world production is in excess of 90 x 106 tons mainly from the juice of sugar cane and sugar beet which contain respectively ca. 20\\% and ca. 17\\% of the sugar. Sucrose is found in many foods, some of which are rowanberry, brassicas, calabash, and hedge mustard.
Afzelin
5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one can be found in a number of food items such as endive, linden, peach, and ginkgo nuts, which makes 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one a potential biomarker for the consumption of these food products. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
Leucine
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
Quercimeritrin
C21H20O12 (464.09547200000003)
Quercetin 7-O-beta-D-glucoside is a quercetin O-glucoside in which a glucosyl residue is attached at position 7 of quercetin via a beta-glycosidic linkage. It has a role as an antioxidant and a metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of flavonols, a tetrahydroxyflavone and a quercetin O-glucoside. Quercimeritrin is a natural product found in Salix atrocinerea, Dendroviguiera sphaerocephala, and other organisms with data available. See also: Chamomile (part of). Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].
Afzelin
Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
DL-Leucine
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055
L-Allothreonine
The L-enantiomer of allothreonine. L-Allothreonine (H-allo-Thr-OH) is an endogenous metabolite.
L-Leucine
Flavouring ingredient; dietary supplement, nutrient. L-Leucine is found in many foods, some of which are lettuce, common bean, pacific herring, and kefir. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ROHFNLRQFUQHCH-YFKPBYRVSA-N_STSL_0102_Leucine_8000fmol_180425_S2_LC02_MS02_19; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
2-{[3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
C12H22O11 (342.11620619999997)
pinitol
D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].