Adenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.09674980000005)


Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Sucrose

(2R,3R,4S,5S,6R)-2-(((2S,3S,4S,5R)-3,4-Dihydroxy-2,(2R,3R,4S,5S,6R)-2-{[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C12H22O11 (342.1162062)


Sucrose is a nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane (Saccharum officinarum), sugar beet (Beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is derived by crushing and extracting sugarcane with water or by extracting sugar beet with water, evaporating, and purifying with lime, carbon, and various liquids. Sucrose is also obtainable from sorghum. Sucrose occurs in low percentages in honey and maple syrup. Sucrose is used as a sweetener in foods and soft drinks, in the manufacture of syrups, in invert sugar, confectionery, preserves and jams, demulcent, pharmaceutical products, and caramel. Sucrose is also a chemical intermediate for detergents, emulsifying agents, and other sucrose derivatives. Sucrose is widespread in the seeds, leaves, fruits, flowers, and roots of plants, where it functions as an energy store for metabolism and as a carbon source for biosynthesis. The annual world production of sucrose is in excess of 90 million tons mainly from the juice of sugar cane (20\\\%) and sugar beet (17\\\%). In addition to its use as a sweetener, sucrose is used in food products as a preservative, antioxidant, moisture control agent, stabilizer, and thickening agent. BioTransformer predicts that sucrose is a product of 6-O-sinapoyl sucrose metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). Sucrose appears as white odorless crystalline or powdery solid. Denser than water. Sucrose is a glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. It has a role as an osmolyte, a sweetening agent, a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. A nonreducing disaccharide composed of glucose and fructose linked via their anomeric carbons. It is obtained commercially from sugarcane, sugar beet (beta vulgaris), and other plants and used extensively as a food and a sweetener. Sucrose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Sucrose is a natural product found in Haplophyllum ramosissimum, Cyperus esculentus, and other organisms with data available. Sucrose is a metabolite found in or produced by Saccharomyces cerevisiae. A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. See also: Anise; ferrous disulfide; sucrose (component of); Phosphoric acid; sucrose (component of); Sucrose caramel (related) ... View More ... In chemistry, sugar loosely refers to a number of carbohydrates, such as monosaccharides, disaccharides, or oligosaccharides. In food, sugar refers to a class of edible crystalline carbohydrates, mainly sucrose, lactose, and fructose characterized by a sweet flavor. Other sugars are used in industrial food preparation, but are usually known by more specific names - glucose, fructose or fruit sugar, high fructose corn syrup, etc. Sugars is found in many foods, some of which are ucuhuba, butternut squash, common walnut, and miso. A glycosyl glycoside formed by glucose and fructose units joined by an acetal oxygen bridge from hemiacetal of glucose to the hemiketal of the fructose. Sucrose, a disaccharide, is a sugar composed of glucose and fructose subunits. It is produced naturally in plants and is the main constituent of white sugar. It has the molecular formula C 12H 22O 11. For human consumption, sucrose is extracted and refined from either sugarcane or sugar beet. Sugar mills – typically located in tropical regions near where sugarcane is grown – crush the cane and produce raw sugar which is shipped to other factories for refining into pure sucrose. Sugar beet factories are located in temperate climates where the beet is grown, and process the beets directly into refined sugar. The sugar-refining process involves washing the raw sugar crystals before dissolving them into a sugar syrup which is filtered and then passed over carbon to remove any residual colour. The sugar syrup is then concentrated by boiling under a vacuum and crystallized as the final purification process to produce crystals of pure sucrose that are clear, odorless, and sweet. Sugar is often an added ingredient in food production and recipes. About 185 million tonnes of sugar were produced worldwide in 2017.[6] Sucrose is particularly dangerous as a risk factor for tooth decay because Streptococcus mutans bacteria convert it into a sticky, extracellular, dextran-based polysaccharide that allows them to cohere, forming plaque. Sucrose is the only sugar that bacteria can use to form this sticky polysaccharide.[7] Sucrose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=8030-20-4 (retrieved 2024-06-29) (CAS RN: 57-50-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Tryptamine

2-(1H-indol-3-yl)ethan-1-amine

C10H12N2 (160.1000432)


Tryptamine, also known as TrpN, is a catabolite of tryptophan converted by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine. Both Clostridium sp. and Ruminococcus sp. have been found to convert tryptophan into tryptamine (PMID: 30120222). Tryptamine is a monoamine compound that is a common precursor molecule to many hormones and neurotransmitters. Biosynthesis generally proceeds from the amino acid tryptophan, with tryptamine acting as a precursor for other compounds. Substitutions to the tryptamine molecule give rise to a group of compounds collectively known as tryptamines. The most well-known tryptamines are serotonin, an important neurotransmitter, and melatonin, a hormone involved in regulating the sleep-wake cycle. Tryptamine has been detected, but not quantified in, several different foods, such as onion-family vegetables, acerola, Japanese walnuts, custard apples, and green zucchinis. This could make tryptamine a potential biomarker for the consumption of these foods. Tryptamine is an aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is an aminoalkylindole, an indole alkaloid, an aralkylamino compound and a member of tryptamines. It is a conjugate base of a tryptaminium. Tryptamine is a natural product found in Mus musculus, Prosopis glandulosa, and other organisms with data available. Occurs widely in plants, especies Lens esculenta (lentil) and the fungi Coprinus micaceus (glistening ink cap) An aminoalkylindole consisting of indole having a 2-aminoethyl group at the 3-position. KEIO_ID T031

   

Niacinamide

pyridine-3-carboxamide

C6H6N2O (122.0480106)


Nicotinamide is a white powder. (NTP, 1992) Nicotinamide is a pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. It has a role as an EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor, a metabolite, a cofactor, an antioxidant, a neuroprotective agent, an EC 3.5.1.98 (histone deacetylase) inhibitor, an anti-inflammatory agent, a Sir2 inhibitor, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a geroprotector. It is a vitamin B3, a pyridinecarboxamide and a pyridine alkaloid. It is functionally related to a nicotinic acid. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Nicotinamide is a natural product found in Mus musculus, Euonymus grandiflorus, and other organisms with data available. Niacinamide is the active form of vitamin B3 and a component of the coenzyme nicotinamide adenine dinucleotide (NAD). Niacinamide acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. This agent also inhibits poly(ADP-ribose) polymerases, enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy. Nicotinamide is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Niacinamide or vitamin B3 is an important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is used to increase the effect of radiation therapy on tumor cells. Niacin (nicotinic acid) and niacinamide, while both labeled as vitamin B3 also have different applications. Niacinamide is useful in arthritis and early-onset type I diabetes while niacin is an effective reducer of high cholesterol levels. Niacinamide is a metabolite found in or produced by Saccharomyces cerevisiae. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. See also: Adenosine; Niacinamide (component of); Dapsone; niacinamide (component of); Adenosine; Niacinamide; Titanium Dioxide (component of) ... View More ... Niacinamide, also known as nicotinamide (NAM), is a form of vitamin B3 found in food and used as a dietary supplement and medication. Niacinamide belongs to the class of organic compounds known as nicotinamides. These are heterocyclic aromatic compounds containing a pyridine ring substituted at position 3 by a carboxamide group. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It is an amide of nicotinic acid. As an aromatic compound, it undergoes electrophilic substitution reactions and transformations of its two functional groups. Niacinamide and phosphoribosyl pyrophosphate can be converted into nicotinic acid mononucleotide and phosphate by the enzyme nicotinamide phosphoribosyltransferase. In humans, niacinamide is involved in the metabolic disorder called the nad+ signalling pathway (cancer). Niacinamide is an odorless tasting compound. Outside of the human body, niacinamide is found, on average, in the highest concentration within a few different foods, such as common sages, cow milk, and cocoa beans and in a lower concentration in common pea. Niacinamide has also been detected, but not quantified in several different foods, such as yardlong beans, roselles, apples, oyster mushrooms, and swiss chards. Niacinamide occurs in trace amounts mainly in meat, fish, nuts, and mushrooms, as well as to a lesser extent in some vegetables. It is commonly added to cereals and other foods. Many multivitamins contain 20–30 mg of vitamin B3 and it is also available in higher doses. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. Widespread in plants, e.g. rice, yeast and fungi. Dietary supplement, may be used in infant formulas Nicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-92-0 (retrieved 2024-07-01) (CAS RN: 98-92-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].

   

Guanosine

2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-1H-purin-6-one

C10H13N5O5 (283.0916648)


Guanosine (G), also known as 2-amino-inosine, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl sugar moiety. Guanosine consists of a guanine base attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine is a white, crystalline powder with no odor and mild saline taste. It is very soluble in acetic acid, and slightly soluble in water, but insoluble in ethanol, diethyl ether, benzene, and chloroform. Guanosine exists in all living species, ranging from bacteria to plants to humans. High levels of guanosine can be found in clovers, coffee plants, and the pollen of pines. It has been detected, but not quantified in, several different foods, such as leeks, garlic, chicory roots, green bell peppers, and black-eyed peas. Guanosine plays an important role in various biochemical processes including the synthesis of nucleic acids such as RNA and intracellular signal transduction (cGMP). The antiviral drug acyclovir, often used in herpes treatment, and the anti-HIV drug abacavir, are both structurally similar to guanosine. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosphate (cGMP), guanosine diphosphate (GDP), and guanosine triphosphate (GTP). In humans, guanosine is involved in intracellular signalling through the adenosine receptors A1R and A2AR (PMID: 31847113). Evidence from rodent and cell models has shown a number of important neurotrophic and neuroprotective effects of guanosine. In particular, it is effective in preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson‚Äôs and Alzheimer‚Äôs diseases (PMID: 27699087). Studies with rodent models of Parkinson‚Äôs disease have shown that guanosine decreases neuronal apoptotic cell death and increases dopaminergic neurons at substantia nigra pars compacta, accompanied by an improvement of motor symptoms in Parkinson‚Äôs disease (i.e. a reduction of bradykinesia). Guanosine promotes neurite arborization, outgrowth, proliferation and differentiation. Systemic administration of guanosine for eight weeks (8 mg/kg) has been shown to stimulate neuroprogenitors proliferation in the subventricular zone (SVZ) in a mouse model of Parkinsonism (PMID: 27699087). The effect of guanosine treatment is accompanied by an increased number of fibroblast growth factor (FGF-2)-positive cells which is an important regulator of neuroprogenitor/stem cell proliferation, survival and differentiation (PMID: 27699087). Guanosine prevents reactive oxygen species (ROS) generation and cell death in hippocampal slices subjected to the oxygen/glucose deprivation (PMID: 31847113). Guanosine is a purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a fundamental metabolite. It is a purines D-ribonucleoside and a member of guanosines. It is functionally related to a guanine. Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate) which are factors in signal transduction pathways. Guanosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Guanosine is a natural product found in Ulva australis, Allium chinense, and other organisms with data available. Guanosine is a purine nucleoside formed from a beta-N9-glycosidic bond between guanine and a ribose ring and is essential for metabolism. Guanosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has guanine linked by its N9 nitrogen to the C1 carbon of ribose. It is a component of ribonucleic acid and its nucleotides play important roles in metabolism. (From Dorland, 28th ed) Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate). ; The nucleoside guanosine exert important neuroprotective and neuromodulator roles in the central nervous system, which may be related to inhibition of the glutamatergic neurotransmission activity. Guanosine is the specific extracellular guanine-based purines effector and indicate that its conversion occurs not only in the central nervous system but also peripherally. (PMID: 16325434); Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a ?-N9-glycosidic bond. Guanosine is found in many foods, some of which are elderberry, malus (crab apple), acerola, and arrowhead. A purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Guanosine (exact mass = 283.09167) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) and AMP (exact mass = 347.06308) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanosine (exact mass = 283.09167) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.125 CONFIDENCE standard compound; INTERNAL_ID 317 KEIO_ID G015; [MS2] KO008966 Annotation level-2 KEIO_ID G015 Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity. Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity. Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity.

   

L-Leucine

(2S)-2-amino-4-methylpentanoic acid

C6H13NO2 (131.0946238)


Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

Maleic acid

(2Z)-but-2-enedioic acid

C4H4O4 (116.01095839999999)


Maleic acid is a colorless crystalline solid having a faint odor. It is combustible though it may take some effort to ignite. It is soluble in water. It is used to make other chemicals and for dyeing and finishing naturally occurring fibers. Maleic acid is a butenedioic acid in which the double bond has cis- (Z)-configuration. It has a role as a plant metabolite, an algal metabolite and a mouse metabolite. It is a conjugate acid of a maleate(1-) and a maleate. Maleic acid is a natural product found in Populus tremula, Ardisia crenata, and other organisms with data available. Maleic Acid is an organic salt or ester of maleic acid that could be conjugated to free base compounds/drugs to improve the physiochemical properties including stability, solubility and dissolution rate. (NCI) Maleic acid is an industrial raw material for the production of glyoxylic acid by ozonolysis. Maleic acid is an organic compound which is a dicarboxylic acid (molecule with two carboxyl groups). The molecule consists of an ethylene group flanked by two carboxylic acid groups. Maleic acid is the cis isomer of butenedioic acid, whereas fumaric acid is the trans isomer. The cis isomer is the less stable one of the two; the difference in heat of combustion is 22.7 kJ/mol. The physical properties of maleic acid are very different from that of fumaric acid. Maleic acid is soluble in water whereas fumaric acid is not and the melting point of maleic acid (130 - 131 degree centigrade) is also much lower than that of fumaric acid (287 degree centigrade). Both properties of maleic acid can be explained on account of the intramolecular hydrogen bonding that takes place at the expense of intermolecular interactions. Maleic acid is converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation. It reacts with thionyl chloride or phosphorus pentachloride to give the maleic acid chloride (it is not possible to isolate the mono acid chloride). Maleic acid is a reactant in many Diels-Alder reactions. See also: Surfomer (monomer of); Ferropolimaler (monomer of). Maleic acid is an industrial raw material for the production of glyoxylic acid by ozonolysis. Maleic acid is an organic compound which is a dicarboxylic acid (molecule with two carboxyl groups). The molecule consists of an ethylene group flanked by two carboxylic acid groups. Maleic acid is the cis isomer of butenedioic acid, whereas fumaric acid is the trans isomer. The cis isomer is the less stable one of the two; the difference in heat of combustion is 22.7 kJ/mol. The physical properties of maleic acid are very different from that of fumaric acid. Maleic acid is soluble in water whereas fumaric acid is not and the melting point of maleic acid (130 - 131 degree centigrade) is also much lower than that of fumaric acid (287 degree centigrade). Both properties of maleic acid can be explained on account of the intramolecular hydrogen bonding that takes place at the expense of intermolecular interactions. Maleic acid is converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation. It reacts with thionyl chloride or phosphorus pentachloride to give the maleic acid chloride (it is not possible to isolate the mono acid chloride). Maleic acid is a reactant in many Diels-Alder reactions. [HMDB]. Maleic acid is found in many foods, some of which are cocoa bean, lovage, roselle, and corn. Maleic acid is a dicarboxylic acid, a molecule with two carboxyl groups. It consists of an ethylene group flanked by two carboxylic acid groups. Maleic acid is the cis isomer of butenedioic acid, whereas fumaric acid is the trans isomer. The cis isomer is the less stable one of the two; the difference in heat of combustion is 22.7 kJ/mol. The physical properties of maleic acid are very different from that of fumaric acid. Maleic acid is soluble in water whereas fumaric acid is not and the melting point of maleic acid (130 - 131 oC) is also much lower than that of fumaric acid (287 oC). Maleic acid is converted into maleic anhydride by dehydration, to malic acid by hydration, and to succinic acid by hydrogenation. Maleic acid is used in making polyesters for fibre-reinforced laminated moldings and paint vehicles. More specifically it is used in the manufacture of phthalic-type alkyd and polyester resins, surface coatings, copolymers, plasticizers, lubricant additives and agricultural chemicals. It is also found in adhesives and sealants and as a preservative for oils and fats. In the natural world, maleic acid has been identified in ginseng, pineapple, cacao plants, sour cherries and corn. A large number of microbes are able to convert maleic acid to D-malate using the enzyme maleate hydratase (PMID: 1444397). A butenedioic acid in which the double bond has cis- (Z)-configuration. Maleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=110-16-7 (retrieved 2024-06-29) (CAS RN: 110-16-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Maleic Acid is a Glutamate Decarboxylase (GAD) inhibitor of E. coli and L. monocytogenes. Maleic Acid is a Glutamate Decarboxylase (GAD) inhibitor of E. coli and L. monocytogenes.

   

Shikimic acid

Shikimic acid [3R-(3alpha,4alpha,5beta)]-3,4,5-Trihydroxy-1-cyclohexene-1-carboxylic acid

C7H10O5 (174.052821)


Shikimic acid is a cyclohexenecarboxylic acid that is cyclohex-1-ene-1-carboxylic acid substituted by hydroxy groups at positions 3, 4 and 5 (the 3R,4S,5R stereoisomer). It is an intermediate metabolite in plants and microorganisms. It has a role as an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite and a plant metabolite. It is a cyclohexenecarboxylic acid, a hydroxy monocarboxylic acid and an alpha,beta-unsaturated monocarboxylic acid. It is a conjugate acid of a shikimate. Shikimic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Shikimic acid is a natural product found in Quercus mongolica, Populus tremula, and other organisms with data available. Shikimic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A tri-hydroxy cyclohexene carboxylic acid important in biosynthesis of so many compounds that the shikimate pathway is named after it. Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical intermediate in plants and microorganisms. Its name comes from the Japanese flower shikimi (the Japanese star anise, Illicium anisatum), from which it was first isolated. Shikimic acid is a precursor for: the aromatic amino acids phenylalanine and tyrosine; indole, indole derivatives and tryptophan; many alkaloids and other aromatic metabolites; tannins; and lignin. In pharmaceutical industry, shikimic acid from chinese star anise is used as a base material for production of Tamiflu (oseltamivir). Although shikimic acid is present in most autotrophic organisms, it is a biosynthetic intermediate and generally found in very low concentrations. A cyclohexenecarboxylic acid that is cyclohex-1-ene-1-carboxylic acid substituted by hydroxy groups at positions 3, 4 and 5 (the 3R,4S,5R stereoisomer). It is an intermediate metabolite in plants and microorganisms. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 175 KEIO_ID S012 Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants. Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants.

   

Theobromine

3,7-dimethylpurine-2,6-dione

C7H8N4O2 (180.0647228)


Theobromine is an odorless white crystalline powder. Bitter taste. pH (saturated solution in water): 5.5-7. (NTP, 1992) Theobromine, also known as xantheose, is the principal alkaloid of Theobroma cacao (cacao plant).[4] Theobromine is slightly water-soluble (330 mg/L) with a bitter taste.[5] In industry, theobromine is used as an additive and precursor to some cosmetics.[4] It is found in chocolate, as well as in a number of other foods, including tea (Camellia sinensis), some American hollies (yaupon and guayusa) and the kola nut. It is a white or colourless solid, but commercial samples can appear yellowish.[5] Theobromine is a dimethylxanthine having the two methyl groups located at positions 3 and 7. A purine alkaloid derived from the cacao plant, it is found in chocolate, as well as in a number of other foods, and is a vasodilator, diuretic and heart stimulator. It has a role as an adenosine receptor antagonist, a food component, a plant metabolite, a human blood serum metabolite, a mouse metabolite, a vasodilator agent and a bronchodilator agent. Theobromine (3,7-dimethylxanthine) is the principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than theophylline and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. (From Martindale, The Extra Pharmacopoeia, 30th ed, pp1318-9) Theobromine is a natural product found in Theobroma grandiflorum, Theobroma mammosum, and other organisms with data available. 3,7-Dimethylxanthine. The principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than THEOPHYLLINE and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. (From Martindale, The Extra Pharmacopoeia, 30th ed, pp1318-9) See also: Paullinia cupana seed (part of). Theobromine, or 3,7-Dimethylxanthine, is the principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than theophylline and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. Theobromine is a bitter alkaloid of the methylxanthine family, which also includes the similar compounds theophylline and caffeine. Despite its name, the compound contains no bromine. Theobromine is derived from Theobroma, the genus of the cacao tree, which is composed of the Greek roots theo ("God") and broma ("food"), meaning "food of the gods". It is the primary alkaloid found in cocoa and chocolate, and is one of the causes for chocolates mood-elevating effects. The amount found in chocolate is small enough that chocolate can be safely consumed by humans in large quantities, but animals that metabolize theobromine more slowly, such as cats and dogs, can easily consume enough chocolate to cause chocolate poisoning. Theobromine is a stimulant frequently confused with caffeine. Theobromine has very different effects on the human body from caffeine; it is a mild, lasting stimulant with a mood improving effect, whereas caffeine has a strong, immediate effect and increases stress. In medicine, it is used as a diuretic, vasodilator, and myocardial stimulant. There is a possible association between prostate cancer and theobromine. Theobromine is a contributing factor in acid reflux because it relaxes the esophageal sphincter muscle, allowing stomach acid access to the esophagus. A dimethylxanthine having the two methyl groups located at positions 3 and 7. A purine alkaloid derived from the cacao plant, it is found in chocolate, as well as in a number of other foods, and is a vasodilator, diuretic and heart stimulator. Constituent of tea leaves (Camellia thea), cocoa Theobroma cacao, cola nut (Cola acuminata) and guarana (Paullinia cupana); flavouring ingredient with a bitter taste Biosynthesis Theobromine is a purine alkaloid derived from xanthosine, a nucleoside. Cleavage of the ribose and N-methylation yields 7-methylxanthosine. 7-Methylxanthosine in turn is the precursor to theobromine, which in turn is the precursor to caffeine.[24] Even without dietary intake, theobromine may occur in the body as it is a product of the human metabolism of caffeine, which is metabolised in the liver into 12\% theobromine, 4\% theophylline, and 84\% paraxanthine.[25] In the liver, theobromine is metabolized into xanthine and subsequently into methyluric acid.[26] Important enzymes include CYP1A2 and CYP2E1.[27] The elimination half life of theobromine is between 6 and 8 hours.[1][2] Unlike caffeine, which is highly water-soluble, theobromine is only slightly water-soluble and is more fat soluble, and thus peaks more slowly in the blood. While caffeine peaks after only 30 minutes, theobromine requires 2–3 hours to peak.[28] The primary mechanism of action for theobromine inside the body is inhibition of adenosine receptors.[5] Its effect as a phosphodiesterase inhibitor[29] is thought to be small.[5]

   

Trehalose

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.11620619999997)


Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf). Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector. Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy. Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available. Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs in fungi. EU and USA approved sweetener Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 149 D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.

   

Putrescine

1,4-Diaminobutane, puriss., >=99.0\\% (GC)

C4H12N2 (88.1000432)


Putrescine is a four-carbon alkane-alpha,omega-diamine. It is obtained by the breakdown of amino acids and is responsible for the foul odour of putrefying flesh. It has a role as a fundamental metabolite and an antioxidant. It is a conjugate base of a 1,4-butanediammonium. Putrescine is a toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. Putrescine is a solid. This compound belongs to the polyamines. These are compounds containing more than one amine group. Known drug targets of putrescine include putrescine-binding periplasmic protein, ornithine decarboxylase, and S-adenosylmethionine decarboxylase proenzyme. Putrescine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). 1,4-Diaminobutane is a natural product found in Eupatorium cannabinum, Populus tremula, and other organisms with data available. Putrescine is a four carbon diamine produced during tissue decomposition by the decarboxylation of amino acids. Polyamines, including putrescine, may act as growth factors that promote cell division; however, putrescine is toxic at high doses. Putrescine is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.Putrescine is a polyamine. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. The polyamines, of which putrescine is one of the simplest, appear to be growth factors necessary for cell division. Putrescine apparently has specific role in skin physiology and neuroprotection. Pharmacological interventions have demonstrated convincingly that a steady supply of polyamines is a prerequisite for cell proliferation to occur. Genetic engineering of polyamine metabolism in transgenic rodents has shown that polyamines play a role in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase is not compatible with murine embryogenesis. (A3286, A3287). Putrescine is a metabolite found in or produced by Saccharomyces cerevisiae. A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. Putrescine is a polyamine. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. The polyamines, of which putrescine is one of the simplest, appear to be growth factors necessary for cell division. Putrescine apparently has specific role in skin physiology and neuroprotection. (PMID:15009201, 16364196). Pharmacological interventions have demonstrated convincingly that a steady supply of polyamines is a prerequisite for cell proliferation to occur. Genetic engineering of polyamine metabolism in transgenic rodents has shown that polyamines play a role in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase is not compatible with murine embryogenesis. Putrescine can be found in Citrobacter, Corynebacterium, Cronobacter and Enterobacter (PMID:27872963) (https://onlinelibrary.wiley.com/doi/full/10.1111/1541-4337.12099). Putrescine is an organic chemical compound related to cadaverine; both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. The two compounds are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. They are also found in semen and some microalgae, together with related molecules like spermine and spermidine. A four-carbon alkane-alpha,omega-diamine. It is obtained by the breakdown of amino acids and is responsible for the foul odour of putrefying flesh. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID B001

   

Ricinoleic acid

InChI=1/C18H34O3/c1-2-3-4-11-14-17(19)15-12-9-7-5-6-8-10-13-16-18(20)21/h9,12,17,19H,2-8,10-11,13-16H2,1H3,(H,20,21)/b12-9-/t17-/m1/s

C18H34O3 (298.2507814)


Ricinoleic acid is found in corn. Ricinoleic acid occurs in castor oil and other oils e.g. grape and ergot (Claviceps purpurea) Ricinoleic acid (12-hydroxy-9-cis-octadecenoic acid) is an unsaturated omega-9 fatty acid that naturally occurs in mature Castor plant (Ricinus communis L., Euphorbiaceae) seeds or in sclerotium of ergot (Claviceps purpurea Tul., Clavicipitaceae). About 90\\% of the fatty acid content in castor oil is the triglyceride formed from ricinoleic acid. Ricinoleic acid is manufactured for industries by saponification or fractional distillation of hydrolyzed castor oil. The zinc salt is used in personal care products, such as deodorants Ricinoleic acid is a (9Z)-12-hydroxyoctadec-9-enoic acid in which the 12-hydroxy group has R-configuration.. It is a conjugate acid of a ricinoleate. Ricinoleic acid is a natural product found in Cephalocroton cordofanus, Crotalaria retusa, and other organisms with data available. See also: Polyglyceryl-6 polyricinoleate (monomer of); Polyglyceryl-4 polyricinoleate (monomer of); Polyglyceryl-5 polyricinoleate (monomer of) ... View More ... CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5632; ORIGINAL_PRECURSOR_SCAN_NO 5630 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5657; ORIGINAL_PRECURSOR_SCAN_NO 5655 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5730; ORIGINAL_PRECURSOR_SCAN_NO 5728 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5665; ORIGINAL_PRECURSOR_SCAN_NO 5664 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5630; ORIGINAL_PRECURSOR_SCAN_NO 5629 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5665; ORIGINAL_PRECURSOR_SCAN_NO 5662 Occurs in castor oil and other oils e.g. grape and ergot (Claviceps purpurea)

   

Dopamine

alpha-(3,4-Dihydroxyphenyl)-beta-aminoethane

C8H11NO2 (153.0789746)


Dopamine is a member of the catecholamine family of neurotransmitters in the brain and is a precursor to epinephrine (adrenaline) and norepinephrine (noradrenaline). Dopamine is synthesized in the body (mainly by nervous tissue and adrenal glands) first by the hydration of the amino acid tyrosine to DOPA by tyrosine hydroxylase and then by the decarboxylation of DOPA by aromatic-L-amino-acid decarboxylase. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (dopamine receptors) mediates its action, which plays a major role in reward-motivated behaviour. Dopamine has many other functions outside the brain. In blood vessels, dopamine inhibits norepinephrine release and acts as a vasodilator (at normal concentrations); in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. Parkinsons disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists, which reduce dopamine activity. Attention deficit hyperactivity disorder, bipolar disorder, and addiction are also characterized by defects in dopamine production or metabolism. It has been suggested that animals derived their dopamine-synthesizing machinery from bacteria via horizontal gene transfer that may have occurred relatively late in evolutionary time. This is perhaps a result of the symbiotic incorporation of bacteria into eukaryotic cells that gave rise to mitochondria. Dopamine is elevated in the urine of people who consume bananas. When present in sufficiently high levels, dopamine can be a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of dopamine are associated with neuroblastoma, Costello syndrome, leukemia, phaeochromocytoma, aromatic L-amino acid decarboxylase deficiency, and Menkes disease (MNK). High levels of dopamine can lead to hyperactivity, insomnia, agitation and anxiety, depression, delusions, excessive salivation, nausea, and digestive problems. A study has shown that urinary dopamine is produced by Bacillus and Serratia (PMID: 24621061) Occurs in several higher plants, such as banana (Musa sapientum). As a member of the catecholamine family, dopamine is a precursor to norepinephrine (noradrenaline) and then epinephrine (adrenaline) in the biosynthetic pathways for these neurotransmitters. Dopamine is elevated in the urine of people who consume bananas. Dopamine is found in many foods, some of which are garden onion, purslane, garden tomato, and swiss chard. Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80\% of the catecholamine content in the brain. It is an amine synthesized by removing a carboxyl group from a molecule of its precursor chemical, L-DOPA, which is synthesized in the brain and kidneys. Dopamine is also synthesized in plants and most animals. In the brain, dopamine functions as a neurotransmitter—a chemical released by neurons (nerve cells) to send signals to other nerve cells. Neurotransmitters are synthesized in specific regions of the brain, but affect many regions systemically. The brain includes several distinct dopamine pathways, one of which plays a major role in the motivational component of reward-motivated behavior. The anticipation of most types of rewards increases the level of dopamine in the brain,[4] and many addictive drugs increase dopamine release or block its reuptake into neurons following release.[5] Other brain dopamine pathways are involved in motor control and in controlling the release of various hormones. These pathways and cell groups form a dopamine system which is neuromodulatory.[5] In popular culture and media, dopamine is often portrayed as the main chemical of pleasure, but the current opinion in pharmacology is that dopamine instead confers motivational salience;[6][7][8] in other words, dopamine signals the perceived motivational prominence (i.e., the desirability or aversiveness) of an outcome, which in turn propels the organism's behavior toward or away from achieving that outcome.[8][9] Outside the central nervous system, dopamine functions primarily as a local paracrine messenger. In blood vessels, it inhibits norepinephrine release and acts as a vasodilator; in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. With the exception of the blood vessels, dopamine in each of these peripheral systems is synthesized locally and exerts its effects near the cells that release it. Several important diseases of the nervous system are associated with dysfunctions of the dopamine system, and some of the key medications used to treat them work by altering the effects of dopamine. Parkinson's disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. Its metabolic precursor L-DOPA can be manufactured; Levodopa, a pure form of L-DOPA, is the most widely used treatment for Parkinson's. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists which reduce dopamine activity.[10] Similar dopamine antagonist drugs are also some of the most effective anti-nausea agents. Restless legs syndrome and attention deficit hyperactivity disorder (ADHD) are associated with decreased dopamine activity.[11] Dopaminergic stimulants can be addictive in high doses, but some are used at lower doses to treat ADHD. Dopamine itself is available as a manufactured medication for intravenous injection. It is useful in the treatment of severe heart failure or cardiogenic shock.[12] In newborn babies it may be used for hypotension and septic shock.[13] Dopamine is synthesized in a restricted set of cell types, mainly neurons and cells in the medulla of the adrenal glands.[22] The primary and minor metabolic pathways respectively are: Primary: L-Phenylalanine → L-Tyrosine → L-DOPA → Dopamine[19][20] Minor: L-Phenylalanine → L-Tyrosine → p-Tyramine → Dopamine[19][20][21] Minor: L-Phenylalanine → m-Tyrosine → m-Tyramine → Dopamine[21][23][24] The direct precursor of dopamine, L-DOPA, can be synthesized indirectly from the essential amino acid phenylalanine or directly from the non-essential amino acid tyrosine.[25] These amino acids are found in nearly every protein and so are readily available in food, with tyrosine being the most common. Although dopamine is also found in many types of food, it is incapable of crossing the blood–brain barrier that surrounds and protects the brain.[26] It must therefore be synthesized inside the brain to perform its neuronal activity.[26] L-Phenylalanine is converted into L-tyrosine by the enzyme phenylalanine hydroxylase, with molecular oxygen (O2) and tetrahydrobiopterin as cofactors. L-Tyrosine is converted into L-DOPA by the enzyme tyrosine hydroxylase, with tetrahydrobiopterin, O2, and iron (Fe2+) as cofactors.[25] L-DOPA is converted into dopamine by the enzyme aromatic L-amino acid decarboxylase (also known as DOPA decarboxylase), with pyridoxal phosphate as the cofactor.[25] Dopamine itself is used as precursor in the synthesis of the neurotransmitters norepinephrine and epinephrine.[25] Dopamine is converted into norepinephrine by the enzyme dopamine β-hydroxylase, with O2 and L-ascorbic acid as cofactors.[25] Norepinephrine is converted into epinephrine by the enzyme phenylethanolamine N-methyltransferase with S-adenosyl-L-methionine as the cofactor.[25] Some of the cofactors also require their own synthesis.[25] Deficiency in any required amino acid or cofactor can impair the synthesis of dopamine, norepinephrine, and epinephrine.[25] Degradation Dopamine is broken down into inactive metabolites by a set of enzymes—monoamine oxidase (MAO), catechol-O-methyl transferase (COMT), and aldehyde dehydrogenase (ALDH), acting in sequence.[27] Both isoforms of monoamine oxidase, MAO-A and MAO-B, effectively metabolize dopamine.[25] Different breakdown pathways exist but the main end-product is homovanillic acid (HVA), which has no known biological activity.[27] From the bloodstream, homovanillic acid is filtered out by the kidneys and then excreted in the urine.[27] The two primary metabolic routes that convert dopamine into HVA are:[28] Dopamine → DOPAL → DOPAC → HVA – catalyzed by MAO, ALDH, and COMT respectively Dopamine → 3-Methoxytyramine → HVA – catalyzed by COMT and MAO+ALDH respectively In clinical research on schizophrenia, measurements of homovanillic acid in plasma have been used to estimate levels of dopamine activity in the brain. A difficulty in this approach however, is separating the high level of plasma homovanillic acid contributed by the metabolism of norepinephrine.[29][30] Although dopamine is normally broken down by an oxidoreductase enzyme, it is also susceptible to oxidation by direct reaction with oxygen, yielding quinones plus various free radicals as products.[31] The rate of oxidation can be increased by the presence of ferric iron or other factors. Quinones and free radicals produced by autoxidation of dopamine can poison cells, and there is evidence that this mechanism may contribute to the cell loss that occurs in Parkinson's disease and other conditions.[32]

   

Adenosine monophosphate

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H14N5O7P (347.0630824)


Adenosine monophosphate, also known as adenylic acid or amp, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Adenosine monophosphate can be found in a number of food items such as kiwi, taro, alaska wild rhubarb, and skunk currant, which makes adenosine monophosphate a potential biomarker for the consumption of these food products. Adenosine monophosphate can be found primarily in most biofluids, including blood, feces, cerebrospinal fluid (CSF), and urine, as well as throughout all human tissues. Adenosine monophosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine monophosphate is involved in several metabolic pathways, some of which include josamycin action pathway, methacycline action pathway, nevirapine action pathway, and aspartate metabolism. Adenosine monophosphate is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], molybdenum cofactor deficiency, xanthinuria type I, and mitochondrial DNA depletion syndrome. Adenosine monophosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine monophosphate, also known as 5-adenylic acid and abbreviated AMP, is a nucleotide that is found in RNA. It is an ester of phosphoric acid with the nucleoside adenosine. AMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase adenine. AMP can be produced during ATP synthesis by the enzyme adenylate kinase. AMP has recently been approved as a Bitter Blocker additive to foodstuffs. When AMP is added to bitter foods or foods with a bitter aftertaste it makes them seem sweeter. This potentially makes lower calorie food products more palatable. [Spectral] AMP (exact mass = 347.06308) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Adenosine monophosphate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67583-85-1 (retrieved 2024-07-01) (CAS RN: 61-19-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction.

   

cis,cis-Muconic acid

(2Z,4Z)-HEXA-2,4-dienedioIC ACID

C6H6O4 (142.0266076)


cis-cis-Muconic acid is a presumptive metabolite of benzene. Muconic acid was first isolated from the urine of rabbits and dogs in 1909 (M. Jaffe, Z Physiol Chem 62:58-67). It was originally thought that if muconic acid was formed by the opening of the benzene ring in vivo then the cis-cis isomer should be the initial (and primary) product. However subsequent studies conducted in the 1950s proved that trans-trans-muconic acid is a true metabolite of benzene in mammals (Parke DV, Williams RT. Biochem J 51:339-348 (1952)). Furthermore, dosing rabbits with phenol or catechol also resulted in the urinary excretion of trans-trans-muconic acid. The oxidative ring opening of benzene first gives rise to cis-cis-muconaldehyde, which then isomerizes to cis-trans- and trans-trans-muconaldehyde; the latter is oxidized in vivo to trans-trans-muconic acid. Isomerization of the trans-trans form may take place in vivo to yield small amounts if the cis-cis and cis-trans form of muconic acid. cis-cis-Muconic acid may also be generated from microbial fermentation of benzoic acid. Certain strains of arthobacter are particularly efficient at this process. cis-cis-Muconic acid can also be found in Pseudomonas and Escherichia coli (https://link.springer.com/article/10.1007/BF00250491) (PMID:26360870). Cis-cis-muconic acid is a presumptive metabolite of benzene. Muconic acid was first isolated from the urine of rabbits and dogs in 1909 ( M. Jaffe, Z Physiol Chem 62:58-67). It was originally thought that if muconic acid were formed by opening of the benzene ring in vivo then the cis-cis isomer should be the initial (and primary) product. However subsequent studies conducted in the 1950s proved that trans-trans-muconic acid is a true metabolite of benzene in mammals (Parke DV, Williams RT. Biochem J 51:339-348 (1952)). Furthermore, dosing rabbits with phenol or catechol also resulted in the urinary excretion of trans-trans-muconic acid. The oxidative ring opening of benzene first gives rise to cis-cis-muconaldehyde, which then isomerizes to cis-trans- and trans-trans-muconaldehyde; the latter is oxidized in vivo to trans-trans-muconic acid. Isomerization of the trans-trans form may take place in vivo to yield small amounts if the cis-cis and cis-trans form of muconic acid. Cis-cis muconic acid may also be generated from microbial fermentation of benzoic acid. Certain strains of arthobacter are particularly efficient at this process. [HMDB] KEIO_ID M105 cis,cis-Muconic acid, a metabolic intermediate of Klebsiella pneumonia, can be converted to adipic acid and terephthalic acid, which are important monomers of synthetic polymers. cis,cis-Muconic acid is also a biochemical material that can be used for the production of various plastics and polymers and is particularly gaining attention as an adipic acid precursor for the synthesis of nylon-6,6[1][2].

   

Codeine

(1S,5R,13R,14S,17R)-10-methoxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0^{1,13}.0^{5,17}.0^{7,18}]octadeca-7(18),8,10,15-tetraen-14-ol

C18H21NO3 (299.1521356)


In the United States, codeine is regulated by the Controlled Substances Act. It is a Schedule II controlled substance for pain-relief products containing codeine alone. In combination with aspirin or acetaminophen (paracetamol/tylenol) it is listed as Schedule III. Codeine is also available outside the United States as an over-the-counter drug (Schedule V) in liquid cough-relief formulations. Internationally, codeine is a Schedule II drug under the Single Convention on Narcotic Drugs. In the United Kingdom, codeine is regulated by the Misuse of Drugs Act 1971; it is a Class B Drug, except for concentrations of less than 8mg when combined with paracetamol - or 12.5mg when combined with ibuprofen - which are available in many over the counter preparations. it is a Class B Drug, except for concentrations of less than 8mg when combined with paracetamol - or 12.5mg when combined with ibuprofen - which are available in many over the counter preparations. An opioid analgesic related to morphine but with less potent analgesic properties and mild sedative effects. It also acts centrally to suppress cough. Codeine or methylmorphine is an opiate used for its analgesic, antitussive and antidiarrheal properties. It is marketed as the salts codeine sulfate and codeine phosphate. Codeine hydrochloride is more commonly marketed in contintental Europe and other regions. Codeine is an alkaloid found in opium in concentrations ranging from 0.3 to 3.0 percent. While codeine can be extracted from opium, most codeine is synthesized from morphine through the process of O-methylation. In the United Kingdom, codeine is regulated by the Misuse of Drugs Act 1971; Codeine or methylmorphine is an opiate used for its analgesic, antitussive and antidiarrheal properties. It is marketed as the salts codeine sulfate and codeine phosphate. Codeine hydrochloride is more commonly marketed in contintental Europe and other regions. Codeine is an alkaloid found in opium in concentrations ranging from 0.3 to 3.0 percent. While codeine can be extracted from opium, most codeine is synthesized from morphine through the process of O-methylation. Theoretically, a dose of approximately 200 mg (oral) of codeine must be administered to give equivalent analgesia to 30 mg (oral) of morphine (Rossi, 2004). It is not used, however, in single doses of greater than 60mg (and no more than 240 mg in 24 hours) since there is a ceiling effect. [PubChem]Opiate receptors are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine and noradrenaline is inhibited. Opioids also inhibit the release of vasopressin, somatostatin, insulin and glucagon. Codeines analgesic activity is, most likely, due to its conversion to morphine. Opioids close N-type voltage-operated calcium channels (OP2-receptor agonist) and open calcium-dependent inwardly rectifying potassium channels (OP3 and OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics Opium alkaloid (Papaver somniferum) (content ca. 1\\%) CONFIDENCE standard compound; INTERNAL_ID 1623

   

Stearic acid

1-Heptadecanecarboxylic acid

C18H36O2 (284.2715156)


Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

Palmitoleic acid

cis-Delta(9)-Hexadecenoic acid

C16H30O2 (254.224568)


Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as mixed nuts, carrot, hedge mustard, and chanterelle, which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. Palmitoleic acid, or (9Z)-hexadec-9-enoic acid, is an omega-7 monounsaturated fatty acid (16:1n-7) with the formula CH3(CH2)5CH=CH(CH2)7COOH that is a common constituent of the glycerides of human adipose tissue. Present in all tissues, it is generally found in higher concentrations in the liver. Macadamia oil (Macadamia integrifolia) and sea buckthorn oil (Hippophae rhamnoides) are botanical sources of palmitoleic acid, containing 22 and 40\\\\\% respectively. Palmitoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Palmitoleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=373-49-9 (retrieved 2024-07-15) (CAS RN: 373-49-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

Glycerol 3-phosphate

alpha-Glycerophosphoric acid, 1,2,3-propanetriol-1-(18)O,3-(dihydrogen phosphate)-labeled

C3H9O6P (172.0136744)


Glycerol 3-phosphate, also known as glycerophosphoric acid or alpha-glycerophosphorate, is a member of the class of compounds known as glycerophosphates. Glycerophosphates are compounds containing a glycerol linked to a phosphate group. Glycerol 3-phosphate is soluble (in water) and a moderately acidic compound (based on its pKa). Glycerol 3-phosphate can be found in a number of food items such as sacred lotus, common oregano, mixed nuts, and yautia, which makes glycerol 3-phosphate a potential biomarker for the consumption of these food products. Glycerol 3-phosphate can be found primarily in blood, feces, saliva, and urine, as well as in human prostate tissue. Glycerol 3-phosphate exists in all living species, ranging from bacteria to humans. In humans, glycerol 3-phosphate is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-12:0/i-21:0/a-21:0/i-21:0), cardiolipin biosynthesis cl(i-12:0/a-25:0/i-13:0/i-12:0), cardiolipin biosynthesis cl(i-13:0/i-21:0/i-21:0/a-25:0), and cardiolipin biosynthesis cl(i-13:0/a-25:0/i-18:0/a-13:0). Glycerol 3-phosphate is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-24:0/19:0/16:0), de novo triacylglycerol biosynthesis TG(16:0/22:4(7Z,10Z,13Z,16Z)/16:1(9Z)), de novo triacylglycerol biosynthesis TG(18:0/18:3(9Z,12Z,15Z)/14:1(9Z)), and de novo triacylglycerol biosynthesis TG(18:3(6Z,9Z,12Z)/22:5(4Z,7Z,10Z,13Z,16Z)/20:2(11Z,14Z)). Glycerol 3-phosphate is a chemical intermediate in the glycolysis metabolic pathway. It is commonly confused with the similarly named glycerate 3-phosphate or glyceraldehyde 3-phosphate. Glycerol 3-phosphate is produced from glycerol, the triose sugar backbone of triglycerides and glycerophospholipids, by the enzyme glycerol kinase. Glycerol 3-phospate may then be converted by dehydrogenation to dihydroxyacetone phosphate (DHAP) by the enzyme glycerol-3-phosphate dehydrogenase. DHAP can then be rearranged into glyceraldehyde 3-phosphate (GA3P) by triose phosphate isomerase (TIM), and feed into glycolysis. The glycerol 3-phosphate shuttle is used to rapidly regenerate NAD+ in the brain and skeletal muscle cells of mammals (wikipedia). Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G072

   

Glucose 6-phosphate

{[(2R,3S,4S,5R)-3,4,5,6-tetrahydroxyoxan-2-yl]methoxy}phosphonic acid

C6H13O9P (260.0297178)


Glucose 6 phosphate (alpha-D-glucose 6 phosphate or G6P) is the alpha-anomer of glucose-6-phosphate. There are two anomers of glucose 6 phosphate, the alpha anomer and the beta anomer. Glucose 6 phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose-6-phosphate. (Stedman, 26th ed). Glucose-6-phosphate is a phosphorylated glucose molecule on carbon 6. When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways, glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to Fructose-6-phosphate and then phosphorylated to Fructose-1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (isomerase) can turn the molecule into glucose-1-phosphate. Glucose-1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose-6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase a during times of high stress or low blood glucose levels. -- Wikipedia [HMDB] Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. Glucose 6-phosphate (G6P) has two anomers: the alpha anomer and the beta anomer. Glucose 6-phosphate is an ester of glucose with phosphoric acid, made in the course of glucose metabolism by mammalian and other cells. It is a normal constituent of resting muscle and probably is in constant equilibrium with fructose 6-phosphate (Stedman, 26th ed). When glucose enters a cell, it is immediately phosphorylated to G6P. This is catalyzed with hexokinase enzymes, thus consuming one ATP. A major reason for immediate phosphorylation of the glucose is so that it cannot diffuse out of the cell. The phosphorylation adds a charged group so the G6P cannot easily cross cell membranes. G6P can travel down two metabolic pathways: glycolysis and the pentose phosphate pathway. In addition to the metabolic pathways, G6P can also be stored as glycogen in the liver if blood glucose levels are high. If the body needs energy or carbon skeletons for syntheses, G6P can be isomerized to fructose 6-phosphate and then phosphorylated to fructose 1,6-bisphosphate. Note, the molecule now has 2 phosphoryl groups attached. The addition of the 2nd phosphoryl group is an irreversible step, so once this happens G6P will enter glycolysis and be turned into pyruvate (ATP production occurs). If blood glucose levels are high, the body needs a way to store the excess glucose. After being converted to G6P, phosphoglucose mutase (an isomerase) can turn the molecule into glucose 1-phosphate. Glucose 1-phosphate can then be combined with uridine triphosphate (UTP) to form UDP-glucose. This reaction is driven by the hydrolysis of pyrophosphate that is released in the reaction. Now, the activated UDP-glucose can add to a growing glycogen molecule with the help of glycogen synthase. This is a very efficient storage mechanism for glucose since it costs the body only 1 ATP to store the 1 glucose molecule and virtually no energy to remove it from storage. It is important to note that glucose 6-phosphate is an allosteric activator of glycogen synthase, which makes sense because when the level of glucose is high the body should store the excess glucose as glycogen. On the other hand, glycogen synthase is inhibited when it is phosphorylated by protein kinase during times of high stress or low blood glucose levels. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 237 KEIO_ID G003; [MS2] KO009109 KEIO_ID G003

   

Tyramine

alpha-(4-Hydroxyphenyl)-beta-aminoethane

C8H11NO (137.0840596)


Tyramine is a monoamine compound derived from the amino acid tyrosine. Tyramine is metabolized by the enzyme monoamine oxidase. In foods, it is often produced by the decarboxylation of tyrosine during fermentation or decay. Foods containing considerable amounts of tyramine include fish, chocolate, alcoholic beverages, cheese, soy sauce, sauerkraut, and processed meat. A large dietary intake of tyramine can cause an increase in systolic blood pressure of 30 mmHg or more. Tyramine acts as a neurotransmitter via a G protein-coupled receptor with high affinity for tyramine called TA1. The TA1 receptor is found in the brain as well as peripheral tissues including the kidney. An indirect sympathomimetic, Tyramine can also serve as a substrate for adrenergic uptake systems and monoamine oxidase so it prolongs the actions of adrenergic transmitters. It also provokes transmitter release from adrenergic terminals. Tyramine is a biomarker for the consumption of cheese [Spectral] Tyramine (exact mass = 137.08406) and L-Methionine (exact mass = 149.05105) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Tyramine (exact mass = 137.08406) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics Acquisition and generation of the data is financially supported in part by CREST/JST. D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents IPB_RECORD: 267; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 5105 D049990 - Membrane Transport Modulators KEIO_ID T008 Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].

   

Pyroglutamic acid

(S)-(-)-gamma-Butyrolactam-gamma-carboxylic acid

C5H7NO3 (129.0425912)


Pyroglutamic acid (5-oxoproline) is a cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. It is formed nonenzymatically from glutamate, glutamine, and gamma-glutamylated peptides, but it can also be produced by the action of gamma-glutamylcyclotransferase on an L-amino acid. Elevated blood levels may be associated with problems of glutamine or glutathione metabolism. This compound is found in substantial amounts in brain tissue and other tissues in bound form, especially skin. It is also present in plant tissues. It is sold, over the counter, as a "smart drug" for improving blood circulation in the brain. Pyroglutamate in the urine is a biomarker for the consumption of cheese. When present in sufficiently high levels, pyroglutamic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of pyroglutamic acid are associated with at least five inborn errors of metabolism including 5-oxoprolinuria, 5-oxoprolinase deficiency, glutathione synthetase deficiency, hawkinsinuria, and propionic acidemia. Pyroglutamic acid is an organic acid. Abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. It has been shown that pyroglutamic acid releases GABA from the cerebral cortex and displays anti-anxiety effects in a simple approach-avoidance conflict situation in the rat. In clinical pharmacology experiments, pyroglutamic acid significantly shortens the plasma half-life of ethanol during acute intoxication. Found in vegetables, fruits and molasses. A cyclized derivative of L-glutamic acid. It is an uncommon amino acid derivative in which the free amino group of glutamic acid cyclizes to form a lactam. Pyroglutamate in the urine is a biomarker for the consumption of cheese C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent

   

3-Methoxytyramine

3-Methoxy-4-hydroxyphenylethyl amine

C9H13NO2 (167.09462380000002)


3-methoxytyramine, also known as 4-(2-amino-Ethyl)-2-methoxy-phenol or 3-O-Methyldopamine, is classified as a member of the Methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 3-methoxytyramine is considered to be slightly soluble (in water) and acidic. 3-methoxytyramine can be found primarily in human brain and most tissues tissues; and in blood, cerebrospinal fluid (csf) or urine. Within a cell, 3-methoxytyramine is primarily located in the cytoplasm The O-methylated derivative of dopamine. Dopamine is methylated by catechol-O-methyltransferase (COMT) to make 3-Methoxytyramine. This compound can be broken down to homovanillic acid by monoamine oxidase and aldehyde dehydrogenase. Elevated concentrations of this compound are indicated for a variety of brain and carcinoid tumors as well as certain mental disorders. [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Methoxytyramine, a well known extracellular metabolite of 3-hydroxytyramine/dopamine, is a neuromodulator.

   

Uracil

1,2,3,4-tetrahydropyrimidine-2,4-dione

C4H4N2O2 (112.0272764)


Uracil, also known as U, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Uracil is a common naturally occurring pyrimidine found in RNA. It base pairs with adenine and is replaced by thymine in DNA. Uracil is one of the four nucleobases in RNA that are represented by the letters A, G, C and U. Methylation of uracil produces thymine. The name "uracil" was coined in 1885 by the German chemist Robert Behrend, who was attempting to synthesize derivatives of uric acid. Originally discovered in 1900, uracil was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. Uracil exists in all living species, ranging from bacteria to plants to humans. Uracils use in the body is to help carry out the synthesis of many enzymes necessary for cell function through bonding with riboses and phosphates. Uracil serves as an allosteric regulator and a coenzyme for many important biochemical reactions. Uracil (via the nucleoside uridine) can be phosphorylated by various kinases to produce UMP, UDP and UTP. UDP and UTP regulate carbamoyl phosphate synthetase II (CPSase II) activity in animals. Uracil is also involved in the biosynthesis of polysaccharides and in the transport of sugars containing aldehydes. Within humans, uracil participates in a number of enzymatic reactions. In particular, uracil and ribose 1-phosphate can be biosynthesized from uridine; which is mediated by the enzyme uridine phosphorylase 2. In addition, uracil can be converted into dihydrouracil through the action of the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. Uracil is rarely found in DNA, and this may have been an evolutionary change to increase genetic stability. This is because cytosine can deaminate spontaneously to produce uracil through hydrolytic deamination. Therefore, if there were an organism that used uracil in its DNA, the deamination of cytosine (which undergoes base pairing with guanine) would lead to formation of uracil (which would base pair with adenine) during DNA synthesis. Uracil can be used for drug delivery and as a pharmaceutical. When elemental fluorine reacts with uracil, it produces 5-fluorouracil. 5-Fluorouracil is an anticancer drug (antimetabolite) that mimics uracil during the nucleic acid (i.e. RNA) synthesis and transcription process. Because 5-fluorouracil is similar in shape to, but does not undergo the same chemistry as, uracil, the drug inhibits RNA replication enzymes, thereby blocking RNA synthesis and stopping the growth of cancerous cells. Uracil is a common and naturally occurring pyrimidine derivative. Originally discovered in 1900, it was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. It is a planar, unsaturated compound that has the ability to absorb light. Uracil. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=66-22-8 (retrieved 2024-07-01) (CAS RN: 66-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.

   

Oleic acid

Emersol 221 low titer white oleic acid

C18H34O2 (282.2558664)


Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Propranolol

[2-hydroxy-3-(naphthalen-1-yloxy)propyl](propan-2-yl)amine

C16H21NO2 (259.1572206)


Propranolol is a widely used non-cardioselective beta-adrenergic antagonist. Propranolol is used in the treatment or prevention of many disorders including acute myocardial infarction, arrhythmias, angina pectoris, hypertension, hypertensive emergencies, hyperthyroidism, migraine, pheochromocytoma, menopause, and anxiety. --PubChem; Propranolol is a highly lipophilic drug achieving high concentrations in the brain. The duration of action of a single oral dose is longer than the half-life indicates and may be up to 12 hours, if the single dose is high enough (e.g. 80 mg). Effective plasma concentrations are between 10-100 ng/mL. -- Wikipedia; It was the first successful beta blocker developed. Propranolol is commonly marketed by Wyeth under the trade name Inderal. A widely used non-cardioselective beta-adrenergic antagonist. Propranolol is used in the treatment or prevention of many disorders including acute myocardial infarction, arrhythmias, angina pectoris, hypertension, hypertensive emergencies, hyperthyroidism, migraine, pheochromocytoma, menopause, and anxiety. --PubChem; Propranolol is a highly lipophilic drug achieving high concentrations in the brain. The duration of action of a single oral dose is longer than the half-life indicates and may be up to 12 hours, if the single dose is high enough (e.g. 80 mg). Effective plasma concentrations are between 10-100 ng/mL. -- Wikipedia; It was the first successful beta blocker developed. Propranolol is commonly marketed by Wyeth under the trade name Inderal. [HMDB] C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 171 KEIO_ID P192; [MS2] KO009171 KEIO_ID P192 Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist, has high affinity for the β1AR and β2AR with Ki values of 1.8 nM and 0.8 nM, respectively[1]. Propranolol inhibits [3H]-DHA binding to rat brain membrane preparation with an IC50 of 12 nM[2]. Propranolol is used for the study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy[3]. Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist, has high affinity for the β1AR and β2AR with Ki values of 1.8 nM and 0.8 nM, respectively[1]. Propranolol inhibits [3H]-DHA binding to rat brain membrane preparation with an IC50 of 12 nM[2]. Propranolol is used for the study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy[3]. Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist, has high affinity for the β1AR and β2AR with Ki values of 1.8 nM and 0.8 nM, respectively[1]. Propranolol inhibits [3H]-DHA binding to rat brain membrane preparation with an IC50 of 12 nM[2]. Propranolol is used for the study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy[3].

   

4-Methoxybenzaldehyde

4-anisaldehyde, 1,2,3,4,5,6-(14)C6-labeled

C8H8O2 (136.0524268)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Pyruvic acid

alpha-Ketopropanoic acid

C3H4O3 (88.0160434)


Pyruvic acid, also known as 2-oxopropanoic acid or alpha-ketopropionic acid, belongs to alpha-keto acids and derivatives class of compounds. Those are organic compounds containing an aldehyde substituted with a keto group on the adjacent carbon. Thus, pyruvic acid is considered to be a fatty acid lipid molecule. Pyruvic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Pyruvic acid can be synthesized from propionic acid. Pyruvic acid is also a parent compound for other transformation products, including but not limited to, 4-hydroxy-3-iodophenylpyruvate, 3-acylpyruvic acid, and methyl pyruvate. Pyruvic acid can be found in a number of food items such as kumquat, groundcherry, coconut, and prunus (cherry, plum), which makes pyruvic acid a potential biomarker for the consumption of these food products. Pyruvic acid can be found primarily in most biofluids, including sweat, blood, urine, and feces, as well as throughout most human tissues. Pyruvic acid exists in all living species, ranging from bacteria to humans. In humans, pyruvic acid is involved in several metabolic pathways, some of which include glycogenosis, type IB, glycolysis, urea cycle, and gluconeogenesis. Pyruvic acid is also involved in several metabolic disorders, some of which include non ketotic hyperglycinemia, pyruvate dehydrogenase complex deficiency, fructose-1,6-diphosphatase deficiency, and 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency. Moreover, pyruvic acid is found to be associated with anoxia, schizophrenia, fumarase deficiency, and meningitis. Pyruvic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pyruvic acid is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation . Those taking large doses of supplemental pyruvate—usually greater than 5 grams daily—have reported gastrointestinal symptoms, including abdominal discomfort and bloating, gas and diarrhea. One child receiving pyruvate intravenously for restrictive cardiomyopathy died (DrugBank). Pyruvate serves as a biological fuel by being converted to acetyl coenzyme A, which enters the tricarboxylic acid or Krebs cycle where it is metabolized to produce ATP aerobically. Energy can also be obtained anaerobically from pyruvate via its conversion to lactate. Pyruvate injections or perfusions increase contractile function of hearts when metabolizing glucose or fatty acids. This inotropic effect is striking in hearts stunned by ischemia/reperfusion. The inotropic effect of pyruvate requires intracoronary infusion. Among possible mechanisms for this effect are increased generation of ATP and an increase in ATP phosphorylation potential. Another is activation of pyruvate dehydrogenase, promoting its own oxidation by inhibiting pyruvate dehydrogenase kinase. Pyruvate dehydrogenase is inactivated in ischemia myocardium. Yet another is reduction of cytosolic inorganic phosphate concentration. Pyruvate, as an antioxidant, is known to scavenge such reactive oxygen species as hydrogen peroxide and lipid peroxides. Indirectly, supraphysiological levels of pyruvate may increase cellular reduced glutathione (T3DB). Pyruvic acid or pyruvate is a simple alpha-keto acid. It is a three-carbon molecule containing a carboxylic acid group and a ketone functional group. Pyruvate is the simplest alpha-keto acid and according to official nomenclature by IUPAC, it is called alpha-keto propanoic acid. Like other keto acids, pyruvic acid can tautomerize from its ketone form to its enol form, containing a double bond and an alcohol. Pyruvate is found in all living organisms ranging from bacteria to plants to humans. It is intermediate compound in the metabolism of carbohydrates, proteins, and fats. Pyruvate is a key intermediate in several metabolic pathways throughout the cell. In particular, pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. Pyruvic acid supplies energy to cells through the citric acid cycle (TCA or Krebs cycle) when oxygen is present (aerobic respiration), and alternatively ferments to produce lactate when oxygen is lacking (lactic acid). In glycolysis, phosphoenolpyruvate (PEP) is converted to pyruvate by pyruvate kinase. This reaction is strongly exergonic and irreversible. In gluconeogenesis, it takes two enzymes, pyruvate carboxylase and PEP carboxykinase, to catalyze the reverse transformation of pyruvate to PEP. Pyruvic acid is also a metabolite of Corynebacterium (PMID: 27872963). Pyruvic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-17-3 (retrieved 2024-07-01) (CAS RN: 127-17-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.

   

Urea

Carbonyl diamide

CH4N2O (60.0323614)


Urea is a highly soluble organic compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids. Urea is formed in a cyclic pathway known simply as the urea cycle. In this cycle, amino groups donated by ammonia and L-aspartate are converted to urea. Urea is essentially a waste product; it has no physiological function. It is dissolved in blood (in humans in a concentration of 2.5 - 7.5 mmol/liter) and excreted by the kidney in the urine. In addition, a small amount of urea is excreted (along with sodium chloride and water) in human sweat. Urea is found to be associated with primary hypomagnesemia, which is an inborn error of metabolism. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis Formulation aid. Cattle feed supplement. Urea is found in many foods, some of which are globe artichoke, hickory nut, hard wheat, and cherry tomato. D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.

   

Ethanolamine

Envision conditioner PDD 9020

C2H7NO (61.0527612)


Ethanolamine (MEA), also known as monoethanolamine, aminoethanol or glycinol, belongs to the class of organic compounds known as 1,2-aminoalcohols (or simply aminoalcohols). These are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Ethanolamine is a colorless, viscous liquid with an odor reminiscent of ammonia. In pharmaceutical formulations, ethanolamine is used primarily for buffering or preparation of emulsions. Ethanolamine can also be used as pH regulator in cosmetics. Biologically, ethanolamine is an initial precursor for the biosynthesis of two primary phospholipid classes, phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In this regard, ethanolamine is the second-most-abundant head group for phospholipids. Ethanolamine serves as a precursor for a variety of N-acylethanolamines (NAEs). These are molecules that modulate several animal and plant physiological processes such as seed germination, plant–pathogen interactions, chloroplast development and flowering (PMID: 30190434). Ethanolamine, when combined with arachidonic acid (C20H32O2; 20:4, ω-6), can also form the endocannabinoid anandamide. Ethanolamine can be converted to phosphoethanolamine via the enzyme known as ethanolamine kinase. the two substrates of this enzyme are ATP and ethanolamine, whereas its two products are ADP and O-phosphoethanolamine. In most plants ethanolamine is biosynthesized by decarboxylation of serine via a pyridoxal 5-phosphate-dependent l-serine decarboxylase (SDC). Ethanolamine exists in all living species, ranging from bacteria to plants to humans. Ethanolamine has been detected, but not quantified in, several different foods, such as narrowleaf cattails, mung beans, blackcurrants, white cabbages, and bilberries. Ethanolamine, also known as aminoethanol or beta-aminoethyl alcohol, is a member of the class of compounds known as 1,2-aminoalcohols. 1,2-aminoalcohols are organic compounds containing an alkyl chain with an amine group bound to the C1 atom and an alcohol group bound to the C2 atom. Ethanolamine is soluble (in water) and an extremely weak acidic compound (based on its pKa). Ethanolamine can be found in a number of food items such as daikon radish, caraway, muscadine grape, and lemon grass, which makes ethanolamine a potential biomarker for the consumption of these food products. Ethanolamine can be found primarily in most biofluids, including urine, cerebrospinal fluid (CSF), feces, and saliva, as well as throughout most human tissues. Ethanolamine exists in all living species, ranging from bacteria to humans. In humans, ethanolamine is involved in several metabolic pathways, some of which include phosphatidylcholine biosynthesis PC(20:3(5Z,8Z,11Z)/18:3(6Z,9Z,12Z)), phosphatidylcholine biosynthesis PC(22:5(7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)), phosphatidylcholine biosynthesis PC(20:4(5Z,8Z,11Z,14Z)/20:0), and phosphatidylethanolamine biosynthesis PE(11D5/9M5). Moreover, ethanolamine is found to be associated with maple syrup urine disease and propionic acidemia. Ethanolamine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Ethanolamine, also called 2-aminoethanol or monoethanolamine (often abbreviated as ETA or MEA), is an organic chemical compound with the formula HOCH2CH2NH2. The molecule is both a primary amine and a primary alcohol (due to a hydroxyl group). Ethanolamine is a colorless, viscous liquid with an odor reminiscent to that of ammonia. Its derivatives are widespread in nature; e.g., lipids . C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist KEIO_ID E023

   

Dihydroxyacetone phosphate

1,3-Dihydroxy-2-propanone monodihydrogen phosphoric acid

C3H7O6P (169.9980252)


An important intermediate in lipid biosynthesis and in glycolysis.; Dihydroxyacetone phosphate (DHAP) is a biochemical compound involved in many reactions, from the Calvin cycle in plants to the ether-lipid biosynthesis process in Leishmania mexicana. Its major biochemical role is in the glycolysis metabolic pathway. DHAP may be referred to as glycerone phosphate in older texts.; Dihydroxyacetone phosphate lies in the glycolysis metabolic pathway, and is one of the two products of breakdown of fructose 1,6-phosphate, along with glyceraldehyde 3-phosphate. It is rapidly and reversibly isomerised to glyceraldehyde 3-phosphate.; In the Calvin cycle, DHAP is one of the products of the sixfold reduction of 1,3-bisphosphoglycerate by NADPH. It is also used in the synthesis of sedoheptulose 1,7-bisphosphate and fructose 1,6-bisphosphate which are both used to reform ribulose 5-phosphate, the key carbohydrate of the Calvin cycle. Dihydroxyacetone phosphate is found in many foods, some of which are sesame, mexican groundcherry, parsley, and common wheat. [Spectral] Glycerone phosphate (exact mass = 169.99802) and beta-D-Fructose 1,6-bisphosphate (exact mass = 339.99605) and NADP+ (exact mass = 743.07545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dihydroxyacetone phosphate is an important intermediate in lipid biosynthesis and in glycolysis. Dihydroxyacetone phosphate is found to be associated with transaldolase deficiency, which is an inborn error of metabolism. Dihydroxyacetone phosphate has been identified in the human placenta (PMID: 32033212). KEIO_ID D014

   

Glycerol

propane-1,2,3-triol

C3H8O3 (92.0473418)


Glycerol or glycerin is a colourless, odourless, viscous liquid that is sweet-tasting and mostly non-toxic. It is widely used in the food industry as a sweetener and humectant and in pharmaceutical formulations. Glycerol is an important component of triglycerides (i.e. fats and oils) and of phospholipids. Glycerol is a three-carbon substance that forms the backbone of fatty acids in fats. When the body uses stored fat as a source of energy, glycerol and fatty acids are released into the bloodstream. The glycerol component can be converted into glucose by the liver and provides energy for cellular metabolism. Normally, glycerol shows very little acute toxicity and very high oral doses or acute exposures can be tolerated. On the other hand, chronically high levels of glycerol in the blood are associated with glycerol kinase deficiency (GKD). GKD causes the condition known as hyperglycerolemia, an accumulation of glycerol in the blood and urine. There are three clinically distinct forms of GKD: infantile, juvenile, and adult. The infantile form is the most severe and is associated with vomiting, lethargy, severe developmental delay, and adrenal insufficiency. The mechanisms of glycerol toxicity in infants are not known, but it appears to shift metabolism towards chronic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart, liver, and kidney abnormalities, seizures, coma, and possibly death. These are also the characteristic symptoms of untreated GKD. Many affected children with organic acidemias experience intellectual disability or delayed development. Patients with the adult form of GKD generally have no symptoms and are often detected fortuitously. Glycerol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-81-5 (retrieved 2024-07-01) (CAS RN: 56-81-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

6-Phosphogluconic acid

(2R,3S,4R,5R)-2,3,4,5-tetrahydroxy-6-(phosphonooxy)hexanoic acid

C6H13O10P (276.0246328)


6-phosphogluconic acid, also known as 6-phospho-D-gluconate or D-gluconic acid 6-(dihydrogen phosphate), is a member of the class of compounds known as monosaccharide phosphates. Monosaccharide phosphates are monosaccharides comprising a phosphated group linked to the carbohydrate unit. 6-phosphogluconic acid is soluble (in water) and a moderately acidic compound (based on its pKa). 6-phosphogluconic acid can be found in a number of food items such as purple mangosteen, nopal, chicory leaves, and common sage, which makes 6-phosphogluconic acid a potential biomarker for the consumption of these food products. 6-phosphogluconic acid can be found primarily in blood, cellular cytoplasm, and saliva, as well as throughout most human tissues. 6-phosphogluconic acid exists in all living species, ranging from bacteria to humans. In humans, 6-phosphogluconic acid is involved in the pentose phosphate pathway. 6-phosphogluconic acid is also involved in few metabolic disorders, which include glucose-6-phosphate dehydrogenase deficiency, ribose-5-phosphate isomerase deficiency, transaldolase deficiency, and warburg effect. 6-phosphogluconic acid is formed by 6-phosphogluconolactonase, and acted upon by phosphogluconate dehydrogenase to produce ribulose 5-phosphate. It may also be acted upon by 6-phosphogluconate dehydratase to produce 2-keto-3-deoxy-6-phosphogluconate . 6-Phosphogluconic acid, also known as 6-phospho-D-gluconate or gluconic acid-6-phosphate, belongs to the class of organic compounds known as monosaccharide phosphates. These are monosaccharides comprising a phosphated group linked to the carbohydrate unit. 6-Phosphogluconic acid exists in all living species, ranging from bacteria to humans. Within humans, 6-phosphogluconic acid participates in a number of enzymatic reactions. In particular, 6-phosphogluconic acid can be biosynthesized from gluconolactone; which is mediated by the enzyme 6-phosphogluconolactonase. In addition, 6-phosphogluconic acid can be converted into D-ribulose 5-phosphate through the action of the enzyme 6-phosphogluconate dehydrogenase, decarboxylating. In humans, 6-phosphogluconic acid is involved in the metabolic disorder called the transaldolase deficiency pathway. Outside of the human body, 6-Phosphogluconic acid has been detected, but not quantified in several different foods, such as cascade huckleberries, common chokecherries, half-highbush blueberries, american cranberries, and okra. [Spectral] 6-Phospho-D-gluconate (exact mass = 276.02463) and Phosphoenolpyruvate (exact mass = 167.98237) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. KEIO_ID P031

   

Ethylamine

Ethylamine Hydrochloride

C2H7N (45.0578462)


Ethylamine, also known as 1-aminoethane or ethanamine, belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing an primary aliphatic amine group. Ethylamine exists in all living organisms, ranging from bacteria to humans. Ethylamine is an ammonia and fishy tasting compound. Ethylamine can be found found in a few different foods, such as barley, apples, and corns and in a lower concentration in white cabbages, wild carrots, and cabbages. Ethylamine has also been detected, but not quantified, in several different foods, such as black elderberries, common grapes, french plantains, soy beans, and spinachs. Ethylamine is a uremic toxin. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. Ethylamine is component of normal human urine it has been suggested that this short aliphatic chain may play a significant role in the central nervous system disturbances observe during hepatic and renal disease especially when the blood brain barrier is compromised. Found in foods and drinks KEIO_ID E025

   

beta-Glycerophosphoric acid

2-HYDROXY-1-(hydroxymethyl)ethyl dihydrogen phosphoric acid

C3H9O6P (172.01367439999999)


beta-Glycerophosphoric acid, also known as BGA or glycerol 2-phosphate, is a component of glycerolipid metabolism. It is formed in minor quanitites because the alpha glycerophosphorate is preferentially formed in this manner. beta-Glycerophosphoric acid is used as a biological buffer (Sigma-Aldrich). Glycerol-2-phosphate is a component of glycerolipid metabolism. It is formed in minor quanitites, as the alpha glycerophosphorate is preferentially formed in this manner. Also used as a biological buffer (Sigma-Aldrich) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Heptadecane

CH3-[CH2]15-CH3

C17H36 (240.2816856)


Heptadecane, also known as CH3-[CH2]15-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Heptadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an organic compound, an alkane hydrocarbon with the chemical formula C17H36. The most compact and branched isomer would be tetra-tert-butylmethane, but its existence is believed to be impossible due to steric hindrance. The name may refer to any of 24894 theoretically possible structural isomers, or to a mixture thereof. Heptadecane is an alkane tasting compound. heptadecane has been detected, but not quantified, in several different foods, such as lemon balms, coconuts, orange bell peppers, allspices, and pepper (c. annuum). This could make heptadecane a potential biomarker for the consumption of these foods. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. Indeed, it is believed to be the smallest "impossible" alkane. Heptadecane, also known as ch3-[ch2]15-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an alkane tasting compound and can be found in a number of food items such as papaya, orange bell pepper, pepper (spice), and red bell pepper, which makes heptadecane a potential biomarker for the consumption of these food products. Heptadecane can be found primarily in saliva. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes .

   

cis,cis-3-Carboxymuconic acid

buta-1,3-diene-1,2,4-tricarboxylic acid

C7H6O6 (186.01643760000002)


   

Acetylpyruvate

2,4-Dioxopentanoate

C5H6O4 (130.0266076)


   

Propylene glycol

(R)-2-Hydroxy-1-propanol

C3H8O2 (76.0524268)


Propylene glycol (CAS: 57-55-6), also known as 1,2-propanediol, is an organic compound (a diol alcohol), usually a tasteless, odourless, and colourless clear oily liquid that is hygroscopic and miscible with water, acetone, and chloroform. It is manufactured by the hydration of propylene oxide. Propylene glycol is used as a solvent for intravenous, oral, and topical pharmaceutical preparations It is generally considered safe. However, in large doses, it can be toxic, especially if given over a short period of time. Intravenous lorazepam contains the largest amount of propylene glycol of commonly used drugs. In adults with normal liver and kidney function, the terminal half-life of propylene glycol ranges from 1.4 to 3.3 hours. Propylene glycol is metabolized by the liver to form lactate, acetate, and pyruvate. The nonmetabolized drug is excreted in the urine mainly as the glucuronide conjugate, approximately 12 to 45 percent is excreted unchanged in urine. Renal clearance decreases as the dose administered increases (390 ml/minute/173 m2 at a dose of 5 g/day but only 144 ml/minute/173 m2 at a dose of 21 g/day). These data suggest that renal clearance declines at higher propylene glycol doses because of the saturation of proximal tubular secretion of the drug. As an acceptable level of propylene glycol has not been defined, the clinical implication of a propylene glycol level is unclear. The World Health Organization (WHO) recommends a maximum consumption of 25 mg/kg/day (1.8 g/day for a 75 kg male) of propylene glycol when used as a food additive, but this limit does not address its use as a drug solvent. No maximum dose is recommended in the literature for intravenous therapy with propylene glycol. Intoxication occurs at much higher doses than the WHO dose limit and is exclusive to pharmacologic exposure. Propylene glycol toxicity includes the development of serum hyperosmolality, lactic acidosis, and kidney failure. It has been suggested that proximal tubular necrosis is the cause of acute kidney injury from propylene glycol. Along these lines, proximal tubular cell injury occurs in cultured human cells exposed to propylene glycol. Acute tubular necrosis was described with propylene glycol toxicity in a case of concomitant administration of intravenous lorazepam and trimethoprim sulfamethoxazole. Propylene glycol induced intoxication can also mimic sepsis or systemic inflammatory response syndrome (SIRS). Patients suspected of having sepsis with negative cultures should be evaluated for propylene glycol toxicity if they have been exposed to high dose lorazepam or other medications containing this solvent (PMID:17555487). Propylene glycol is an anticaking agent, antioxidant, dough strengthener, emulsifier, flavouring agent, formulation aid, humectant, solvent, preservative, stabiliser, hog/poultry scald agent, and surface active agent. It is found in foods such as roasted sesame seeds, oats, truffle and other mushrooms. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

Pentadecane

CH3-[CH2]13-CH3

C15H32 (212.2503872)


Pentadecane, also known as ch3-[ch2]13-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentadecane is considered to be a hydrocarbon lipid molecule. Pentadecane is an alkane and waxy tasting compound and can be found in a number of food items such as dill, papaya, yellow bell pepper, and pepper (c. annuum), which makes pentadecane a potential biomarker for the consumption of these food products. Pentadecane can be found primarily in saliva. Pentadecane is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pentadecane is an alkane hydrocarbon with the chemical formula C15H32 . Pentadecane belongs to the family of Acyclic Alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2

   

3-phosphoglycerate

3-(Dihydrogen phosphoric acid)glyceric acid

C3H7O7P (185.9929402)


3-Phosphoglyceric acid, also known as 3PG, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. 3PG is the conjugate acid of glycerate 3-phosphate (GP or G3P). It is a solid that is soluble in water. 3-Phosphoglyceric acid exists in all living species, ranging from bacteria to humans. The glycerate is a biochemically significant metabolic intermediate in both glycolysis and the Calvin cycle. This is the first compound formed during the C3 or Calvin cycle. Glycerate 3-phosphate is also a precursor for serine, which, in turn, can create cysteine and glycine through the homocysteine cycle. Within humans, 3-phosphoglyceric acid participates in a number of enzymatic reactions. In particular, 3-phosphoglyceric acid can be biosynthesized from glyceric acid 1,3-biphosphate, which is mediated by the enzyme phosphoglycerate kinase 1. In addition, 3PG can be converted into 2-phospho-D-glyceric acid, which is catalyzed by the enzyme phosphoglycerate mutase 2. 3-phosphoglyceric acid is involved in the Warburg effect (aerobic glycolysis), a metabolic shift that is a hallmark of cancer (PMID: 29362480). 3-phosphoglyceric acid (3PG) is a 3-carbon molecule that is a metabolic intermediate in both glycolysis and the Calvin cycle. This chemical is often termed PGA when referring to the Calvin cycle. In the Calvin cycle, two glycerate 3-phosphate molecules are reduced to form two molecules of glyceraldehyde 3-phosphate (GALP). (wikipedia) [HMDB] KEIO_ID P028

   

7-Methylxanthine

7-methyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione

C6H6N4O2 (166.0490736)


7-Methylxanthine is a methyl derivative of xanthine, found occasionally in human urine. 7-Methylxanthine is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites, including 7-methylxanthine. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. (PMID:11712316, 15833286, 3506820, 15013152). Found in sugar cane and other biol. sources, a urinary metabolite of caffeine in man 7-Methylxanthine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=552-62-5 (retrieved 2024-07-16) (CAS RN: 552-62-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 7-Methylxanthine, a methyl derivative of xanthine, is one of the purine components in urinary calculi.

   

DL-2-Aminopropionic acid

2-aminopropanoic acid

C3H7NO2 (89.0476762)


(alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein), also known as ALA or 2-Aminopropanoic acid, is classified as an alanine or an Alanine derivative. Alanines are compounds containing alanine or a derivative thereof resulting from reaction of alanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) is considered to be soluble (in water) and acidic. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) can be synthesized from propionic acid. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) can be synthesized into alanine derivative. (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform A (protein) is an odorless tasting compound found in Green bell peppers, Green zucchinis, Italian sweet red peppers, and Red bell peppers Dietary supplement, nutrient, sweetening flavour enhancer in pickling spice mixts. DL-alanine, an amino acid, is the racemic compound of L- and D-alanine. DL-alanine is employed both as a reducing and a capping agent, used with silver nitrate aqueous solutions for the production of nanoparticles. DL-alanine can be used for the research of transition metals chelation, such as Cu(II), Zn(II), Cd(11). DL-alanine, a sweetener, is classed together with glycine, and sodium saccharin. DL-alanine plays a key role in the glucose-alanine cycle between tissues and liver[1][2][3][4][5][6].

   

Glycerophosphoric acid

alpha-Glycerophosphoric acid, 1,2,3-propanetriol-1-(18)O,3-(dihydrogen phosphate)-labeled

C3H9O6P (172.01367439999999)


Glycerol 3-phosphate is a chemical intermediate in the glycolysis metabolic pathway. It is commonly confused with the similarly named glycerate 3-phosphate or glyceraldehyde 3-phosphate. Glycerol 3-phosphate is produced from glycerol, the triose sugar backbone of triglycerides and glycerophospholipids, by the enzyme glycerol kinase. Glycerol 3-phospate may then be converted by dehydrogenation to dihydroxyacetone phosphate (DHAP) by the enzyme glycerol-3-phosphate dehydrogenase. DHAP can then be rearranged into glyceraldehyde 3-phosphate (GA3P) by triose phosphate isomerase (TIM), and feed into glycolysis. The glycerol 3-phosphate shuttle is used to rapidly regenerate NAD+ in brain and skeletal muscle cells of mammals (wikipedia). [HMDB]

   

propylene glycol

(R)-(-)-1,2-Propanediol

C3H8O2 (76.0524268)


D010592 - Pharmaceutic Aids > D014677 - Pharmaceutical Vehicles D012997 - Solvents (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

D-Mannose

D-(+)-Mannose,from wood

C6H12O6 (180.0633852)


D-Mannose in its six-membered ring form. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins. D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins.

   

Leucine

2-Amino-4-methylpentanoic acid

C6H13NO2 (131.0946238)


A branched-chain amino acid that consists of glycine in which one of the hydrogens attached to the alpha-carbon is substituted by an isobutyl group. Leucine (symbol Leu or L)[3] is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG. Leucine is named after the Greek word for "white": λευκός (leukós, "white"), after its common appearance as a white powder, a property it shares with many other amino acids.[4] Like valine and isoleucine, leucine is a branched-chain amino acid. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other.[5] It is the most important ketogenic amino acid in humans.[6] Leucine and β-hydroxy β-methylbutyric acid, a minor leucine metabolite, exhibit pharmacological activity in humans and have been demonstrated to promote protein biosynthesis via the phosphorylation of the mechanistic target of rapamycin (mTOR).[7][8] L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

HEPTACOSANE

HEPTACOSANE

C27H56 (380.4381776)


A straight-chain alkane with 27 carbon atoms.

   

2-Hydroxy-3-methylbutyric acid

2-Hydroxyisovaleric acid, monosodium salt, (S)-isomer

C5H10O3 (118.06299100000001)


2-Hydroxy-3-methylbutyric acid (also known as 2-hydroxyisovaleric acid) is a metabolite found in the urine of patients with phenylketonuria (PMID: 7978272), methylmalonic acidemia, propionic acidemia, 3-ketothiolase deficiency, isovaleric acidemia, 3-methylcrotonylglycemia, 3-hydroxy-3-methylglutaric acidemia, multiple carboxylase deficiency, glutaric aciduria, ornithine transcarbamylase deficiency, glyceroluria, tyrosinemia type I, galactosemia, and maple syrup urine disease (PMID: 11048741). 2-Hydroxyisovaleric acid has also been identified in the urine of patients with lactic acidosis and ketoacidosis (PMID: 884872), and in the urine of severely asphyxiated babies (PMID: 1610944). 2-Hydroxyisovaleric acid originates mainly from ketogenesis and from the metabolism of valine, leucine, and isoleucine (PMID: 6434570). 2-Hydroxy-3-methylbutyric acid has been identified in the human placenta (PMID: 32033212). 2-Hydroxy-3-methylbutyric acid is a metabolite found in the urine of patients with Phenylketonuria (PMID 7978272), Methylmalonic acidemia, Propionic acidemia, 3-Ketothiolase deficiency, Isovaleric acidemia, 3-Methylcrotonylglycemia, 3-Hydroxy-3-methylglutaric acidemia, Multiple carboxylase deficiency, Glutaric aciduria, Ornithine transcarbamylase deficiency, glyceroluria, Tyrosinemia type 1, Galactosemia, and Maple syrup urine disease (PMID 11048741) [HMDB] 2-Hydroxy-3-methylbutanoic acid is a close structure analogue of GHB, which is a naturally occurring neurotransmitter and a psychoactive agent.

   

trans-trans-Muconic acid

trans,trans-Buta-1,3-diene-1,4-dicarboxylic acid

C6H6O4 (142.0266076)


trans,trans-Muconic acid is a urinary metabolite of benzene and has been used as a biomarker of exposure to benzene in humans exposed to levels as low as 1 ppm. However, muconic acid may also be derived from sorbic acid and its salts. Dietary supplementation with 500 mg sorbic acid significantly increases the urinary trans,trans-muconic acid excretion. Under study conditions, 0.12\\\\% of the sorbic acid dose is excreted in urine as trans,trans-muconic acid thereby indicating that a typical dietary intake of 6-30 mg/day of sorbic acid accounts for 10-50\\\\% of the background of trans,trans-muconic acid excretion in nonsmokers, and for 5-25\\\\% in smokers (PMID: 8021961, 1487326, 9137998, Int Arch Occup Environ Health. 1997;69(4):247-51.). trans,trans-Muconic acid has been found to be a metabolite in Escherichia coli and Pseudomonas putida (PMID: 26360870). cis,cis-Muconic acid, a metabolic intermediate of Klebsiella pneumonia, can be converted to adipic acid and terephthalic acid, which are important monomers of synthetic polymers. cis,cis-Muconic acid is also a biochemical material that can be used for the production of various plastics and polymers and is particularly gaining attention as an adipic acid precursor for the synthesis of nylon-6,6[1][2]. trans-trans-Muconic acid is a urinary metabolite of benzene and has been used as a biomarker of exposure to benzene in human.

   

Levoglucosan

6,8-Dioxabicyclo[3.2.1]octane b-delta-glucopyranose deriv.

C6H10O5 (162.052821)


Levoglucosan is an anhydrohexose that is the 1,6-anhydro-derivative of beta-D-glucopyranose. It is formed from the pyrolysis of carbohydrates, such as starch and cellulose. As a result, levoglucosan is often used as a chemical tracer for biomass burning in atmospheric chemistry studies, particularly with respect to airborne particulate matter. Levoglucosan in urine has been shown to be highly correlated with regional fires and as a biomarker for wood smoke exposure (PMID: 19165390). This is because the gas emitted by the pyrolysis of wood (biomass) contains significant amounts of levoglucosan. The hydrolysis of levoglucosan generates the fermentable sugar glucose, and therefore lignocellulosic material exhibits great potential as a renewable feedstock for the production of bioethanol. Levoglucosan can also be utilized in the synthesis of chiral polymers such as unhydrolysable glucose polymers. Levoglucosan is also produced via caramelization of sugar. Consumption of caramel or caramel-containing sweets can lead to a short-term 5X increase in urinary levels of levoglucosan (from 20 uM/mM creatinine to 100 uM/mM creatinine) (PMID: 19707249). Urinary levoglucosan levels increase within 2 h of caramel consumption and return to pre-exposure levels within 24 h. These data suggest that diet is a major factor in determining urinary levoglucosan levels and that recent dietary history needs to be taken into account to use levoglucosan as a marker for wood smoke exposure. Excretory levels of levoglucosan vary widely from zero up to 5.3 mmol/L (PMID: 3757263, 16448658, 16317539). Levoglucosan (1,6-Anhydro-β-D-glucopyranose) is an anhydrosugar produced through glucan pyrolysis and is widely found in nature[1].

   

Eicosane

CH3-[CH2]18-CH3

C20H42 (282.3286332)


Eicosane, also known as ch3-[ch2]18-ch3 or octyldodecane, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, eicosane is considered to be a hydrocarbon lipid molecule. Eicosane is an alkane and waxy tasting compound and can be found in a number of food items such as linden, papaya, dill, and lemon balm, which makes eicosane a potential biomarker for the consumption of these food products. Eicosane can be found primarily in feces and saliva. Icosanes size, state or chemical inactivity does not exclude it from the traits its smaller alkane counterparts have. It is a colorless, non-polar molecule, nearly unreactive except when it burns. It is less dense than and insoluble in water. Its non-polar trait means it can only perform weak intermolecular bonding (hydrophobic/van der Waals forces) . Eicosane, also known as CH3-[CH2]18-CH3 or octyldodecane, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Eicosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, eicosane is considered to be a hydrocarbon lipid molecule. Eicosane is an alkane and waxy tasting compound. Eicosane is found, on average, in the highest concentration within lemon balms. Eicosane has also been detected, but not quantified, in several different foods, such as allspices, papaya, coconuts, lindens, and hyssops. This could make eicosane a potential biomarker for the consumption of these foods. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2.

   

Octadecane

Octadecane, 1-(14)C-labeled CPD

C18H38 (254.2973348)


Octadecane, also known as CH3-[CH2]16-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Octadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, octadecane is considered to be a hydrocarbon lipid molecule. Octadecane is an alkane tasting compound. Octadecane has been detected, but not quantified, in several different foods, such as papaya, corianders, sunflowers, kohlrabis, and parsnips. Found in hop oil and other plant sources. Isolated from Piper longum (long pepper). Octadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material[1].

   

2,4-Dihydroxybutanoic acid

2,4-Dihydroxy-butyric acid

C4H8O4 (120.0422568)


2,4-Dihydroxybutanoic acid or 3-Deoxytetronic acid is usually absent in normal human urine extracts or in only trace constituents in neonates. (PMID 1192581) However, various cases of succinic semialdehyde dehydrogenase deficiency have shown consistently increased amounts of this metabolite. (PMID 3126356) [HMDB] 2,4-Dihydroxybutanoic acid or 3-Deoxytetronic acid is usually absent in normal human urine extracts or in only trace constituents in neonates. (PMID 1192581) However, various cases of succinic semialdehyde dehydrogenase deficiency have shown consistently increased amounts of this metabolite. (PMID 3126356).

   

allo-Inositol

(1R,2R,3S,4R,5S,6S)-Cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0633852)


allo-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol.

   

Heptacosane

CH3-[CH2]25-CH3

C27H56 (380.4381776)


Heptacosane, also known as CH3-[CH2]25-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and consist entirely of hydrogen atoms and saturated carbon atoms. Thus, heptacosane is a hydrocarbon lipid molecule, is very hydrophobic, practically insoluble in water, and relatively neutral. Heptacosane has been detected in avocado, sunflowers, peachs, sweet cherries, and wild carrots. This could make heptacosane a potential biomarker for the consumption of these foods. Heptacosane, in addition to other flavonoids, alkaloids and sugars, extracted from the root of Trichosanthes dioica, exhibited antimicrobial activity against Proteus mirabilis and Bacillus subtilis http://www.phytojournal.com/archives/?year=2016&vol=5&issue=5&part=F&ArticleId=985 Heptacosane, also known as ch3-[ch2]25-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heptacosane is considered to be a hydrocarbon lipid molecule. Heptacosane can be found in a number of food items such as wild carrot, linden, sweet cherry, and papaya, which makes heptacosane a potential biomarker for the consumption of these food products. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions .

   

4-Methyltridecane

4-methyltridecane

C14H30 (198.234738)


4-methyltridecane is a member of the class of compounds known as branched alkanes. Branched alkanes are acyclic branched hydrocarbons having the general formula CnH2n+2. 4-methyltridecane can be found in a number of food items such as pepper (c. annuum), green bell pepper, red bell pepper, and pepper (c. frutescens), which makes 4-methyltridecane a potential biomarker for the consumption of these food products.

   

Leucine

L-Leucine

C6H13NO2 (131.0946238)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

FA(16:1)

cis-9-hexadecenoic acid

C16H30O2 (254.224568)


Palmitoleic acid (FA 16:1), also known as hexadecenoic acid, is a monounsaturated omega-7 fatty acid with a 16-carbon chain and a double bond at the 9th position. In biological terms, palmitoleic acid serves several important functions: 1. **Energy Source:** Like other fatty acids, palmitoleic acid is a significant source of energy. It can be oxidized through beta-oxidation to produce ATP, the energy currency of the cell. 2. **Cell Membrane Structure:** Palmitoleic acid is a component of phospholipids, which are major constituents of cell membranes. The presence of monounsaturated fatty acids like palmitoleic acid helps maintain the fluidity and flexibility of cell membranes, which is crucial for various cellular processes. 3. **Lipid Signaling:** Palmitoleic acid and its derivatives can act as signaling molecules. For example, it is converted into the lipid mediator called palmitoleoyl-lysophosphatidylcholine (LPC), which plays a role in inflammation and blood clotting. 4. **Insulin Sensitivity:** Palmitoleic acid has been shown to improve insulin sensitivity, which is important for glucose metabolism and can help in the prevention and treatment of type 2 diabetes. 5. **Inflammation Modulation:** Some studies suggest that palmitoleic acid may have anti-inflammatory effects, which could be beneficial in reducing the risk of chronic diseases associated with inflammation. 6. **Skin Health:** Palmitoleic acid is naturally present in the skin and is considered a component of the skin's surface lipids, contributing to the skin's barrier function and helping to prevent water loss. 7. **Biosynthesis of Other Lipids:** Palmitoleic acid serves as a precursor for the synthesis of other complex lipids, including prostaglandins and other eicosanoids, which are involved in a wide range of physiological processes such as inflammation and blood pressure regulation. 8. **Cardiovascular Health:** The consumption of monounsaturated fatty acids like palmitoleic acid is often associated with a lower risk of cardiovascular diseases, although the direct role of palmitoleic acid in this context is still under investigation. It's important to note that while palmitoleic acid has these potential biological functions, the overall impact on health can depend on the balance of fatty acids in the diet and the context of the individual's overall metabolic health. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

Arginine

L-Arginine

C6H14N4O2 (174.1116704)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2]. L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2].

   

Oleate

cis-9-octadecenoic acid

C18H34O2 (282.2558664)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

urea

urea

CH4N2O (60.0323614)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.

   

4-Methoxybenzaldehyde

p-Anisaldehyde, United States Pharmacopeia (USP) Reference Standard

C8H8O2 (136.0524268)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. P-methoxybenzaldehyde is a member of the class of benzaldehydes consisting of benzaldehyde itself carrying a methoxy substituent at position 4. It has a role as an insect repellent, a human urinary metabolite, a plant metabolite and a bacterial metabolite. 4-Methoxybenzaldehyde is a natural product found in Vanilla pompona, Solidago odora, and other organisms with data available. See also: Anise Oil (part of). Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Maleic Acid

Maleic Acid

C4H4O4 (116.01095839999999)


D004791 - Enzyme Inhibitors Maleic Acid is a Glutamate Decarboxylase (GAD) inhibitor of E. coli and L. monocytogenes. Maleic Acid is a Glutamate Decarboxylase (GAD) inhibitor of E. coli and L. monocytogenes.

   

6-Phosphogluconic acid

6-Phosphogluconic acid

C6H13O10P (276.0246328)


   

3-phosphoglycerate

3-Phosphoglyceric acid

C3H7O7P (185.9929402)


A monophosphoglyceric acid having the phospho group at the 3-position. It is an intermediate in metabolic pathways like glycolysis and calvin cycle.

   

Glucose 6-phosphate

D-Glucose 6-phosphate

C6H13O9P (260.0297178)


   

2,6-PYRIDINEDICARBOTHIOIC ACID

2,6-PYRIDINEDICARBOTHIOIC ACID

C7H5NO2S2 (198.976171)


   

4-Methoxybenzaldehyde

p-Anisaldehyde, United States Pharmacopeia (USP) Reference Standard

C8H8O2 (136.0524268)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. P-methoxybenzaldehyde is a member of the class of benzaldehydes consisting of benzaldehyde itself carrying a methoxy substituent at position 4. It has a role as an insect repellent, a human urinary metabolite, a plant metabolite and a bacterial metabolite. 4-Methoxybenzaldehyde is a natural product found in Vanilla pompona, Solidago odora, and other organisms with data available. See also: Anise Oil (part of). Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

propranolol

propranolol

C16H21NO2 (259.1572206)


A propanolamine that is propan-2-ol substituted by a propan-2-ylamino group at position 1 and a naphthalen-1-yloxy group at position 3. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents CONFIDENCE standard compound; INTERNAL_ID 1248; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7445; ORIGINAL_PRECURSOR_SCAN_NO 7444 CONFIDENCE standard compound; INTERNAL_ID 1248; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7453; ORIGINAL_PRECURSOR_SCAN_NO 7452 CONFIDENCE standard compound; INTERNAL_ID 1248; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7471; ORIGINAL_PRECURSOR_SCAN_NO 7467 CONFIDENCE standard compound; INTERNAL_ID 1248; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7471; ORIGINAL_PRECURSOR_SCAN_NO 7469 CONFIDENCE standard compound; INTERNAL_ID 1248; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7478; ORIGINAL_PRECURSOR_SCAN_NO 7476 CONFIDENCE standard compound; INTERNAL_ID 1248; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7485; ORIGINAL_PRECURSOR_SCAN_NO 7484 CONFIDENCE standard compound; INTERNAL_ID 1108 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 61 CONFIDENCE standard compound; INTERNAL_ID 8556 Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist, has high affinity for the β1AR and β2AR with Ki values of 1.8 nM and 0.8 nM, respectively[1]. Propranolol inhibits [3H]-DHA binding to rat brain membrane preparation with an IC50 of 12 nM[2]. Propranolol is used for the study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy[3]. Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist, has high affinity for the β1AR and β2AR with Ki values of 1.8 nM and 0.8 nM, respectively[1]. Propranolol inhibits [3H]-DHA binding to rat brain membrane preparation with an IC50 of 12 nM[2]. Propranolol is used for the study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy[3]. Propranolol is a nonselective β-adrenergic receptor (βAR) antagonist, has high affinity for the β1AR and β2AR with Ki values of 1.8 nM and 0.8 nM, respectively[1]. Propranolol inhibits [3H]-DHA binding to rat brain membrane preparation with an IC50 of 12 nM[2]. Propranolol is used for the study of hypertension, pheochromocytoma, myocardial infarction, cardiac arrhythmias, angina pectoris, and hypertrophic cardiomyopathy[3].

   

Codeine

(-)-codeine

C18H21NO3 (299.1521356)


R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives A morphinane alkaloid found in the opium poppy, Papaver somniferum var. album; has analgesic, anti-tussive and anti-diarrhoeal properties. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics relative retention time with respect to 9-anthracene Carboxylic Acid is 0.308 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.294 IPB_RECORD: 924; CONFIDENCE confident structure CONFIDENCE standard compound; EAWAG_UCHEM_ID 2780

   

Adenosine

Adenosine

C10H13N5O4 (267.09674980000005)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058913 - Purinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C - Cardiovascular system > C01 - Cardiac therapy Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C10H13N5O4; Bottle Name:Adenosine; PRIME Parent Name:Adenosine; PRIME in-house No.:0040 R0018, Purines MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OIRDTQYFTABQOQ_STSL_0143_Adenosine_0500fmol_180430_S2_LC02_MS02_33; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.113 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.109 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.097 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.096 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2621; CONFIDENCE confident structure Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Tyramine

Tyramine

C8H11NO (137.0840596)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics A primary amino compound obtained by formal decarboxylation of the amino acid tyrosine. D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators Annotation level-2 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2741; CONFIDENCE confident structure Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].

   

Arginine

L-Arginine

C6H14N4O2 (174.1116704)


An alpha-amino acid that is glycine in which the alpha-is substituted by a 3-guanidinopropyl group. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.047 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.045 Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2]. L-Arginine ((S)-(+)-Arginine) is the substrate for the endothelial nitric oxide synthase (eNOS) to generate NO. L-Arginine is transported into vascular smooth muscle cells by the cationic amino acid transporter family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline[1][2].

   

Trehalose

D-(+)-Trehalose dihydrate,from Saccharomyces cerevisiae

C12H22O11 (342.11620619999997)


Trehalose, also known as alpha,alpha-trehalose or D-(+)-trehalose, is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Trehalose is soluble (in water) and a very weakly acidic compound (based on its pKa). Trehalose can be found in a number of food items such as european chestnut, chicory, wild celery, and shallot, which makes trehalose a potential biomarker for the consumption of these food products. Trehalose can be found primarily in feces and urine, as well as throughout most human tissues. Trehalose exists in all living species, ranging from bacteria to humans. In humans, trehalose is involved in the trehalose degradation. Acquisition and generation of the data is financially supported by the Max-Planck-Society D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.

   

Levoglucosan

6,8-Dioxabicyclo[3.2.1]octane b-delta-glucopyranose deriv.

C6H10O5 (162.052821)


A anhydrohexose that is the 1,6-anhydro-derivative of beta-D-glucopyranose. Acquisition and generation of the data is financially supported in part by CREST/JST. Levoglucosan (1,6-Anhydro-β-D-glucopyranose) is an anhydrosugar produced through glucan pyrolysis and is widely found in nature[1].

   

theobromine

theobromine

C7H8N4O2 (180.0647228)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines C - Cardiovascular system > C03 - Diuretics > C03B - Low-ceiling diuretics, excl. thiazides > C03BD - Xanthine derivatives D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; YAPQBXQYLJRXSA-UHFFFAOYSA-N_STSL_0032_Theobromine_8000fmol_180416_S2_LC02_MS02_45; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.367 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.359

   

DL-Leucine

2-Amino-4-methylpentanoic acid

C6H13NO2 (131.0946238)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055

   

Dopamine

Dopamine

C8H11NO2 (153.0789746)


C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics Catechol in which the hydrogen at position 4 is substituted by a 2-aminoethyl group. D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; VYFYYTLLBUKUHU_STSL_0097_Dopamine_2000fmol_180430_S2_LC02_MS02_90; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

Tryptamine

5-22-10-00045 (Beilstein Handbook Reference)

C10H12N2 (160.1000432)


   

3-Methoxytyramine

4-(2-Aminoethyl)-2-methoxyphenol

C9H13NO2 (167.09462380000002)


A monomethoxybenzene that is dopamine in which the hydroxy group at position 3 is replaced by a methoxy group. It is a metabolite of the neurotransmitter dopamine and considered a potential biomarker of pheochromocytomas and paragangliomas. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Methoxytyramine, a well known extracellular metabolite of 3-hydroxytyramine/dopamine, is a neuromodulator.

   

Uracil

Uracil-5-d

C4H4N2O2 (112.02727639999999)


A common and naturally occurring pyrimidine nucleobase in which the pyrimidine ring is substituted with two oxo groups at positions 2 and 4. Found in RNA, it base pairs with adenine and replaces thymine during DNA transcription. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ISAKRJDGNUQOIC_STSL_0177_Uracil_8000fmol_180430_S2_LC02_MS02_198; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.

   

Sucrose

Sucrose

C12H22O11 (342.11620619999997)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-Leucine

L-Leucine, (Cell Culture Reagent, Crystalline)

C6H13NO2 (131.0946238)


Flavouring ingredient; dietary supplement, nutrient. L-Leucine is found in many foods, some of which are lettuce, common bean, pacific herring, and kefir. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ROHFNLRQFUQHCH-YFKPBYRVSA-N_STSL_0102_Leucine_8000fmol_180425_S2_LC02_MS02_19; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].

   

stearic acid

stearic acid

C18H36O2 (284.2715156)


Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

Oleic acid

cis-9-Octadecenoic acid

C18H34O2 (282.2558664)


An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Palmitoleic acid

Trans-Hexa-dec-2-enoic acid

C16H30O2 (254.224568)


A hexadec-9-enoic acid in which the double bond at position C-9 has cis configuration. In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation. Trans-hexa-dec-2-enoic acid is an intermediate in fatty acid biosynthesis. Specifically, trans-hexa-dec-2-enoic acid converted from (R)-3-Hydroxy-hexadecanoic acid via two enzymes; fatty-acid Synthase and 3- Hydroxypalmitoyl- [acyl-carrier-protein] dehydratase (EC: 2.3.1.85 and EC: 4.2.1.61). [HMDB] Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as red huckleberry, highbush blueberry, butternut, and macadamia nut (m. tetraphylla), which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including blood, saliva, feces, and urine, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5949; ORIGINAL_PRECURSOR_SCAN_NO 5948 INTERNAL_ID 900; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5959; ORIGINAL_PRECURSOR_SCAN_NO 5958 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5959; ORIGINAL_PRECURSOR_SCAN_NO 5958 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5926; ORIGINAL_PRECURSOR_SCAN_NO 5924 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5944; ORIGINAL_PRECURSOR_SCAN_NO 5943 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5997; ORIGINAL_PRECURSOR_SCAN_NO 5996 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5943; ORIGINAL_PRECURSOR_SCAN_NO 5941 Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

Ethanolamine

MONOETHANOLAMINE

C2H7NO (61.0527612)


A member of the class of ethanolamines that is ethane with an amino substituent at C-1 and a hydroxy substituent at C-2, making it both a primary amine and a primary alcohol. C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist

   

Alanine

L-α-Aminopropionic acid

C3H7NO2 (89.0476762)


An alpha-amino acid that consists of propionic acid bearing an amino substituent at position 2. Alanine (symbol Ala or A),[4] or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side chain. Consequently it is classified as a nonpolar, aliphatic α-amino acid. Under biological conditions, it exists in its zwitterionic form with its amine group protonated (as −NH + 3 ) and its carboxyl group deprotonated (as −CO − 2 ). It is non-essential to humans as it can be synthesized metabolically and does not need to be present in the diet. It is encoded by all codons starting with GC (GCU, GCC, GCA, and GCG). The L-isomer of alanine (left-handed) is the one that is incorporated into proteins. L-alanine is second only to L-leucine in rate of occurrence, accounting for 7.8\\\\\% of the primary structure in a sample of 1,150 proteins.[5] The right-handed form, D-alanine, occurs in peptides in some bacterial cell walls[6]: 131  (in peptidoglycan) and in some peptide antibiotics, and occurs in the tissues of many crustaceans and molluscs as an osmolyte. D-Alanine is a weak GlyR (inhibitory glycine receptor) and PMBA agonist, with an EC50 of 9 mM for GlyR. D-Alanine is a weak GlyR (inhibitory glycine receptor) and PMBA agonist, with an EC50 of 9 mM for GlyR. L-Alanine is a non-essential amino acid, involved in sugar and acid metabolism, increases immunity, and provides energy for muscle tissue, brain, and central nervous system. L-Alanine is a non-essential amino acid, involved in sugar and acid metabolism, increases immunity, and provides energy for muscle tissue, brain, and central nervous system.

   
   

urea

urea

CH4N2O (60.0323614)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis A carbonyl group with two C-bound amine groups. The commercially available fertilizer has an analysis of 46-0-0 (N-P2O5-K2O). D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.

   

2-Hydroxy-3-methylbutyric acid

2-Hydroxy-3-methylbutyric acid

C5H10O3 (118.06299100000001)


A valine derivative that is valine in which the amino group has been replaced by a hydroxy group. 2-Hydroxy-3-methylbutanoic acid is a close structure analogue of GHB, which is a naturally occurring neurotransmitter and a psychoactive agent.

   

7-Methylxanthine

7-Methylxanthine

C6H6N4O2 (166.0490736)


An oxopurine that is xanthine in which the hydrogen attached to the nitrogen at position 7 is replaced by a methyl group. It is an intermediate metabolite in the synthesis of caffeine. 7-Methylxanthine, a methyl derivative of xanthine, is one of the purine components in urinary calculi.

   

cis,cis-Muconic acid

cis,cis-Muconic acid

C6H6O4 (142.0266076)


The cis,cis-isomer of muconic acid. It is produced during the degradation of chlorobenzene by bacteria like Bacillus. cis,cis-Muconic acid, a metabolic intermediate of Klebsiella pneumonia, can be converted to adipic acid and terephthalic acid, which are important monomers of synthetic polymers. cis,cis-Muconic acid is also a biochemical material that can be used for the production of various plastics and polymers and is particularly gaining attention as an adipic acid precursor for the synthesis of nylon-6,6[1][2].

   

DIHYDROXYACETONE PHOSPHATE

DIHYDROXYACETONE PHOSPHATE

C3H7O6P (169.9980252)


A member of the class of glycerone phosphates that consists of glycerone bearing a single phospho substituent.

   

Pyruvic acid

alpha-keto propionic acid

C3H4O3 (88.0160434)


A 2-oxo monocarboxylic acid that is the 2-keto derivative of propionic acid. It is a metabolite obtained during glycolysis. Pyruvic acid is an intermediate compound in the metabolism of carbohydrates, proteins, and fats. In thiamine deficiency, its oxidation is retarded and it accumulates in the tissues, especially in nervous structures (From Stedman, 26th ed.). Biological Source: Intermediate in primary metabolism including fermentation processes. Present in muscle in redox equilibrium with Lactic acid. A common constituent, as a chiral cyclic acetal linked to saccharide residues, of bacterial polysaccharides. Isolated from cane sugar fermentation broth and peppermint. Constituent of Bauhinia purpurea, Cicer arietinum (chickpea), Delonix regia, Pisum sativum (pea) and Trigonella caerulea (sweet trefoil) Use/Importance: Reagent for regeneration of carbonyl compdounds from semicarbazones, phenylhydrazones and oximes. Flavoring ingredient (Dictionary of Organic Compounds); Pyruvate is a key intersection in the network of metabolic pathways. Pyruvate can be converted into carbohydrates via gluconeogenesis, to fatty acids or energy through acetyl-CoA, to the amino acid alanine and to ethanol. Therefore it unites several key metabolic processes.; Pyruvate is an important chemical compound in biochemistry. It is the output of the anaerobic metabolism of glucose known as glycolysis. One molecule of glucose breaks down into two molecules of pyruvate, which are then used to provide further energy, in one of two ways. Pyruvate is converted into acetyl-coenzyme A, which is the main input for a series of reactions known as the Krebs cycle. Pyruvate is also converted to oxaloacetate by an anaplerotic reaction which replenishes Krebs cycle intermediates; alternatively, the oxaloacetate is used for gluconeogenesis. These reactions are named after Hans Adolf Krebs, the biochemist awarded the 1953 Nobel Prize for physiology, jointly with Fritz Lipmann, for research into metabolic processes. The cycle is also called the citric acid cycle, because citric acid is one of the intermediate compounds formed during the reactions.; Pyruvic acid (CH3COCOOH) is an organic acid. It is also a ketone, as well as being the simplest alpha-keto acid. The carboxylate (COOH) ion (anion) of pyruvic acid, CH3COCOO-, is known as pyruvate, and is a key intersection in several metabolic pathways. It can be made from glucose through glycolysis, supplies energy to living cells in the citric acid cycle, and can also be converted to carbohydrates via gluconeogenesis, to fatty acids or energy through acetyl-CoA, to the amino acid alanine and to ethanol.; Pyruvic acid is a colorless liquid with a smell similar to that of acetic acid. It is miscible with water, and soluble in ethanol and diethyl ether. In the laboratory, pyruvic acid may be prepared by heating a mixture of tartaric acid and potassium hydrogen sulfate, by the oxidation of propylene glycol by a strong oxidizer (eg. potassium permanganate or bleach), or by the hydrolysis of acetyl cyanide, formed by reaction of acetyl chloride with potassium cyanide:; Pyruvic acid or pyruvate is a key intermediate in the glycolytic and pyruvate dehydrogenase pathways, which are involved in biological energy production. Pyruvate is widely found in living organisms. It is not an essential nutrient since it can be synthesized in the cells of the body. Certain fruits and vegetables are rich in pyruvate. For example, an average-size red apple contains approximately 450 milligrams. Dark beer and red wine are also rich sources of pyruvate. Recent research suggests that pyruvate in high concentrations may have a role in cardiovascular therapy, as an inotropic agent. Supplements of this dietary substance may also have bariatric and ergogenic applications. Pyruvic acid is isolated from cane sugar fermentation broth, Cicer arietinum (chickpea), Pisum sativum (pea), Trigonella cerulea (sweet trefoil) and peppermint. It can be used as a flavouring ingredient. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.

   

Octadecanoic acid

Octadecanoic acid

C18H36O2 (284.2715156)


A C18 straight-chain saturated fatty acid component of many animal and vegetable lipids. As well as in the diet, it is used in hardening soaps, softening plastics and in making cosmetics, candles and plastics.

   

2,4-Dihydroxybutanoic acid

2,4-Dihydroxybutanoic acid

C4H8O4 (120.0422568)


A omega-hydroxy fatty acid that is butyric acid substituted by hydroxy groups at positions 2 and 4 respectively.

   

Ricinic acid

9-Octadecenoic acid, 12-hydroxy-, [R-(Z)]-

C18H34O3 (298.2507814)


   

N-Octadecane

N-Octadecane

C18H38 (254.2973348)


A straight-chain alkane carrying 18 carbon atoms. Octadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material[1].

   

Icosane

InChI=1\C20H42\c1-3-5-7-9-11-13-15-17-19-20-18-16-14-12-10-8-6-4-2\h3-20H2,1-2H

C20H42 (282.3286332)


A straight chain alkane composed of 20 carbon atoms. It has been isolated from the leaves of Agave attenuata.

   

FA 6:3;O2

(2E,4Z)-4-hydroxy-6-oxohexa-2,4-dienoic acid

C6H6O4 (142.0266076)


cis,cis-Muconic acid, a metabolic intermediate of Klebsiella pneumonia, can be converted to adipic acid and terephthalic acid, which are important monomers of synthetic polymers. cis,cis-Muconic acid is also a biochemical material that can be used for the production of various plastics and polymers and is particularly gaining attention as an adipic acid precursor for the synthesis of nylon-6,6[1][2].

   

FA 5:0;O

3-Hydroxy-2-methyl-[S-(R,R)]-butanoic acid

C5H10O3 (118.06299100000001)


2-Hydroxy-3-methylbutanoic acid is a close structure analogue of GHB, which is a naturally occurring neurotransmitter and a psychoactive agent.

   

N-HEPTADECANE

N-HEPTADECANE

C17H36 (240.2816856)


A straight-chain alkane with 17 carbon atoms. It is a component of essential oils from plants like Opuntia littoralis and Annona squamosa.

   

Pentadecane

n-pentadecane

C15H32 (212.2503872)


A straight-chain alkane with 15 carbon atoms. It is a component of volatile oils isolated from plants species like Scandix balansae.

   

DL-Pyroglutamic acid

5-Oxopyrrolidine-2-carboxylic acid

C5H7NO3 (129.0425912)


DL-Pyroglutamic acid (CAE) as an inactivator of hepatitis B surface, inactivates vaccinia virus, herpes simplex virus, and influenza virus except poliovirus. DL-Pyroglutamic acid is also a possible inhibitor of GABA transaminase, increases GABA amount with antiepileptic action[1][2]. DL-Pyroglutamic acid (CAE) as an inactivator of hepatitis B surface, inactivates vaccinia virus, herpes simplex virus, and influenza virus except poliovirus. DL-Pyroglutamic acid is also a possible inhibitor of GABA transaminase, increases GABA amount with antiepileptic action[1][2].

   

3,4,5-Trihydroxy-1-cyclohexene-1-carboxylic acid

3,4,5-Trihydroxy-1-cyclohexene-1-carboxylic acid

C7H10O5 (174.052821)


A cyclohexenecarboxylic acid that is 1-cyclohexene-1-carboxylic acid carrying three hydroxy substituents at positions 3, 4 and 5.

   

Red oil

4-02-00-01641 (Beilstein Handbook Reference)

C18H34O2 (282.2558664)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

sugar

(2R,3R,4S,5S,6R)-2-[[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)-2-tetrahydrofuranyl]oxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C12H22O11 (342.11620619999997)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pelmin

InChI=1\C6H6N2O\c7-6(9)5-2-1-3-8-4-5\h1-4H,(H2,7,9

C6H6N2O (122.0480106)


COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A - Alimentary tract and metabolism > A11 - Vitamins C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].

   

Pentadekan

4-01-00-00529 (Beilstein Handbook Reference)

C15H32 (212.2503872)


   

Heptadekan

InChI=1\C17H36\c1-3-5-7-9-11-13-15-17-16-14-12-10-8-6-4-2\h3-17H2,1-2H

C17H36 (240.2816856)


   

Oktadekan

InChI=1\C18H38\c1-3-5-7-9-11-13-15-17-18-16-14-12-10-8-6-4-2\h3-18H2,1-2H

C18H38 (254.2973348)


Octadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material[1].

   

Tyramin

InChI=1\C8H11NO\c9-6-5-7-1-3-8(10)4-2-7\h1-4,10H,5-6,9H

C8H11NO (137.0840596)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1]. Tyramine is an amino acid that helps regulate blood pressure. Tyramine occurs naturally in the body, and it's found in certain foods[1].

   

Optim

4-01-00-02751 (Beilstein Handbook Reference)

C3H8O3 (92.0473418)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AG - Enemas C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D020011 - Protective Agents > D003451 - Cryoprotective Agents D012997 - Solvents

   

Zoomaric acid

cis-Delta(9)-Hexadecenoic acid

C16H30O2 (254.224568)


Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

Pirod

InChI=1\C4H4N2O2\c7-3-1-2-5-4(8)6-3\h1-2H,(H2,5,6,7,8

C4H4N2O2 (112.02727639999999)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.

   

AI3-36283

EINECS 209-792-4

C27H56 (380.4381776)


   

Obepin

InChI=1\C8H8O2\c1-10-8-4-2-7(6-9)3-5-8\h2-6H,1H

C8H8O2 (136.0524268)


4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Dopamin

1,2-Benzenediol, 4-(2-aminoethyl)-, labeled with tritium

C8H11NO2 (153.0789746)


C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents

   

LS-2371

4-03-00-01505 (Beilstein Handbook Reference)

C3H4O3 (88.0160434)


Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats. Pyruvic acid is an intermediate metabolite in the metabolism of carbohydrates, proteins, and fats.

   

Thesal

1H-purine-2,6-dione,3,7-dihydro-3,7- dimethyl- (9CI)

C7H8N4O2 (180.0647228)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines C - Cardiovascular system > C03 - Diuretics > C03B - Low-ceiling diuretics, excl. thiazides > C03BD - Xanthine derivatives D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Codein

Morphinan-6-ol, 7,8-didehydro-4,5-epoxy-3-methoxy-17-methyl-, (5-alpha,6-alpha)- (9CI)

C18H21NO3 (299.1521356)


R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

141-22-0

InChI=1\C18H34O3\c1-2-3-4-11-14-17(19)15-12-9-7-5-6-8-10-13-16-18(20)21\h9,12,17,19H,2-8,10-11,13-16H2,1H3,(H,20,21)\b12-9-\t17-\m1\s

C18H34O3 (298.2507814)


   

Ethanamine

Ethylamine, aqueous solution with not 50\\% but not >70\\% ethylamine [UN2270] [Flammable liquid]

C2H7N (45.0578462)


   

Olamine

Ethanolamine or ethanolamine solutions [UN2491] [Corrosive]

C2H7NO (61.0527612)


C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist

   

Putreszin

4-04-00-01283 (Beilstein Handbook Reference)

C4H12N2 (88.1000432)


   

Hyanit

EPA Pesticide Chemical Code 085702

CH4N2O (60.0323614)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05B - I.v. solutions > B05BC - Solutions producing osmotic diuresis D - Dermatologicals > D02 - Emollients and protectives > D02A - Emollients and protectives > D02AE - Carbamide products C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49187 - Osmotic Diuretic Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry. Urea is a powerful protein denaturant via both direct and indirect mechanisms[1]. A potent emollient and keratolytic agent[2]. Used as a diuretic agent. Blood urea nitrogen (BUN) has been utilized to evaluate renal function[3]. Widely used in fertilizers as a source of nitrogen and is an important raw material for the chemical industry.

   

4-methyltridecane

4-methyltridecane

C14H30 (198.234738)


A branched alkane consisting of tridecane bearing a single methyl substituent at position 4.

   

Ricinoleic_acid

InChI=1/C18H34O3/c1-2-3-4-11-14-17(19)15-12-9-7-5-6-8-10-13-16-18(20)21/h9,12,17,19H,2-8,10-11,13-16H2,1H3,(H,20,21)/b12-9-/t17-/m1/s

C18H34O3 (298.2507814)


Ricinoleic acid is a (9Z)-12-hydroxyoctadec-9-enoic acid in which the 12-hydroxy group has R-configuration.. It is a conjugate acid of a ricinoleate. Ricinoleic acid is a natural product found in Cephalocroton cordofanus, Crotalaria retusa, and other organisms with data available. See also: Polyglyceryl-6 polyricinoleate (monomer of); Polyglyceryl-4 polyricinoleate (monomer of); Polyglyceryl-5 polyricinoleate (monomer of) ... View More ... A (9Z)-12-hydroxyoctadec-9-enoic acid in which the 12-hydroxy group has R-configuration..

   

Glycerin

Glycerin

C3H8O3 (92.0473418)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AG - Enemas C78276 - Agent Affecting Digestive System or Metabolism > C29697 - Laxative D020011 - Protective Agents > D003451 - Cryoprotective Agents D012997 - Solvents

   

Ethylamine

Ethylamine

C2H7N (45.0578462)


A two-carbon primary aliphatic amine.

   

Adenosine phosphate

Adenosine 5-monophosphate

C10H14N5O7P (347.06308240000004)


A purine ribonucleoside 5-monophosphate having adenine as the nucleobase. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction.

   
   

Acetylpyruvic acid

Acetylpyruvic acid

C5H6O4 (130.0266076)


A dioxo monocarboxylic acid that is pentanoic acid carrying two oxo groups at positions 2 and 4.

   

methyl (2r)-3-(benzoyloxy)-2-methylpropanoate

methyl (2r)-3-(benzoyloxy)-2-methylpropanoate

C12H14O4 (222.0892044)


   

(2s,3s)-3-{[(2s)-2-{[(2s)-2-[(2-{[(2s,3r)-2-{[(2r)-4-amino-2-{[(2r)-2-{[(2s)-3-carboxy-2-({[(1s)-8,9-dihydroxy-5-{[1-hydroxy-3-(c-hydroxycarbonimidoyl)propylidene]amino}-1h,2h,3h-pyrimido[1,2-a]quinolin-1-yl](hydroxy)methylidene}amino)-1-hydroxypropylidene]amino}-5-[(3r)-n,3-dihydroxybutanamido]-1-hydroxypentylidene]amino}-1-hydroxybutylidene]amino}-1,3-dihydroxybutylidene]amino}-1-hydroxyethylidene)amino]-1,3-dihydroxypropylidene]amino}-1,3-dihydroxypropylidene]amino}-3-{[(1s,2r)-1-carboxy-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropanoic acid

(2s,3s)-3-{[(2s)-2-{[(2s)-2-[(2-{[(2s,3r)-2-{[(2r)-4-amino-2-{[(2r)-2-{[(2s)-3-carboxy-2-({[(1s)-8,9-dihydroxy-5-{[1-hydroxy-3-(c-hydroxycarbonimidoyl)propylidene]amino}-1h,2h,3h-pyrimido[1,2-a]quinolin-1-yl](hydroxy)methylidene}amino)-1-hydroxypropylidene]amino}-5-[(3r)-n,3-dihydroxybutanamido]-1-hydroxypentylidene]amino}-1-hydroxybutylidene]amino}-1,3-dihydroxybutylidene]amino}-1-hydroxyethylidene)amino]-1,3-dihydroxypropylidene]amino}-1,3-dihydroxypropylidene]amino}-3-{[(1s,2r)-1-carboxy-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropanoic acid

C54H79N15O27 (1369.5269584)


   

methyl 3-(benzoyloxy)-2-methylpropanoate

methyl 3-(benzoyloxy)-2-methylpropanoate

C12H14O4 (222.0892044)


   

6-[(methylsulfanyl)carbonyl]pyridine-2-carboxamide

6-[(methylsulfanyl)carbonyl]pyridine-2-carboxamide

C8H8N2O2S (196.0306468)


   
   

2-methyl-3-tridecyl-4,5-dihydro-3h-pyrrole

2-methyl-3-tridecyl-4,5-dihydro-3h-pyrrole

C18H35N (265.27693500000004)


   

(2s,3s)-3-{[(2s)-2-{[(2s)-2-[(2-{[(2s,3r)-2-{[(2r)-4-amino-2-{[(2r)-2-{[(2s)-3-carboxy-2-({[(1s)-5-{[(3s)-1,3-dihydroxy-3-(c-hydroxycarbonimidoyl)propylidene]amino}-8,9-dihydroxy-1h,2h,3h-pyrimido[1,2-a]quinolin-1-yl](hydroxy)methylidene}amino)-1-hydroxypropylidene]amino}-5-[(3r)-n,3-dihydroxybutanamido]-1-hydroxypentylidene]amino}-1-hydroxybutylidene]amino}-1,3-dihydroxybutylidene]amino}-1-hydroxyethylidene)amino]-1,3-dihydroxypropylidene]amino}-1,3-dihydroxypropylidene]amino}-3-{[(1s,2r)-1-carboxy-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropanoic acid

(2s,3s)-3-{[(2s)-2-{[(2s)-2-[(2-{[(2s,3r)-2-{[(2r)-4-amino-2-{[(2r)-2-{[(2s)-3-carboxy-2-({[(1s)-5-{[(3s)-1,3-dihydroxy-3-(c-hydroxycarbonimidoyl)propylidene]amino}-8,9-dihydroxy-1h,2h,3h-pyrimido[1,2-a]quinolin-1-yl](hydroxy)methylidene}amino)-1-hydroxypropylidene]amino}-5-[(3r)-n,3-dihydroxybutanamido]-1-hydroxypentylidene]amino}-1-hydroxybutylidene]amino}-1,3-dihydroxybutylidene]amino}-1-hydroxyethylidene)amino]-1,3-dihydroxypropylidene]amino}-1,3-dihydroxypropylidene]amino}-3-{[(1s,2r)-1-carboxy-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropanoic acid

C54H79N15O28 (1385.5218734)


   

4-fluoro-2,3,5,6-tetrahydroxyhexanoic acid

4-fluoro-2,3,5,6-tetrahydroxyhexanoic acid

C6H11FO6 (198.05396380000002)


   

2-hydroxy-8-[1-(2-hydroxybenzoyl)-2,3-dihydropyrrole-2-carbonyloxy]tetradecanimidic acid

2-hydroxy-8-[1-(2-hydroxybenzoyl)-2,3-dihydropyrrole-2-carbonyloxy]tetradecanimidic acid

C26H38N2O6 (474.2729728)


   

2,2,2-trifluoro-1-{2-methyl-3-[(7z)-pentadec-7-en-1-yl]-4,5-dihydropyrrol-1-yl}ethanone

2,2,2-trifluoro-1-{2-methyl-3-[(7z)-pentadec-7-en-1-yl]-4,5-dihydropyrrol-1-yl}ethanone

C22H36F3NO (387.27488420000003)


   

(2r,3r,4s,5s)-4-fluoro-2,3,5,6-tetrahydroxyhexanoic acid

(2r,3r,4s,5s)-4-fluoro-2,3,5,6-tetrahydroxyhexanoic acid

C6H11FO6 (198.05396380000002)


   

3-[2,4-dihydroxy-7-oxo-8-(2,3,4,5-tetrahydroxypentyl)pteridin-6-yl]propanoic acid

3-[2,4-dihydroxy-7-oxo-8-(2,3,4,5-tetrahydroxypentyl)pteridin-6-yl]propanoic acid

C14H18N4O9 (386.1073738)


   

1-benzoyl-2-methyl-3-[(7z)-pentadec-7-en-1-yl]-4,5-dihydropyrrole

1-benzoyl-2-methyl-3-[(7z)-pentadec-7-en-1-yl]-4,5-dihydropyrrole

C27H41NO (395.31879760000004)


   

3-({2-[(2-{[2-({2-[(4-amino-2-{[2-({3-carboxy-2-[({5-[(3-carboxy-1-hydroxypropylidene)amino]-8,9-dihydroxy-1h,2h,3h-pyrimido[1,2-a]quinolin-1-yl}(hydroxy)methylidene)amino]-1-hydroxypropylidene}amino)-5-(n,3-dihydroxybutanamido)-1-hydroxypentylidene]amino}-1-hydroxybutylidene)amino]-1,3-dihydroxybutylidene}amino)-1-hydroxyethylidene]amino}-1,3-dihydroxypropylidene)amino]-1,3-dihydroxypropylidene}amino)-3-[(1-carboxy-2-hydroxypropyl)-c-hydroxycarbonimidoyl]-2-hydroxypropanoic acid

3-({2-[(2-{[2-({2-[(4-amino-2-{[2-({3-carboxy-2-[({5-[(3-carboxy-1-hydroxypropylidene)amino]-8,9-dihydroxy-1h,2h,3h-pyrimido[1,2-a]quinolin-1-yl}(hydroxy)methylidene)amino]-1-hydroxypropylidene}amino)-5-(n,3-dihydroxybutanamido)-1-hydroxypentylidene]amino}-1-hydroxybutylidene)amino]-1,3-dihydroxybutylidene}amino)-1-hydroxyethylidene]amino}-1,3-dihydroxypropylidene)amino]-1,3-dihydroxypropylidene}amino)-3-[(1-carboxy-2-hydroxypropyl)-c-hydroxycarbonimidoyl]-2-hydroxypropanoic acid

C54H78N14O28 (1370.5109748)


   

methyl 6-[(methoxysulfanyl)carbonyl]pyridine-2-carboxylate

methyl 6-[(methoxysulfanyl)carbonyl]pyridine-2-carboxylate

C9H9NO4S (227.0252274)