Fumitremorgin C (BioDeep_00000002789)

 

Secondary id: BioDeep_00000614768

human metabolite natural product


代谢物信息卡片


(1S,12S,15S)-7-methoxy-12-(2-methylprop-1-en-1-yl)-10,13,19-triazapentacyclo[11.7.0.0³,¹¹.0⁴,⁹.0¹⁵,¹⁹]icosa-3(11),4,6,8-tetraene-14,20-dione

化学式: C22H25N3O3 (379.189582)
中文名称: 烟曲霉毒素C
谱图信息: 最多检出来源 Homo sapiens(natural_products) 1.99%

Reviewed

Last reviewed on 2024-08-26.

Cite this Page

Fumitremorgin C. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/fumitremorgin_c (retrieved 2024-09-17) (BioDeep RN: BioDeep_00000002789). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: CC(=CC1C2=C(CC3N1C(=O)C4CCCN4C3=O)C5=C(N2)C=C(C=C5)OC)C
InChI: InChI=1S/C22H25N3O3/c1-12(2)9-18-20-15(14-7-6-13(28-3)10-16(14)23-20)11-19-21(26)24-8-4-5-17(24)22(27)25(18)19/h6-7,9-10,17-19,23H,4-5,8,11H2,1-3H3

描述信息

Fumitremorgin C is produced by Aspergillus fumigatus and Neosartorya fischeri.
Production by Aspergillus fumigatus and Neosartorya fischeri

Fumitremorgin C. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=118974-02-0 (retrieved 2024-08-26) (CAS RN: 118974-02-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

同义名列表

11 个代谢物同义名

(1S,12S,15S)-7-methoxy-12-(2-methylprop-1-en-1-yl)-10,13,19-triazapentacyclo[11.7.0.0³,¹¹.0⁴,⁹.0¹⁵,¹⁹]icosa-3(11),4,6,8-tetraene-14,20-dione; Tryproquivaline m (2s-(2alpha,9alpha(4S*(s*)),9abeta))-isomer; Tryproquivaline D (2s-(2alpha,9alpha(4R*(s*)),9abeta))-isomer; Tryproquivaline m (2s-(2alpha,9alpha(4R*(s*)),9abeta))-isomer; Tryproquivaline N (2s-(2alpha,9alpha(r*),9abeta))-isomer; Tryproquivaline L (9r-(9alpha(s*),9abeta))-isomer; Tryproquivaline L (9r-(9alpha(r*),9abeta))-isomer; 12alpha-Fumitremorgin C; Fumitremorgin C; Tryptoquivaline; SM-Q



数据库引用编号

11 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

3 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(3)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

13 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Yuwei Fang, Jianglian She, Xi Zhang, Tanwei Gu, Danni Xie, Xiaowei Luo, Xiangxi Yi, Chenghai Gao, Yonghong Liu, Cuixian Zhang, Lan Tang, Xuefeng Zhou. Discovery of Anti-Hypercholesterolemia Agents Targeting LXRα from Marine Microorganism-Derived Natural Products. Journal of natural products. 2024 02; 87(2):322-331. doi: 10.1021/acs.jnatprod.3c01029. [PMID: 38334086]
  • Frauke Antoni, Manuel Bause, Matthias Scholler, Stefanie Bauer, Simone A Stark, Scott M Jackson, Ioannis Manolaridis, Kaspar P Locher, Burkhard König, Armin Buschauer, Günther Bernhardt. Tariquidar-related triazoles as potent, selective and stable inhibitors of ABCG2 (BCRP). European journal of medicinal chemistry. 2020 Apr; 191(?):112133. doi: 10.1016/j.ejmech.2020.112133. [PMID: 32105979]
  • Alice A Ramos, Bruno Castro-Carvalho, Maria Prata-Sena, Fernanda Malhão, Suradet Buttachon, Tida Dethoup, Anake Kijjoa, Eduardo Rocha. Can marine-derived fungus Neosartorya siamensis KUFA 0017 extract and its secondary metabolites enhance antitumor activity of doxorubicin? An in vitro survey unveils interactions against lung cancer cells. Environmental toxicology. 2020 Apr; 35(4):507-517. doi: 10.1002/tox.22886. [PMID: 31804023]
  • Jakkapat Paluka, Kwanjai Kanokmedhakul, Mayamor Soytong, Kasem Soytong, Somdej Kanokmedhakul. Meroditerpene pyrone, tryptoquivaline and brasiliamide derivatives from the fungus Neosartorya pseudofischeri. Fitoterapia. 2019 Sep; 137(?):104257. doi: 10.1016/j.fitote.2019.104257. [PMID: 31278976]
  • Scott M Jackson, Ioannis Manolaridis, Julia Kowal, Melanie Zechner, Nicholas M I Taylor, Manuel Bause, Stefanie Bauer, Ruben Bartholomaeus, Guenther Bernhardt, Burkhard Koenig, Armin Buschauer, Henning Stahlberg, Karl-Heinz Altmann, Kaspar P Locher. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nature structural & molecular biology. 2018 04; 25(4):333-340. doi: 10.1038/s41594-018-0049-1. [PMID: 29610494]
  • Nehaben A Gujarati, Leli Zeng, Pranav Gupta, Zhe-Sheng Chen, Vijaya L Korlipara. Design, synthesis and biological evaluation of benzamide and phenyltetrazole derivatives with amide and urea linkers as BCRP inhibitors. Bioorganic & medicinal chemistry letters. 2017 10; 27(20):4698-4704. doi: 10.1016/j.bmcl.2017.09.009. [PMID: 28916341]
  • José Esteban Obreque-Balboa, Qiu Sun, Günther Bernhardt, Burkhard König, Armin Buschauer. Flavonoid derivatives as selective ABCC1 modulators: Synthesis and functional characterization. European journal of medicinal chemistry. 2016 Feb; 109(?):124-33. doi: 10.1016/j.ejmech.2015.12.010. [PMID: 26774038]
  • Qianmei Zhou, Meina Ye, Yiyu Lu, Hui Zhang, Qilong Chen, Shuang Huang, Shibing Su. Curcumin Improves the Tumoricidal Effect of Mitomycin C by Suppressing ABCG2 Expression in Stem Cell-Like Breast Cancer Cells. PloS one. 2015; 10(8):e0136694. doi: 10.1371/journal.pone.0136694. [PMID: 26305906]
  • Maricla Galetti, Pier Giorgio Petronini, Claudia Fumarola, Daniele Cretella, Silvia La Monica, Mara Bonelli, Andrea Cavazzoni, Francesca Saccani, Cristina Caffarra, Roberta Andreoli, Antonio Mutti, Marcello Tiseo, Andrea Ardizzoni, Roberta R Alfieri. Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines. PloS one. 2015; 10(11):e0141795. doi: 10.1371/journal.pone.0141795. [PMID: 26536031]
  • Nelson M Gomes, Lucinda J Bessa, Suradet Buttachon, Paulo M Costa, Jamrearn Buaruang, Tida Dethoup, Artur M S Silva, Anake Kijjoa. Antibacterial and antibiofilm activities of tryptoquivalines and meroditerpenes isolated from the marine-derived fungi Neosartorya paulistensis, N. laciniosa, N. tsunodae, and the soil fungi N. fischeri and N. siamensis. Marine drugs. 2014 Jan; 12(2):822-39. doi: 10.3390/md12020822. [PMID: 24477284]
  • Xiao-Jun Li, Qiang Zhang, An-Ling Zhang, Jin-Ming Gao. Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. Journal of agricultural and food chemistry. 2012 Apr; 60(13):3424-31. doi: 10.1021/jf300146n. [PMID: 22409377]
  • Tetsuya Ogino, Hirotsugu Kobuchi, Kazuaki Munetomo, Hirofumi Fujita, Masanao Yamamoto, Toshihiko Utsumi, Keiji Inoue, Taro Shuin, Junzo Sasaki, Masayasu Inoue, Kozo Utsumi. Serum-dependent export of protoporphyrin IX by ATP-binding cassette transporter G2 in T24 cells. Molecular and cellular biochemistry. 2011 Dec; 358(1-2):297-307. doi: 10.1007/s11010-011-0980-5. [PMID: 21748335]
  • Muhammad Ali Versiani, Thushara Diyabalanage, Ranjala Ratnayake, Curtis J Henrich, Susan E Bates, James B McMahon, Kirk R Gustafson. Flavonoids from eight tropical plant species that inhibit the multidrug resistance transporter ABCG2. Journal of natural products. 2011 Feb; 74(2):262-6. doi: 10.1021/np100797y. [PMID: 21275386]
  • Erika K Pollex, Gregory Anger, Janine Hutson, Gideon Koren, Micheline Piquette-Miller. Breast cancer resistance protein (BCRP)-mediated glyburide transport: effect of the C421A/Q141K BCRP single-nucleotide polymorphism. Drug metabolism and disposition: the biological fate of chemicals. 2010 May; 38(5):740-4. doi: 10.1124/dmd.109.030791. [PMID: 20159988]
  • Qing Wang, Robert Strab, Paula Kardos, Chrissa Ferguson, Jibin Li, Albert Owen, Ismael J Hidalgo. Application and limitation of inhibitors in drug-transporter interactions studies. International journal of pharmaceutics. 2008 May; 356(1-2):12-8. doi: 10.1016/j.ijpharm.2007.12.024. [PMID: 18272304]
  • Lin Zhou, Suresh Babu Naraharisetti, Honggang Wang, Jashvant D Unadkat, Mary F Hebert, Qingcheng Mao. The breast cancer resistance protein (Bcrp1/Abcg2) limits fetal distribution of glyburide in the pregnant mouse: an Obstetric-Fetal Pharmacology Research Unit Network and University of Washington Specialized Center of Research Study. Molecular pharmacology. 2008 Mar; 73(3):949-59. doi: 10.1124/mol.107.041616. [PMID: 18079276]
  • Gloria Lee, Karlo Babakhanian, Manisha Ramaswamy, Alexandre Prat, Karolina Wosik, Reina Bendayan. Expression of the ATP-binding cassette membrane transporter, ABCG2, in human and rodent brain microvessel endothelial and glial cell culture systems. Pharmaceutical research. 2007 Jul; 24(7):1262-74. doi: 10.1007/s11095-007-9244-1. [PMID: 17380269]
  • Eran E Bram, Ilan Ifergan, Michal Grimberg, Krzysztof Lemke, Andrzej Skladanowski, Yehuda G Assaraf. C421 allele-specific ABCG2 gene amplification confers resistance to the antitumor triazoloacridone C-1305 in human lung cancer cells. Biochemical pharmacology. 2007 Jun; 74(1):41-53. doi: 10.1016/j.bcp.2007.03.028. [PMID: 17481587]
  • Gilles Breuzard, Victoria El-Khoury, Christine Millot, Michel Manfait, Jean-Marc Millot. Energy transfer to analyse membrane-integrated mitoxantrone in BCRP-overexpressed cells. Journal of photochemistry and photobiology. B, Biology. 2007 May; 87(2):113-23. doi: 10.1016/j.jphotobiol.2007.03.001. [PMID: 17433706]
  • Oleg Tsinkalovsky, Audun Osland Vik-Mo, Sara Ferreira, Ole Didrik Laerum, Anders Fjose. Zebrafish kidney marrow contains ABCG2-dependent side population cells exhibiting hematopoietic stem cell properties. Differentiation; research in biological diversity. 2007 Mar; 75(3):175-83. doi: 10.1111/j.1432-0436.2006.00130.x. [PMID: 17288542]
  • Martina Ceckova, Antonin Libra, Petr Pavek, Petr Nachtigal, Marianne Brabec, Renate Fuchs, Frantisek Staud. Expression and functional activity of breast cancer resistance protein (BCRP, ABCG2) transporter in the human choriocarcinoma cell line BeWo. Clinical and experimental pharmacology & physiology. 2006 Jan; 33(1-2):58-65. doi: 10.1111/j.1440-1681.2006.04324.x. [PMID: 16445700]
  • Robert W Robey, Kenneth Steadman, Orsolya Polgar, Susan E Bates. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer biology & therapy. 2005 Feb; 4(2):187-94. doi: . [PMID: 15684613]
  • T S Garimella, D D Ross, J L Eiseman, J T Mondick, E Joseph, T Nakanishi, S E Bates, K S Bauer. Plasma pharmacokinetics and tissue distribution of the breast cancer resistance protein (BCRP/ABCG2) inhibitor fumitremorgin C in SCID mice bearing T8 tumors. Cancer chemotherapy and pharmacology. 2005 Feb; 55(2):101-9. doi: 10.1007/s00280-004-0866-2. [PMID: 15580504]
  • J Y Liu, Y C Song, Z Zhang, L Wang, Z J Guo, W X Zou, R X Tan. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. Journal of biotechnology. 2004 Nov; 114(3):279-87. doi: 10.1016/j.jbiotec.2004.07.008. [PMID: 15522437]
  • Tushar S Garimella, Douglas D Ross, Kenneth S Bauer. Liquid chromatography method for the quantitation of the breast cancer resistance protein ABCG2 inhibitor fumitremorgin C and its chemical analogues in mouse plasma and tissues. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2004 Aug; 807(2):203-8. doi: 10.1016/j.jchromb.2004.04.008. [PMID: 15203030]
  • Zhe-Sheng Chen, Robert W Robey, Martin G Belinsky, Irina Shchaveleva, Xiao-Qin Ren, Yoshikazu Sugimoto, Douglas D Ross, Susan E Bates, Gary D Kruh. Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer research. 2003 Jul; 63(14):4048-54. doi: . [PMID: 12874005]