Gene Association: MTR

UniProt Search: MTR (PROTEIN_CODING)
Function Description: 5-methyltetrahydrofolate-homocysteine methyltransferase

found 146 associated metabolites with current gene based on the text mining result from the pubmed database.

Niacinamide

pyridine-3-carboxamide

C6H6N2O (122.048)


Nicotinamide is a white powder. (NTP, 1992) Nicotinamide is a pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. It has a role as an EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor, a metabolite, a cofactor, an antioxidant, a neuroprotective agent, an EC 3.5.1.98 (histone deacetylase) inhibitor, an anti-inflammatory agent, a Sir2 inhibitor, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a geroprotector. It is a vitamin B3, a pyridinecarboxamide and a pyridine alkaloid. It is functionally related to a nicotinic acid. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Nicotinamide is a natural product found in Mus musculus, Euonymus grandiflorus, and other organisms with data available. Niacinamide is the active form of vitamin B3 and a component of the coenzyme nicotinamide adenine dinucleotide (NAD). Niacinamide acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. This agent also inhibits poly(ADP-ribose) polymerases, enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy. Nicotinamide is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Niacinamide or vitamin B3 is an important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is used to increase the effect of radiation therapy on tumor cells. Niacin (nicotinic acid) and niacinamide, while both labeled as vitamin B3 also have different applications. Niacinamide is useful in arthritis and early-onset type I diabetes while niacin is an effective reducer of high cholesterol levels. Niacinamide is a metabolite found in or produced by Saccharomyces cerevisiae. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. See also: Adenosine; Niacinamide (component of); Dapsone; niacinamide (component of); Adenosine; Niacinamide; Titanium Dioxide (component of) ... View More ... Niacinamide, also known as nicotinamide (NAM), is a form of vitamin B3 found in food and used as a dietary supplement and medication. Niacinamide belongs to the class of organic compounds known as nicotinamides. These are heterocyclic aromatic compounds containing a pyridine ring substituted at position 3 by a carboxamide group. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It is an amide of nicotinic acid. As an aromatic compound, it undergoes electrophilic substitution reactions and transformations of its two functional groups. Niacinamide and phosphoribosyl pyrophosphate can be converted into nicotinic acid mononucleotide and phosphate by the enzyme nicotinamide phosphoribosyltransferase. In humans, niacinamide is involved in the metabolic disorder called the nad+ signalling pathway (cancer). Niacinamide is an odorless tasting compound. Outside of the human body, niacinamide is found, on average, in the highest concentration within a few different foods, such as common sages, cow milk, and cocoa beans and in a lower concentration in common pea. Niacinamide has also been detected, but not quantified in several different foods, such as yardlong beans, roselles, apples, oyster mushrooms, and swiss chards. Niacinamide occurs in trace amounts mainly in meat, fish, nuts, and mushrooms, as well as to a lesser extent in some vegetables. It is commonly added to cereals and other foods. Many multivitamins contain 20–30 mg of vitamin B3 and it is also available in higher doses. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. Widespread in plants, e.g. rice, yeast and fungi. Dietary supplement, may be used in infant formulas Nicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-92-0 (retrieved 2024-07-01) (CAS RN: 98-92-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].

   

Trimethylglycine

Methanaminium, 1-carboxy-N,N,N-trimethyl-, hydroxide, inner salt

C5H11NO2 (117.079)


Glycine betaine is the amino acid betaine derived from glycine. It has a role as a fundamental metabolite. It is an amino-acid betaine and a glycine derivative. It is a conjugate base of a N,N,N-trimethylglycinium. Betaine is a methyl group donor that functions in the normal metabolic cycle of methionine. It is a naturally occurring choline derivative commonly ingested through diet, with a role in regulating cellular hydration and maintaining cell function. Homocystinuria is an inherited disorder that leads to the accumulation of homocysteine in plasma and urine. Currently, no treatments are available to correct the genetic causes of homocystinuria. However, in order to normalize homocysteine levels, patients can be treated with vitamin B6 ([pyridoxine]), vitamin B12 ([cobalamin]), [folate] and specific diets. Betaine reduces plasma homocysteine levels in patients with homocystinuria. Although it is present in many food products, the levels found there are insufficient to treat this condition. The FDA and EMA have approved the product Cystadane (betaine anhydrous, oral solution) for the treatment of homocystinuria, and the EMA has approved the use of Amversio (betaine anhydrous, oral powder). Betaine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Betaine is a Methylating Agent. The mechanism of action of betaine is as a Methylating Activity. Betaine is a modified amino acid consisting of glycine with three methyl groups that serves as a methyl donor in several metabolic pathways and is used to treat the rare genetic causes of homocystinuria. Betaine has had only limited clinical use, but has not been linked to instances of serum enzyme elevations during therapy or to clinically apparent liver injury. Betaine is a natural product found in Hypoestes phyllostachya, Barleria lupulina, and other organisms with data available. Betaine is a metabolite found in or produced by Saccharomyces cerevisiae. A naturally occurring compound that has been of interest for its role in osmoregulation. As a drug, betaine hydrochloride has been used as a source of hydrochloric acid in the treatment of hypochlorhydria. Betaine has also been used in the treatment of liver disorders, for hyperkalemia, for homocystinuria, and for gastrointestinal disturbances. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1341) See also: Arnica montana Flower (part of); Betaine; panthenol (component of); Betaine; scutellaria baicalensis root (component of) ... View More ... A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. D009676 - Noxae > D000963 - Antimetabolites CONFIDENCE standard compound; ML_ID 42 D005765 - Gastrointestinal Agents KEIO_ID B047

   

Folic acid

FOLVITE(Thomson.Micromedex. Drug Information for the Health Care Professional. 24th ed. Volume 1. Plus Updates. Content Reviewed by the United States Pharmacopeial Convention, Inc. Greenwood Village, CO. 2004., p. 1422)

C19H19N7O6 (441.1397)


Folic acid appears as odorless orange-yellow needles or platelets. Darkens and chars from approximately 482 °F. Folic acid is an N-acyl-amino acid that is a form of the water-soluble vitamin B9. Its biologically active forms (tetrahydrofolate and others) are essential for nucleotide biosynthesis and homocysteine remethylation. It has a role as a human metabolite, a nutrient and a mouse metabolite. It is a member of folic acids and a N-acyl-amino acid. It is functionally related to a pteroic acid. It is a conjugate acid of a folate(2-). Folic acid, also known as folate or Vitamin B9, is a member of the B vitamin family and an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. For example, folic acid is present in green vegetables, beans, avocado, and some fruits. In order to function within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as [DB00563] as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF. When used in high doses such as for cancer therapy, or in low doses such as for Rheumatoid Arthritis or psoriasis, [DB00563] impedes the bodys ability to create folic acid. This results in a deficiency of coenzymes and a resultant buildup of toxic substances that are responsible for numerous adverse side effects. As a result, supplementation with 1-5mg of folic acid is recommended to prevent deficiency and a number of side effects associated with MTX therapy including mouth ulcers and gastrointestinal irritation. [DB00650] (also known as folinic acid) supplementation is typically used for high-dose MTX regimens for the treatment of cancer. Levoleucovorin and leucovorin are analogs of tetrahydrofolate (THF) and are able to bypass DHFR reduction to act as a cellular replacement for the co-factor THF. There are also several antiepileptic drugs (AEDs) that are associated with reduced serum and red blood cell folate, including [DB00564] (CBZ), [DB00252] (PHT), or barbiturates. Folic acid is therefore often provided as supplementation to individuals using these medications, particularly to women of child-bearing age. Inadequate folate levels can result in a number of health concerns including cardiovascular disease, megaloblastic anemias, cognitive deficiencies, and neural tube defects (NTDs). Folic acid is typically supplemented during pregnancy to prevent the development of NTDs and in individuals with alcoholism to prevent the development of neurological disorders, for example. Folic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). CID 6037 is a natural product found in Beta vulgaris, Angelica sinensis, and other organisms with data available. Folic Acid is a collective term for pteroylglutamic acids and their oligoglutamic acid conjugates. As a natural water-soluble substance, folic acid is involved in carbon transfer reactions of amino acid metabolism, in addition to purine and pyrimidine synthesis, and is essential for hematopoiesis and red blood cell production. (NCI05) A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treat... Folic acid or folate, is a vitamin that belongs to the class of compounds known as pterins. Chemically, folate consists of three distinct chemical moieties linked together. A pterin (2-amino-4-hydroxy-pteridine) linked by a methylene bridge to a p-aminobenzoyl group that in turn is linked through an amide linkage to glutamic acid. It is a member of the vitamin B family and is primarily known as vitamin B9. Folate is required for the body to make DNA and RNA and metabolize amino acids necessary for cell division for the hematopoietic system. As humans cannot make folate, it is required in the diet, making it an essential nutrient (i.e. a vitamin). Folate occurs naturally in many foods including mushrooms, spinach, yeast, green leaves, and grasses (poaceae). Folic acid, being biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by the enzyme known as dihydrofolate reductase. Tetrahydrofolate and methyltetrahydrofolate are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids and generate formic acid. Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Folic acid is also used as a supplement by women during pregnancy to reduce the risk of neural tube defects (NTDs) in babies. Low levels in early pregnancy are believed to be the cause of more than half of babies born with NTDs (PMID: 28097362). Folic acid is also a microbial metabolite produced by Bifidobacterium and Lactobacillus (PMID: 22254078). An N-acyl-amino acid that is a form of the water-soluble vitamin B9. Its biologically active forms (tetrahydrofolate and others) are essential for nucleotide biosynthesis and homocysteine remethylation. B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BB - Folic acid and derivatives COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D006397 - Hematinics D018977 - Micronutrients > D014815 - Vitamins V - Various > V04 - Diagnostic agents Dietary supplement Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C19H19N7O6; Bottle Name:Folic acid ,approx; PRIME Parent Name:Folic acid; PRIME in-house No.:V0080; SubCategory_DNP: Pteridines and analogues, Pteridine alkaloids Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.543 CONFIDENCE standard compound; INTERNAL_ID 134 Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4]. Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4].

   

Caffeoyl-CoA

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enethioate

C30H42N7O19P3S (929.1469)


Caffeoyl-CoA is an acyl CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of caffeic acid. It is functionally related to a caffeic acid. It is a conjugate acid of a caffeoyl-CoA(4-). An acyl CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of caffeic acid.

   

Pyridoxate

3-hydroxy-5-(hydroxymethyl)-2-methylpyridine-4-carboxylic acid

C8H9NO4 (183.0532)


4-Pyridoxic acid is a member of the class of compounds known as methylpyridines. More specifically it is a 2-methylpyridine derivative substituted by a hydroxy group at C-3, a carboxy group at C-4, and a hydroxymethyl group at C-5. 4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) and is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced even further in persons with a riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via the enzyme known as 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four-electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide (NAD) as a cofactor. 4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) which is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced in persons with riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide as a cofactor. [HMDB] Vitamin B6 is one of the B vitamins, and thus an essential nutrient.[1][2][3][4] The term refers to a group of six chemically similar compounds, i.e., "vitamers", which can be interconverted in biological systems. Its active form, pyridoxal 5′-phosphate, serves as a coenzyme in more than 140 enzyme reactions in amino acid, glucose, and lipid metabolism.[1][2][3] Plants synthesize pyridoxine as a means of protection from the UV-B radiation found in sunlight[5] and for the role it plays in the synthesis of chlorophyll.[6] Animals cannot synthesize any of the various forms of the vitamin, and hence must obtain it via diet, either of plants, or of other animals. There is some absorption of the vitamin produced by intestinal bacteria, but this is not sufficient to meet dietary needs. For adult humans, recommendations from various countries' food regulatory agencies are in the range of 1.0 to 2.0 milligrams (mg) per day. These same agencies also recognize ill effects from intakes that are too high, and so set safe upper limits, ranging from as low as 25 mg/day to as high as 100 mg/day depending on the country. Beef, pork, fowl and fish are generally good sources; dairy, eggs, mollusks and crustaceans also contain vitamin B6, but at lower levels. There is enough in a wide variety of plant foods so that a vegetarian or vegan diet does not put consumers at risk for deficiency.[7] Dietary deficiency is rare. Classic clinical symptoms include rash and inflammation around the mouth and eyes, plus neurological effects that include drowsiness and peripheral neuropathy affecting sensory and motor nerves in the hands and feet. In addition to dietary shortfall, deficiency can be the result of anti-vitamin drugs. There are also rare genetic defects that can trigger vitamin B6 deficiency-dependent epileptic seizures in infants. These are responsive to pyridoxal 5'-phosphate therapy.[8] 4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

D-alpha-Aminobutyric acid

alpha-Aminobutyric acid, (+-)-isomer

C4H9NO2 (103.0633)


D-alpha-Aminobutyric acid (AABA), also known as alpha-aminobutyrate, (R)-2-aminobutanoic acid or D-homoalanine, belongs to the class of organic compounds known as D-alpha-amino acids. These are alpha amino acids which have the D-configuration of the alpha-carbon atom. D-alpha-aminobutyric acid is an optically active form of alpha-aminobutyric acid having D-configuration. It is an enantiomer of a L-alpha-aminobutyric acid and a non-proteinogenic amino acid. Alpha-aminobutyric acid is one of the three isomers of aminobutyric acid. The two others are the neurotransmitter Gamma-Aminobutyric acid (GABA) and Beta-Aminobutyric acid (BABA) which is known for inducing plant disease resistance. Optically active organic compounds found in meteorites typically exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. D-enantiomers of non-proteinogenic amino acids are known to inhibit aerobic microorganisms. D-alpha-aminobutyric acid has been shown to inhibit microbial iron reduction by a number of Geobacter strains including Geobacter bemidjiensis, Geobacter metallireducens and Geopsychrobacter electrodiphilus (PMID: 25695622). D-alpha-Aminobutyric acid is a known substrate of D-amino acid oxidase (PMID: 6127341). Constituent of seedlings of Glycine max (soybean), Dolichos lablab (hyacinth bean), Canavalia gladiata (swordbean), Arachis hypogaea (peanut), Pisum sativum (pea), Phaseolus vulgaris (kidney bean) and Vigna sesquipedalis (asparagus bean) after hydrolysis D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

2-Methylpyridine

2-Picolinium bromide

C6H7N (93.0578)


2-methylpyridine, also known as 2-picoline or 2-mepy, is a member of the class of compounds known as methylpyridines. Methylpyridines are organic compounds containing a pyridine ring substituted at one or more positions by a methyl group. 2-methylpyridine is soluble (in water) and a very strong basic compound (based on its pKa). 2-methylpyridine is a bitter and sweat tasting compound found in tea, which makes 2-methylpyridine a potential biomarker for the consumption of this food product. 2-methylpyridine can be found primarily in saliva. 2-methylpyridine exists in all eukaryotes, ranging from yeast to humans. 2-Methylpyridine, or 2-picoline, is the compound described with formula C6H7N. 2-Picoline is a colorless liquid that has an unpleasant odor similar to pyridine. It is mainly used to make vinylpyridine and the agrichemical nitrapyrin . 2-Methylpyridine, or 2-picoline, is the compound described with formula C6H7N. 2-Picoline is a colorless liquid that has an unpleasant odor similar to pyridine. Pyridines including 2-picoline are most crudely prepared by the reaction of acetylene and hydrogen cyanide.

   

Deoxyuridine

1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H12N2O5 (228.0746)


Deoxyuridine, also known as dU, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. It is similar in chemical structure to uridine, but without the 2-hydroxyl group. Deoxyuridine exists in all living organisms, ranging from bacteria to humans. Within humans, deoxyuridine participates in a number of enzymatic reactions. In particular, deoxyuridine can be biosynthesized from deoxycytidine through its interaction with the enzyme cytidine deaminase. In addition, deoxyuridine can be converted into uracil and deoxyribose 1-phosphate through its interaction with the enzyme thymidine phosphorylase. Deoxyuridine is considered to be an antimetabolite that is converted into deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies. In humans, deoxyuridine is involved in the metabolic disorder called UMP synthase deficiency (orotic aciduria). Outside of the human body, deoxyuridine has been detected, but not quantified in, several different foods, such as lichee, highbush blueberries, agaves, macadamia nut (M. tetraphylla), and red bell peppers. This could make deoxyuridine a potential biomarker for the consumption of these foods. 2-Deoxyuridine is a naturally occurring nucleoside. It is similar in chemical structure to uridine, but without the 2-hydroxyl group. It is considered to be an antimetabolite that is converted to deoxyuridine triphosphate during DNA synthesis. Laboratory suppression of deoxyuridine is used to diagnose megaloblastic anemia due to vitamin B12 and folate deficiencies. [HMDB]. Deoxyuridine is found in many foods, some of which are garden tomato (variety), hickory nut, banana, and hazelnut. Deoxyuridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=951-78-0 (retrieved 2024-07-01) (CAS RN: 951-78-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.

   

5-methylthioadenosine (MTA)

(2R,3R,4S,5S)-2-(6-amino-9H-purin-9-yl)-5-[(methylsulfanyl)methyl]oxolane-3,4-diol

C11H15N5O3S (297.0896)


5-Methylthioadenosine, also known as MTA or thiomethyladenosine, belongs to the class of organic compounds known as 5-deoxy-5-thionucleosides. These are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. 5-Methylthioadenosine is metabolized solely by MTA-phosphorylase, to yield 5-methylthioribose-1-phosphate and adenine, a crucial step in the methionine and purine salvage pathways, respectively. 5-Methylthioadenosine exists in all living species, ranging from bacteria to humans. 5-Methylthioadenosine (MTA) is a naturally occurring sulfur-containing nucleoside present in all mammalian tissues. Within humans, 5-methylthioadenosine participates in a number of enzymatic reactions. In particular, 5-methylthioadenosine and spermidine can be biosynthesized from S-adenosylmethioninamine and putrescine through the action of the enzyme spermidine synthase. In addition, 5-methylthioadenosine can be converted into 5-methylthioribose 1-phosphate and L-methionine; which is catalyzed by the enzyme S-methyl-5-thioadenosine phosphorylase. It is produced from S-adenosylmethionine mainly through the polyamine biosynthetic pathway, where it behaves as a powerful inhibitory product. For instance, 5-Methylthioadenosine has been shown to influence the regulation of gene expression, proliferation, differentiation, and apoptosis (PMID:15313459). In humans, 5-methylthioadenosine is involved in the metabolic disorder called hypermethioninemia. Outside of the human body, 5-Methylthioadenosine has been detected, but not quantified in several different foods, such as soursops, allspices, summer grapes, alaska wild rhubarbs, and breadfruits. Elevated excretion appears in children with severe combined immunodeficiency syndrome (SCID) (PMID:3987052). Evidence suggests that 5-Methylthioadenosine can affect cellular processes in many ways. 5-Methylthioadenosine can be found in human urine. 5-deoxy-5-methylthioadenosine, also known as S-methyl-5-thioadenosine or mta, is a member of the class of compounds known as 5-deoxy-5-thionucleosides. 5-deoxy-5-thionucleosides are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. 5-deoxy-5-methylthioadenosine is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5-deoxy-5-methylthioadenosine can be found in a number of food items such as allspice, sesame, roselle, and bayberry, which makes 5-deoxy-5-methylthioadenosine a potential biomarker for the consumption of these food products. 5-deoxy-5-methylthioadenosine can be found primarily in blood and urine, as well as in human fibroblasts, platelet and prostate tissues. 5-deoxy-5-methylthioadenosine exists in all living species, ranging from bacteria to humans. In humans, 5-deoxy-5-methylthioadenosine is involved in a couple of metabolic pathways, which include methionine metabolism and spermidine and spermine biosynthesis. 5-deoxy-5-methylthioadenosine is also involved in several metabolic disorders, some of which include glycine n-methyltransferase deficiency, methionine adenosyltransferase deficiency, homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, and hypermethioninemia. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2]. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2]. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2].

   

5-Methyltetrahydrofolic acid

(2R)-2-[(4-{[(2-amino-5-methyl-4-oxo-3,4,5,6,7,8-hexahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C20H25N7O6 (459.1866)


5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin known as folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169). 5 methyltetrahydrofolic acid (5-MTHF) is the most biologically active form of the B-vitamin folic acid, also known generically as folate. 5-MTHF functions, in concert with vitamin B12, as a methyl-group donor involved in the conversion of the amino acid homocysteine to methionine. Methyl (CH3) group donation is vital to many bodily processes, including serotonin, melatonin, and DNA synthesis. Therapeutically, 5-MTHF is instrumental in reducing homocysteine levels, preventing neural tube defects, and improving vascular endothelial function. Research on folate supplementation suggests it plays a key role in preventing cervical dysplasia and protecting against neoplasia in ulcerative colitis. Folic acid also shows promise as part of a nutritional protocol to treat vitiligo, and may reduce inflammation of the gingiva. Furthermore, certain neurological, cognitive, and psychiatric presentations may be secondary to folate deficiency. Such presentations include depression, peripheral neuropathy, myelopathy, restless legs syndrome, insomnia, dementia, forgetfulness, irritability, endogenous depression, organic psychosis, and schizophrenia-like syndromes. After ingestion, the process of conversion of folic acid to the metabolically active coenzyme forms is relatively complex. Synthesis of the active forms of folic acid requires several enzymes, adequate liver and intestinal function, and adequate supplies of riboflavin (B2), niacin (B3), pyridoxine (B6), zinc, vitamin C, and serine. After formation of the coenzyme forms of the vitamin in the liver, these metabolically active compounds are secreted into the small intestine with bile (the folate enterohepatic cycle), where they are reabsorbed and distributed to tissues throughout the body. Human pharmacokinetic studies indicate folic acid has high bioavailability, with large oral doses of folic acid substantially raising plasma levels in healthy subjects in a time and dose dependent manner. Red blood cells (RBCs) appear to be the storage depot for folic acid, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Folic acid is poorly transported to the brain and rapidly cleared from the central nervous system. The primary methods of elimination of absorbed folic acid are fecal (through bile) and urinary. Despite the biochemical complexity of this process, evidence suggests oral supplementation with folic acid increases the bodys pool of 5-MTHF in healthy individuals. However, enzyme defects, mal-absorption, digestive system pathology, and liver disease can result in impaired ability to activate folic acid. In fact, some individuals have a severe congenital deficiency of the enzyme Methyl tetrahydrofolate reductase (5-MTHFR), which is needed to convert folic acid to 5-MTHF. Milder forms of this enzyme defect likely interact with dietary folate status to determine risk for some disease conditions. In individuals with a genetic defect of this enzyme (whether mild or severe), supplementation with 5- MTHF might be preferable to folic acid supplementation. (PMID: 17176169) [HMDB] 5-Methyltetrahydrofolic acid (5-Methyl THF) is a biologically active form of folic acid. 5-Methyltetrahydrofolic acid is a methylated derivate of tetrahydrofolate. 5-Methyltetrahydrofolic acid is the predominant natural dietary folate and the principal form of folate in plasma and cerebrospinal fluid[1]. Levomefolic acid (5-MTHF) is an orally active, brain-penetrant natural active form of folic acid and is one of the most widely used folic acid food supplements[1][2].

   

Dihydrofolic acid

(2S)-2-[(4-{[(2-amino-4-oxo-1,4,7,8-tetrahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C19H21N7O6 (443.1553)


Dihydrofolic acid is a folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid. It interacts with bacteria during cell division. It can be targeted with drug analogs to prevent nucleic acid synthesis. Dihydrofolic acid is also known by the name Dihydrofolate - more commonly Vitamin B9. [HMDB] Dihydrofolic acid is a folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid. It interacts with bacteria during cell division. It can be targeted with drug analogs to prevent nucleic acid synthesis. Dihydrofolic acid is also known by the name Dihydrofolate - more commonly Vitamin B9. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrofolic acid is a folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid.

   

L-Cystathionine

(2S)-2-amino-4-{[(2R)-2-amino-2-carboxyethyl]sulfanyl}butanoic acid

C7H14N2O4S (222.0674)


Cystathionine is a dipeptide formed by serine and homocysteine. Cystathioninuria is a prominent manifestation of vitamin-B6 deficiency. The transsulfuration of methionine yields homocysteine, which combines with serine to form cystathionine, the proximate precursor of cysteine through the enzymatic activity of cystathionase. In conditions in which cystathionine gamma-synthase or cystathionase is deficient, for example, there is cystathioninuria. Although cystathionine has not been detected in normal human serum or plasma by most conventional methods, gas chromatographic/mass spectrometric methodology detected a mean concentration of cystathionine in normal human serum of 140 nM, with a range of 65 to 301 nM. Cystathionine concentrations in CSF have been 10, 1, and 0.5 uM, and "not detected". Only traces (i.e., <1 uM) of cystathionine are present in normal CSF.587. Gamma-cystathionase deficiency (also known as Cystathioninuria), which is an autosomal recessive disorder (NIH: 2428), provided the first instance in which, in a human, the major biochemical abnormality due to a defined enzyme defect was clearly shown to be alleviated by administration of large doses of pyridoxine. The response in gamma-cystathionase-deficient patients is not attributable to correction of a preexisting deficiency of this vitamin (OMMBID, Chap. 88). Isolated from Phallus impudicus (common stinkhorn) CONFIDENCE standard compound; INTERNAL_ID 146 KEIO_ID C019; [MS2] KO008910 KEIO_ID C047 KEIO_ID C019 Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 30 L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2]. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2].

   

Homocysteine

(2S)-2-amino-4-sulfanylbutanoic acid

C4H9NO2S (135.0354)


A high level of blood serum homocysteine is a powerful risk factor for cardiovascular disease. Unfortunately, one study which attempted to decrease the risk by lowering homocysteine was not fruitful. This study was conducted on nearly 5000 Norwegian heart attack survivors who already had severe, late-stage heart disease. No study has yet been conducted in a preventive capacity on subjects who are in a relatively good state of health.; Elevated levels of homocysteine have been linked to increased fractures in elderly persons. The high level of homocysteine will auto-oxidize and react with reactive oxygen intermediates and damage endothelial cells and has a higher risk to form a thrombus. Homocysteine does not affect bone density. Instead, it appears that homocysteine affects collagen by interfering with the cross-linking between the collagen fibers and the tissues they reinforce. Whereas the HOPE-2 trial showed a reduction in stroke incidence, in those with stroke there is a high rate of hip fractures in the affected side. A trial with 2 homocysteine-lowering vitamins (folate and B12) in people with prior stroke, there was an 80\\\\\\% reduction in fractures, mainly hip, after 2 years. Interestingly, also here, bone density (and the number of falls) were identical in the vitamin and the placebo groups.; Homocysteine is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. Pyridoxal, folic acid, riboflavin, and Vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocysteinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD. (PMID 17136938, 15630149); Homocysteine is an amino acid with the formula HSCH2CH2CH(NH2)CO2H. It is a homologue of the amino acid cysteine, differing by an additional methylene (-CH2-) group. It is biosynthesized from methionine by the removal of its terminal C? methyl group. Homocysteine can be recycled into methionine or converted into cysteine with the aid of B-vitamins.; Studies reported in 2006 have shown that giving vitamins [folic acid, B6 and B12] to reduce homocysteine levels may not quickly offer benefit, however a significant 25\\\\\\% reduction in stroke was found in the HOPE-2 study even in patients mostly with existing serious arterial decline although the overall death rate was not significantly changed by the intervention in the trial. Clearly, reducing homocysteine does not quickly repair existing... Homocysteine (CAS: 454-29-5) is a sulfur-containing amino acid that arises during methionine metabolism. Although its concentration in plasma is only about 10 micromolar (uM), even moderate hyperhomocysteinemia is associated with an increased incidence of cardiovascular disease and Alzheimers disease. Elevations in plasma homocysteine are commonly found as a result of vitamin deficiencies, polymorphisms of enzymes of methionine metabolism, and renal disease. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Pyridoxal, folic acid, riboflavin, and vitamin B(12) are all required for methionine metabolism, and deficiency of each of these vitamins result in elevated plasma homocysteine. A polymorphism of methylenetetrahydrofolate reductase (C677T), which is quite common in most populations with a homozygosity rate of 10-15 \\\\\\%, is associated with moderate hyperhomocysteinemia, especially in the context of marginal folate intake. Plasma homocysteine is inversely related to plasma creatinine in patients with renal disease. This is due to an impairment in homocysteine removal in renal disease. The role of these factors, and of modifiable lifestyle factors, in affecting methionine metabolism and in determining plasma homocysteine levels is discussed. Homocysteine is an independent cardiovascular disease (CVD) risk factor modifiable by nutrition and possibly exercise. Homocysteine was first identified as an important biological compound in 1932 and linked with human disease in 1962 when elevated urinary homocysteine levels were found in children with mental retardation. This condition, called homocystinuria, was later associated with premature occlusive CVD, even in children. These observations led to research investigating the relationship of elevated homocysteine levels and CVD in a wide variety of populations including middle age and elderly men and women with and without traditional risk factors for CVD (PMID: 17136938 , 15630149). Moreover, homocysteine is found to be associated with cystathionine beta-synthase deficiency, cystathioninuria, methylenetetrahydrofolate reductase deficiency, and sulfite oxidase deficiency, which are inborn errors of metabolism. [Spectral] L-Homocysteine (exact mass = 135.0354) and L-Valine (exact mass = 117.07898) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Homocysteine is biosynthesized naturally via a multi-step process.[9] First, methionine receives an adenosine group from ATP, a reaction catalyzed by S-adenosyl-methionine synthetase, to give S-adenosyl methionine (SAM-e). SAM-e then transfers the methyl group to an acceptor molecule, (e.g., norepinephrine as an acceptor during epinephrine synthesis, DNA methyltransferase as an intermediate acceptor in the process of DNA methylation). The adenosine is then hydrolyzed to yield L-homocysteine. L-Homocysteine has two primary fates: conversion via tetrahydrofolate (THF) back into L-methionine or conversion to L-cysteine.[10] Biosynthesis of cysteine Mammals biosynthesize the amino acid cysteine via homocysteine. Cystathionine β-synthase catalyses the condensation of homocysteine and serine to give cystathionine. This reaction uses pyridoxine (vitamin B6) as a cofactor. Cystathionine γ-lyase then converts this double amino acid to cysteine, ammonia, and α-ketobutyrate. Bacteria and plants rely on a different pathway to produce cysteine, relying on O-acetylserine.[11] Methionine salvage Homocysteine can be recycled into methionine. This process uses N5-methyl tetrahydrofolate as the methyl donor and cobalamin (vitamin B12)-related enzymes. More detail on these enzymes can be found in the article for methionine synthase. Other reactions of biochemical significance Homocysteine can cyclize to give homocysteine thiolactone, a five-membered heterocycle. Because of this "self-looping" reaction, homocysteine-containing peptides tend to cleave themselves by reactions generating oxidative stress.[12] Homocysteine also acts as an allosteric antagonist at Dopamine D2 receptors.[13] It has been proposed that both homocysteine and its thiolactone may have played a significant role in the appearance of life on the early Earth.[14] L-Homocysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=454-28-4 (retrieved 2024-06-29) (CAS RN: 6027-13-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].

   

Guanidinoacetate

2-[[Amino(imino)methyl]amino]acetic acid

C3H7N3O2 (117.0538)


Guanidoacetic acid (GAA), also known as guanidinoacetate or glycocyamine, belongs to the class of organic compounds known as alpha amino acids and derivatives. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. Guanidinoacetic acid was first prepared in 1861 by Adolph Strecker by reaction of cyanamide with glycine in aqueous solution. Manufactured guanidinoacetic acid is primarily used a feed additive approved by EFSA in poultry farming (for fattening), and pigs for fattening. Guanidoacetic acid exists naturally in all vertebrates. It is formed primarily in the kidneys by transferring the guanidine group of L-arginine to the amino acid glycine via the enzyme known as L-Arg:Gly-amidinotransferase (AGAT). In a further step, guanidinoacetate is methylated to generate creatine using S-adenosyl methionine (as the methyl donor) via the enzyme known as guanidinoacetate N-methyltransferase (GAMT). The resulting creatine is released into the bloodstream. Elevated levels of guanidoacetic acid are a characteristic of an inborn metabolic disorder known as Guanidinoacetate Methyltransferase (GAMT) Deficiency. GAMT converts guanidinoacetate to creatine and deficiency of this enzyme results in creatine depletion and accumulation of guanidinoacetate The disorder is transmitted in an autosomal recessive fashion and is localized to mutations on chromosome 19p13.3. GAMT deficiency is characterized by developmental arrest, medication-resistant epilepsy (myoclonic, generalized tonic-clonic, partial complex, atonic), severe speech impairment, progressive dystonia, dyskinesias, hypotonia, ataxia, and autistic-like behavior. Guanidino acetic acid, also known as guanidinoacetate or glycocyamine, belongs to alpha amino acids and derivatives class of compounds. Those are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon), or a derivative thereof. Guanidino acetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Guanidino acetic acid can be found in apple and loquat, which makes guanidino acetic acid a potential biomarker for the consumption of these food products. Guanidino acetic acid can be found primarily in most biofluids, including cellular cytoplasm, feces, urine, and cerebrospinal fluid (CSF), as well as in human brain, kidney and liver tissues. In humans, guanidino acetic acid is involved in a couple of metabolic pathways, which include arginine and proline metabolism and glycine and serine metabolism. Guanidino acetic acid is also involved in several metabolic disorders, some of which include dihydropyrimidine dehydrogenase deficiency (DHPD), hyperprolinemia type II, prolinemia type II, and hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome]. Moreover, guanidino acetic acid is found to be associated with chronic renal failure and schizophrenia. Guanidino acetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Chronic Exposure: Kidney dialysis is usually needed to relieve the symptoms of uremic syndrome until normal kidney function can be restored. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels Acquisition and generation of the data is financially supported in part by CREST/JST.

   

L-Methionine

(2S)-2-amino-4-(methylsulfanyl)butanoic acid

C5H11NO2S (149.051)


Methionine (Met), also known as L-methionine, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Methionine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Methionine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. Methionine is an essential amino acid (there are 9 essential amino acids), meaning the body cannot synthesize it, and it must be obtained from the diet. It is required for normal growth and development of humans, other mammals, and avian species. In addition to being a substrate for protein synthesis, methionine is an intermediate in transmethylation reactions, serving as the major methyl group donor in vivo, including the methyl groups for DNA and RNA intermediates. Methionine is a methyl acceptor for 5-methyltetrahydrofolate-homocysteine methyltransferase (methionine synthase), the only reaction that allows for the recycling of this form of folate, and is also a methyl acceptor for the catabolism of betaine. Methionine is the metabolic precursor for cysteine. Only the sulfur atom from methionine is transferred to cysteine; the carbon skeleton of cysteine is donated by serine (PMID: 16702340 ). There is a general consensus concerning normal sulfur amino acid (SAA) requirements. WHO recommendations amount to 13 mg/kg per 24 h in healthy adults. This amount is roughly doubled in artificial nutrition regimens. In disease or after trauma, requirements may be altered for methionine, cysteine, and taurine. Although in specific cases of congenital enzyme deficiency, prematurity, or diminished liver function, hypermethioninemia or hyperhomocysteinemia may occur, SAA supplementation can be considered safe in amounts exceeding 2-3 times the minimum recommended daily intake. Apart from some very specific indications (e.g. acetaminophen poisoning) the usefulness of SAA supplementation is not yet established (PMID: 16702341 ). Methionine is known to exacerbate psychopathological symptoms in schizophrenic patients, but there is no evidence of similar effects in healthy subjects. The role of methionine as a precursor of homocysteine is the most notable cause for concern. Acute doses of methionine can lead to acute increases in plasma homocysteine, which can be used as an index of the susceptibility to cardiovascular disease. Sufficiently high doses of methionine can actually result in death. Longer-term studies in adults have indicated no adverse consequences of moderate fluctuations in dietary methionine intake, but intakes higher than 5 times the normal amount resulted in elevated homocysteine levels. These effects of methionine on homocysteine and vascular function are moderated by supplements of vitamins B-6, B-12, C, and folic acid (PMID: 16702346 ). When present in sufficiently high levels, methionine can act as an atherogen and a metabotoxin. An atherogen is a compound that when present at chronically high levels causes atherosclerosis and cardiovascular disease. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of methionine are associated with at least ten inborn errors of metabolism, including cystathionine beta-synthase deficiency, glycine N-methyltransferase deficiency, homocystinuria, tyrosinemia, galactosemia, homocystinuria-megaloblastic anemia due to defects in cobalamin metabolism, methionine adenosyltransferase deficiency, methylenetetrahydrofolate reductase deficiency, and S-adenosylhomocysteine (SAH) hydrolase deficiency. Chronically elevated levels of methionine in infants can lead to intellectual disability and othe... [Spectral] L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Methionine (exact mass = 149.05105) and Tyramine (exact mass = 137.08406) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. l-Methionine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-68-3 (retrieved 2024-07-01) (CAS RN: 63-68-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant.

   

Pyridoxine

3-Hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridine

C8H11NO3 (169.0739)


Pyridoxine, also known vitamin B6, is commonly found in food and is used as a dietary supplement. Pyridoxine is an essential nutrient, meaning the body cannot synthesize it, and it must be obtained from the diet. Sources in the diet include fruit, vegetables, and grain. Although pyridoxine and vitamin B6 are still frequently used as synonyms, especially by medical researchers, this practice is sometimes misleading (PMID: 2192605). Technically, pyridoxine is one of the compounds that can be called vitamin B6 or it is a member of the family of B6 vitamins. Healthy human blood levels of pyridoxine are 2.1 - 21.7 ng/mL. Pyridoxine is readily converted to pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids and aminolevulinic acid. Pyridoxine assists in the balancing of sodium and potassium as well as promoting red blood cell production. Therefore pyridoxine is required by the body to make amino acids, carbohydrates, and lipids. It is linked to cancer immunity and helps fight the formation of homocysteine. It has been suggested that pyridoxine might help children with learning difficulties, and may also prevent dandruff, eczema, and psoriasis. In addition, pyridoxine can help balance hormonal changes in women and aid in immune system. Lack of pyridoxine may cause anemia, nerve damage, seizures, skin problems, and sores in the mouth (Wikipedia). Deficiency of pyridoxine, though rare because of widespread distribution in foods, leads to the development of peripheral neuritis in adults and affects the central nervous system in children (DOSE - 3rd edition). As a supplement pyridoxine is used to treat and prevent pyridoxine deficiency, sideroblastic anaemia, pyridoxine-dependent epilepsy, certain metabolic disorders, problems from isoniazid, and certain types of mushroom poisoning. Pyridoxine in combination with doxylamine is used as a treatment for morning sickness in pregnant women. Found in rice husks, cane molasses, yeast, wheat germ and cod liver oils. Vitamin, dietary supplement, nutrient. Pyridoxine is one of the compounds that can be called vitamin B6, along with pyridoxal and pyridoxamine. It differs from pyridoxamine by the substituent at the 4 position. It is often used as pyridoxine hydrochloride. Pyridoxine in the urine is a biomarker for the consumption of soy products. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map KEIO_ID P053 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.

   

Riboflavin (Vitamin B2)

7,8-dimethyl-10-[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]-2H,3H,4H,10H-benzo[g]pteridine-2,4-dione

C17H20N4O6 (376.1383)


Riboflavin or vitamin B2 is an easily absorbed, water-soluble micronutrient with a key role in maintaining human health. Like the other B vitamins, it supports energy production by aiding in the metabolizing of fats, carbohydrates, and proteins. Vitamin B2 is also required for red blood cell formation and respiration, antibody production, and for regulating human growth and reproduction. It is essential for healthy skin, nails, hair growth and general good health, including regulating thyroid activity. Riboflavin is found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. Riboflavin is yellow or orange-yellow in color and in addition to being used as a food coloring it is also used to fortify some foods. It can be found in baby foods, breakfast cereals, sauces, processed cheese, fruit drinks and vitamin-enriched milk products. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as flavin mononucleotide and flavin adenine dinucleotide. Riboflavin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-88-5 (retrieved 2024-07-01) (CAS RN: 83-88-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient. Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient.

   

S-adenosylhomocysteine (SAH)

(2S)-2-Amino-4-({[(2S,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}sulphanyl)butanoic acid

C14H20N6O5S (384.1216)


S-Adenosyl-L-homocysteine (SAH) is formed by the demethylation of S-adenosyl-L-methionine. S-Adenosylhomocysteine (AdoHcy or SAH) is also the immediate precursor of all of the homocysteine produced in the body. The reaction is catalyzed by S-adenosylhomocysteine hydrolase and is reversible with the equilibrium favoring formation of SAH. In vivo, the reaction is driven in the direction of homocysteine formation by the action of the enzyme adenosine deaminase which converts the second product of the S-adenosylhomocysteine hydrolase reaction, adenosine, to inosine. Except for methyl transfer from betaine and from methylcobalamin in the methionine synthase reaction, SAH is the product of all methylation reactions that involve S-adenosylmethionine (SAM) as the methyl donor. Methylation is significant in epigenetic regulation of protein expression via DNA and histone methylation. The inhibition of these SAM-mediated processes by SAH is a proven mechanism for metabolic alteration. Because the conversion of SAH to homocysteine is reversible, with the equilibrium favoring the formation of SAH, increases in plasma homocysteine are accompanied by an elevation of SAH in most cases. Disturbances in the transmethylation pathway indicated by abnormal SAH, SAM, or their ratio have been reported in many neurodegenerative diseases, such as dementia, depression, and Parkinsons disease (PMID:18065573, 17892439). Therefore, when present in sufficiently high levels, S-adenosylhomocysteine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of S-adenosylhomocysteine are associated with S-adenosylhomocysteine (SAH) hydrolase deficiency and adenosine deaminase deficiency. S-Adenosylhomocysteine forms when there are elevated levels of homocysteine and adenosine. S-Adenosyl-L-homocysteine is a potent inhibitor of S-adenosyl-L-methionine-dependent methylation reactions. It is toxic to immature lymphocytes and can lead to immunosuppression (PMID:221926). S-adenosylhomocysteine, also known as adohcy or sah, is a member of the class of compounds known as 5-deoxy-5-thionucleosides. 5-deoxy-5-thionucleosides are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. S-adenosylhomocysteine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). S-adenosylhomocysteine can be found in a number of food items such as rapini, european plum, rambutan, and pepper (c. pubescens), which makes S-adenosylhomocysteine a potential biomarker for the consumption of these food products. S-adenosylhomocysteine can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine, as well as throughout most human tissues. S-adenosylhomocysteine exists in all living species, ranging from bacteria to humans. In humans, S-adenosylhomocysteine is involved in several metabolic pathways, some of which include phosphatidylcholine biosynthesis PC(14:0/18:3(9Z,12Z,15Z)), phosphatidylcholine biosynthesis PC(22:4(7Z,10Z,13Z,16Z)/22:0), phosphatidylcholine biosynthesis PC(20:3(5Z,8Z,11Z)/22:2(13Z,16Z)), and phosphatidylcholine biosynthesis PC(18:3(6Z,9Z,12Z)/22:5(7Z,10Z,13Z,16Z,19Z)). S-adenosylhomocysteine is also involved in several metabolic disorders, some of which include 3-phosphoglycerate dehydrogenase deficiency, hawkinsinuria, non ketotic hyperglycinemia, and tyrosine hydroxylase deficiency. Moreover, S-adenosylhomocysteine is found to be associated with neurodegenerative disease and parkinsons disease. S-adenosylhomocysteine is a non-carcinogenic (not listed by IARC) potentially toxic compound. S-Adenosyl-L-homocysteine (SAH) is an amino acid derivative used in several metabolic pathways in most organisms. It is an intermediate in the synthesis of cysteine and adenosine . [Spectral] S-Adenosyl-L-homocysteine (exact mass = 384.12159) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] S-Adenosyl-L-homocysteine (exact mass = 384.12159) and Cytidine (exact mass = 243.08552) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS SAH (S-Adenosylhomocysteine) is an amino acid derivative and a modulartor in several metabolic pathways. It is an intermediate in the synthesis of cysteine and adenosine[1]. SAH is an inhibitor for METTL3-METTL14 heterodimer complex (METTL3-14) with an IC50 of 0.9 μM[2]. SAH (S-Adenosylhomocysteine) is an amino acid derivative and a modulartor in several metabolic pathways. It is an intermediate in the synthesis of cysteine and adenosine[1]. SAH is an inhibitor for METTL3-METTL14 heterodimer complex (METTL3-14) with an IC50 of 0.9 μM[2].

   

Thymidine-5'-monophosphoric acid

{[(2R,3S,5R)-3-hydroxy-5-(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)oxolan-2-yl]methoxy}phosphonic acid

C10H15N2O8P (322.0566)


5-Thymidylic acid (conjugate base thymidylate), also known as thymidine monophosphate (TMP), deoxythymidine monophosphate (dTMP), or deoxythymidylic acid (conjugate base deoxythymidylate), is a nucleotide that is used as a monomer in DNA. It is an ester of phosphoric acid with the nucleoside thymidine. dTMP consists of a phosphate group, the pentose sugar deoxyribose, and the nucleobase thymine. Unlike the other deoxyribonucleotides, thymidine monophosphate often does not contain the "deoxy" prefix in its name; nevertheless, its symbol often includes a "d" ("dTMP"). 5-Thymidylic acid belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. The neutral species of 5-Thymidylic acid (2-deoxythymidine 5-monophosphate). 5-Thymidylic acid exists in all living species, ranging from bacteria to humans. Within humans, 5-thymidylic acid participates in a number of enzymatic reactions. In particular, 5-thymidylic acid and dihydrofolic acid can be biosynthesized from dUMP and 5,10-methylene-THF by the enzyme thymidylate synthase. In addition, 5-thymidylic acid can be converted into dTDP; which is catalyzed by the enzyme thymidylate synthase. In humans, 5-thymidylic acid is involved in pyrimidine metabolism. Outside of the human body, 5-Thymidylic acid has been detected, but not quantified in several different foods, such as common buckwheats, corn salad, garden cress, squashberries, and star fruits. 5-thymidylic acid, also known as thymidylate or thymidine 5-phosphate, is a member of the class of compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. Pyrimidine 2-deoxyribonucleoside monophosphates are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. 5-thymidylic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 5-thymidylic acid can be found in a number of food items such as burbot, enokitake, scarlet bean, and garland chrysanthemum, which makes 5-thymidylic acid a potential biomarker for the consumption of these food products. 5-thymidylic acid can be found primarily in feces, as well as in human fibroblasts tissue. 5-thymidylic acid exists in all living species, ranging from bacteria to humans. In humans, 5-thymidylic acid is involved in the pyrimidine metabolism. 5-thymidylic acid is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

L-Cysteine

(2R)-2-amino-3-sulfanylpropanoic acid

C3H7NO2S (121.0197)


Cysteine (Cys), also known as L-cysteine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-alanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Cysteine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar, sulfur-containing amino acid. Cysteine is an important source of sulfur in human metabolism, and although it is classified as a non-essential amino acid, cysteine may be essential for infants, the elderly, and individuals with certain metabolic disease or who suffer from malabsorption syndromes. Cysteine can occasionally be considered as an essential or conditionally essential amino acid. Cysteine is unique amongst the twenty natural amino acids as it contains a thiol group. Thiol groups can undergo oxidation/reduction (redox) reactions; when cysteine is oxidized it can form cystine, which is two cysteine residues joined by a disulfide bond. This reaction is reversible since the reduction of this disulphide bond regenerates two cysteine molecules. The disulphide bonds of cystine are crucial to defining the structures of many proteins. Cysteine is often involved in electron-transfer reactions, and help the enzyme catalyze its reaction. Cysteine is also part of the antioxidant glutathione. N-Acetyl-L-cysteine (NAC) is a form of cysteine where an acetyl group is attached to cysteines nitrogen atom and is sold as a dietary supplement. Cysteine is named after cystine, which comes from the Greek word kustis meaning bladder (cystine was first isolated from kidney stones). Oxidation of cysteine can produce a disulfide bond with another thiol and further oxidation can produce sulphfinic or sulfonic acids. The cysteine thiol group is also a nucleophile and can undergo addition and substitution reactions. Thiol groups become much more reactive when they are ionized, and cysteine residues in proteins have pKa values close to neutrality, so they are often in their reactive thiolate form in the cell. The thiol group also has a high affinity for heavy metals and proteins containing cysteine will bind metals such as mercury, lead, and cadmium tightly. Due to this ability to undergo redox reactions, cysteine has antioxidant properties. Cysteine is important in energy metabolism. As cystine, it is a structural component of many tissues and hormones. Cysteine has clinical uses ranging from treating baldness to psoriasis to preventing smokers hack. In some cases, oral cysteine therapy has proved excellent for treatment of asthmatics, enabling them to stop theophylline and other medications. Cysteine also enhances the effect of topically applied silver, tin, and zinc salts in preventing dental cavities. In the future, cysteine may play a role in the treatment of cobalt toxicity, diabetes, psychosis, cancer, and seizures (http://www.dcnutrition.com/AminoAcids/). Cysteine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). [Spectral] L-Cysteine (exact mass = 121.01975) and D-2-Aminobutyrate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Cysteine (exact mass = 121.01975) and Creatine (exact mass = 131.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Detoxicant, dietary supplement, dough strengthener, yeast nutrient for leavened bakery products. Flavouring agent. Enzymic browning inhibitor. L-Cysteine is found in many foods, some of which are bilberry, mugwort, cowpea, and sweet bay. L-(+)-Cysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52-90-4 (retrieved 2024-07-01) (CAS RN: 52-90-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].

   

Methylmalonyl-CoA

(2S)-3-{[2-(3-{3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido}propanamido)ethyl]sulfanyl}-2-methyl-3-oxopropanoic acid

C25H40N7O19P3S (867.1312)


Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial). [HMDB] Methylmalonyl-CoA is an intermediate in the metabolism of Propanoate. It is a substrate for Malonyl-CoA decarboxylase (mitochondrial), Methylmalonyl-CoA mutase (mitochondrial) and Methylmalonyl-CoA epimerase (mitochondrial).

   

Methylmalonic acid

1,1-Ethanedicarboxylic acid

C4H6O4 (118.0266)


Methylmalonic acid is a malonic acid derivative, which is a vital intermediate in the metabolism of fat and protein. In particular, the coenzyme A-linked form of methylmalonic acid, methylmalonyl-CoA, is converted into succinyl-CoA by methylmalonyl-CoA mutase in a reaction that requires vitamin B12 as a cofactor. In this way, methylmalonic acid enters the Krebs cycle and is thus part of one of the anaplerotic reactions. Abnormalities in methylmalonic acid metabolism lead to methylmalonic aciduria. This inborn error of metabolism is attributed to a block in the enzymatic conversion of methylmalonyl CoA to succinyl CoA. Methylmalonic acid is also found to be associated with other inborn errors of metabolism, including cobalamin deficiency, cobalamin malabsorption, malonyl-CoA decarboxylase deficiency, and transcobalamin II deficiency. When present in sufficiently high levels, methylmalonic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of methylmalonic acid are associated with at least 5 inborn errors of metabolism, including Malonyl CoA decarboxylase deficiency, Malonic Aciduria, Methylmalonate Semialdehyde Dehydrogenase Deficiency, Methylmalonic Aciduria and Methylmalonic Aciduria Due to Cobalamin-Related Disorders. Methylmalonic acid is an organic acid and abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. A malonic acid derivative which is a vital intermediate in the metabolism of fat and protein. Abnormalities in methylmalonic acid metabolism lead to methylmalonic aciduria. This metabolic disease is attributed to a block in the enzymatic conversion of methylmalonyl CoA to succinyl CoA. [HMDB] KEIO_ID M014 Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer.

   

6-Benzylaminopurine

N-(Phenylmethyl)-1H-purin-6-amine

C12H11N5 (225.1014)


6-Benzylaminopurine (6-BAP), also known as N6-benzyladenine or cytokinin B, belongs to the class of organic compounds known as 6-alkylaminopurines. 6-Alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. 6-Benzylaminopurine is a very strong basic compound (based on its pKa). Outside of the human body, 6-benzylaminopurine has been detected, but not quantified in, garden tomato (var.) and wild celeries. This could make 6-benzylaminopurine a potential biomarker for the consumption of these foods. 6-Benzylaminopurine is a synthetic cytokinin applied externally postharvest to maintain the quality, delay senescence, and improve the nutritional value of green vegetables (PMID: 22148319). 6-Benzylaminopurine, benzyl adenine or BAP is a first-generation synthetic cytokinin which elicits plant growth and development responses, setting blossoms and stimulating fruit richness by stimulating cell division. It is an inhibitor of respiratory kinase in plants, and increases post-harvest life of green vegetables. Cytokinin B is found in wild celery and garden tomato (variety). CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6963; ORIGINAL_PRECURSOR_SCAN_NO 6960 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3175; ORIGINAL_PRECURSOR_SCAN_NO 3173 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6962; ORIGINAL_PRECURSOR_SCAN_NO 6960 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6947; ORIGINAL_PRECURSOR_SCAN_NO 6945 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6966; ORIGINAL_PRECURSOR_SCAN_NO 6965 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6971; ORIGINAL_PRECURSOR_SCAN_NO 6967 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3236; ORIGINAL_PRECURSOR_SCAN_NO 3235 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6911; ORIGINAL_PRECURSOR_SCAN_NO 6907 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3181; ORIGINAL_PRECURSOR_SCAN_NO 3179 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3214; ORIGINAL_PRECURSOR_SCAN_NO 3213 CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3173; ORIGINAL_PRECURSOR_SCAN_NO 3171 D006133 - Growth Substances > D010937 - Plant Growth Regulators KEIO_ID B015; [MS2] KO008874 KEIO_ID B015 6-Benzylaminopurine (Benzyladenine) is the first cytokinin that causes plant growth and development by stimulating cell division and inhibiting respiratory kinases, thereby prolonging the preservation of green vegetables[1]. 6-Benzylaminopurine is the first cytokinin that causes plant growth and development by stimulating cell division and inhibiting respiratory kinases, thereby prolonging the preservation of green vegetables.

   

MCPB

4-(4-Chloro-2-methylphenoxy)butanoic acid

C11H13ClO3 (228.0553)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2710 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5034; ORIGINAL_PRECURSOR_SCAN_NO 5030 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4996; ORIGINAL_PRECURSOR_SCAN_NO 4991 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5038; ORIGINAL_PRECURSOR_SCAN_NO 5036 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5019; ORIGINAL_PRECURSOR_SCAN_NO 5018 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5021; ORIGINAL_PRECURSOR_SCAN_NO 5016 CONFIDENCE standard compound; INTERNAL_ID 578; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5033; ORIGINAL_PRECURSOR_SCAN_NO 5031

   

Dimethylbenzimidazole

5,6-Dimethylbenzimidazole hydrochloride

C9H10N2 (146.0844)


Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. Dimethylbenzimidazole is the second to last step for the synthesis of alpha-Ribazole. It is converted from Riboflavin then it is converted to N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via the enzyme nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase (EC 2.4.2.21). Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. KEIO_ID D087 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   

Methamphetamine

Abbott brand OF methamphetamine hydrochloride

C10H15N (149.1204)


Methamphetamine is a psychostimulant and sympathomimetic drug. It is a member of the amphetamine group of sympathomimetic amines. Methamphetamine can induce effects such as euphoria, increased alertness and energy, and enhanced self-esteem. It is a scheduled drug in most countries due to its high potential for addiction and abuse. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2829 D049990 - Membrane Transport Modulators

   

Benazepril

2-[(3S)-3-{[(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]amino}-2-oxo-2,3,4,5-tetrahydro-1H-1-benzazepin-1-yl]acetic acid

C24H28N2O5 (424.1998)


Benazepril, brand name Lotensin, is a medication used to treat high blood pressure (hypertension), congestive heart failure, and chronic renal failure. Upon cleavage of its ester group by the liver, benazepril is converted into its active form benazeprilat, a non-sulfhydryl angiotensin-converting enzyme (ACE) inhibitor. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Tsumacide

METOLCARB

C9H11NO2 (165.079)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

Hypotaurine

2-aminoethane-1-sulfinic acid

C2H7NO2S (109.0197)


Hypotaurine belongs to the class of organic compounds known as sulfinic acids. Sulfinic acids are compounds containing a sulfinic acid functional group, with the general structure RS(=O)OH (R = organyl, not H). Hypotaurine exists in all living species, ranging from bacteria to humans. Within humans, hypotaurine participates in a number of enzymatic reactions. In particular, hypotaurine can be biosynthesized from cysteamine; which is catalyzed by the enzyme 2-aminoethanethiol dioxygenase. In addition, hypotaurine can be biosynthesized from 3-sulfinoalanine through its interaction with the enzyme cysteine sulfinic acid decarboxylase. In humans, hypotaurine is involved in taurine and hypotaurine metabolism. [Spectral] Hypotaurine (exact mass = 109.01975) and Cytosine (exact mass = 111.04326) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Hypotaurine is a product of enzyme cysteamine dioxygenase [EC 1.13.11.19] in taurine and hypotaurine metabolism pathway (KEGG). It may function as an antioxidant and a protective agent under physiological conditions (PMID 14992269). [HMDB] Hypotaurine (2-aminoethanesulfinic acid), an intermediate in taurine biosynthesis from cysteine in astrocytes, is an endogenous inhibitory amino acid of the glycine receptor. Antioxidant[1].

   

Dimethylglycine

N-Methylsarcosine N,N-dimethyl-glycine

C4H9NO2 (103.0633)


Dimethylglycine (DMG) is an amino acid derivative found in the cells of all plants and animals and can be obtained in the diet in small amounts from grains and meat. The human body produces DMG when metabolizing choline into glycine. Dimethylglycine that is not metabolized in the liver is transported by the circulatory system to body tissue. Dimethylglycine was popular with Russian athletes and cosmonauts owing to its reputed ability to increase endurance and reduce fatigue. DMG is also a byproduct of homocysteine metabolism. Homocysteine and betaine are converted to methionine and N,N-dimethylglycine by betaine-homocysteine methyltransferase. DMG in the urine is a biomarker for the consumption of legumes. It is also a microbial metabolite (PMID: 25901889). Dimethylglycine (DMG) is an amino acid derivative found in the cells of all plants and animals and can be obtained in the diet in small amounts from grains and meat. The human body produces DMG when metabolizing choline into Glycine. Dimethylglycine that is not metabolized in the liver is transported by the circulatory system to body tissue. Dimethylglycine was popular with Russian athletes and cosmonauts owing to its reputed ability to increase endurance and reduce fatigue. DMG is also a byproduct of homocysteine metabolism. Homocysteine and betaine are converted to methionine and N, N-dimethylglycine by betaine-homocysteine methyltransferase. [HMDB]. Dimethylglycine in the urine is a biomarker for the consumption of legumes. N,N-Dimethylglycine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1118-68-9 (retrieved 2024-07-16) (CAS RN: 1118-68-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). N-Methylsarcosine is an amino acid building block for protein, found in a small amount in the body.

   

Flavin mononucleotide

{[(2R,3S,4S)-5-{7,8-dimethyl-2,4-dioxo-2H,3H,4H,10H-benzo[g]pteridin-10-yl}-2,3,4-trihydroxypentyl]oxy}phosphonic acid

C17H21N4O9P (456.1046)


Flavin mononucleotide, also known as riboflavin 5-monophosphate or riboflavine dihydrogen phosphate, is a member of the class of compounds known as flavin nucleotides. Flavin nucleotides are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. Flavin mononucleotide is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Flavin mononucleotide can be found in a number of food items such as spinach, elliotts blueberry, tea leaf willow, and black mulberry, which makes flavin mononucleotide a potential biomarker for the consumption of these food products. Flavin mononucleotide can be found primarily in blood, as well as throughout most human tissues. Flavin mononucleotide exists in all living species, ranging from bacteria to humans. In humans, flavin mononucleotide is involved in several metabolic pathways, some of which include riboflavin metabolism, pyrimidine metabolism, beta-alanine metabolism, and doxorubicin metabolism pathway. Flavin mononucleotide is also involved in several metabolic disorders, some of which include beta ureidopropionase deficiency, UMP synthase deficiency (orotic aciduria), carnosinuria, carnosinemia, and hypophosphatasia. Moreover, flavin mononucleotide is found to be associated with anorexia nervosa. Flavin mononucleotide (FMN), or riboflavin-5′-phosphate, is a biomolecule produced from riboflavin (vitamin B2) by the enzyme riboflavin kinase and functions as prosthetic group of various oxidoreductases including NADH dehydrogenase as well as cofactor in biological blue-light photo receptors. During the catalytic cycle, a reversible interconversion of the oxidized (FMN), semiquinone (FMNH•) and reduced (FMNH2) forms occurs in the various oxidoreductases. FMN is a stronger oxidizing agent than NAD and is particularly useful because it can take part in both one- and two-electron transfers. In its role as blue-light photo receptor, (oxidized) FMN stands out from the conventional photo receptors as the signaling state and not an E/Z isomerization . Flavin mononucleotide (FMN), or riboflavin-5′-phosphate, is a biomolecule produced from riboflavin (vitamin B2) by the enzyme riboflavin kinase and functions as the prosthetic group of various oxidoreductases, including NADH dehydrogenase, as well as cofactor in biological blue-light photo receptors. During the catalytic cycle, a reversible interconversion of the oxidized (FMN), semiquinone (FMNH), and reduced (FMNH2) forms occurs in the various oxidoreductases. FMN is a stronger oxidizing agent than NAD and is particularly useful because it can take part in both one- and two-electron transfers. In its role as blue-light photo receptor, (oxidized) FMN stands out from the conventional photo receptors as the signaling state and not an E/Z isomerization. It is the principal form in which riboflavin is found in cells and tissues. It requires more energy to produce, but is more soluble than riboflavin. Flavin mononucleotide belongs to the class of organic compounds known as flavin nucleotides. These are nucleotides containing a flavin moiety. Flavin is a compound that contains the tricyclic isoalloxazine ring system, which bears 2 oxo groups at the 2- and 4-positions. Flavin mononucleotide exists in all living species, ranging from bacteria to humans. Within humans, flavin mononucleotide participates in a number of enzymatic reactions. In particular, formic acid and flavin mononucleotide can be biosynthesized from FMNH2; which is catalyzed by the enzyme lanosterol 14-alpha demethylase. In addition, formic acid and flavin mononucleotide can be biosynthesized from FMNH2 through the action of the enzyme lanosterol 14-alpha demethylase. In humans, flavin mononucleotide is involved in bloch pathway (cholesterol biosynthesis). Outside of the human body, flavin mononucleotide has been detected, but not quantified in several different foods, such as mandarin orange (clementine, tangerine), horseradish tree, black elderberries, angelica, and ostrich ferns. Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins

   

Choline

(2-hydroxyethyl)trimethylazanium

[C5H14NO]+ (104.1075)


Choline is a basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Choline is now considered to be an essential vitamin. While humans can synthesize small amounts (by converting phosphatidylethanolamine to phosphatidylcholine), it must be consumed in the diet to maintain health. Required levels are between 425 mg/day (female) and 550 mg/day (male). Milk, eggs, liver, and peanuts are especially rich in choline. Most choline is found in phospholipids, namely phosphatidylcholine or lecithin. Choline can be oxidized to form betaine, which is a methyl source for many reactions (i.e. conversion of homocysteine into methionine). Lack of sufficient amounts of choline in the diet can lead to a fatty liver condition and general liver damage. This arises from the lack of VLDL, which is necessary to transport fats away from the liver. Choline deficiency also leads to elevated serum levels of alanine amino transferase and is associated with increased incidence of liver cancer. Nutritional supplement. Occurs free and combined in many animal and vegetable foods with highest concentrations found in egg yolk, meat, fish, milk, cereaks and legumes Choline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=62-49-7 (retrieved 2024-06-29) (CAS RN: 62-49-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Propionylcarnitine

O-propanoyl-carnitine

C10H19NO4 (217.1314)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents An O-acylcarnitine compound having propanoyl as the acyl substituent. D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents

   

AdoMet

(2S)-2-amino-4-[[(2S,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl-methylsulfonio]butanoate

C15H22N6O5S (398.1372)


[Spectral] S-Adenosyl-L-methionine (exact mass = 398.13724) and L-Histidine (exact mass = 155.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C275 - Antioxidant COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Sarcosine

2-(methylamino)acetic acid

C3H7NO2 (89.0477)


Sarcosine is the N-methyl derivative of glycine. Sarcosine is metabolized to glycine by the enzyme sarcosine dehydrogenase, while glycine-N-methyl transferase generates sarcosine from glycine. Sarcosine is a natural amino acid found in muscles and other body tissues. In the laboratory it may be synthesized from chloroacetic acid and methylamine. Sarcosine is naturally found in the metabolism of choline to glycine. Sarcosine is sweet to the taste and dissolves in water. It is used in manufacturing biodegradable surfactants and toothpastes as well as in other applications. Sarcosine is ubiquitous in biological materials and is present in such foods as egg yolks, turkey, ham, vegetables, legumes, etc. Sarcosine is formed from dietary intake of choline and from the metabolism of methionine, and is rapidly degraded to glycine. Sarcosine has no known toxicity, as evidenced by the lack of phenotypic manifestations of sarcosinemia, an inborn error of sarcosine metabolism. Sarcosinemia can result from severe folate deficiency because of the folate requirement for the conversion of sarcosine to glycine (Wikipedia). Sarcosine has recently been identified as a biomarker for invasive prostate cancer. It was found to be greatly increased during prostate cancer progression to metastasis and could be detected in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells (PMID: 19212411). Sarcosine, also known as N-methylglycine or (methylamino)acetic acid, is a member of the class of compounds known as alpha amino acids. Alpha amino acids are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Sarcosine is soluble (in water) and a moderately acidic compound (based on its pKa). Sarcosine can be found in peanut, which makes sarcosine a potential biomarker for the consumption of this food product. Sarcosine can be found primarily in most biofluids, including blood, saliva, cerebrospinal fluid (CSF), and feces, as well as in human muscle, prostate and skeletal muscle tissues. Sarcosine exists in all living organisms, ranging from bacteria to humans. In humans, sarcosine is involved in few metabolic pathways, which include glycine and serine metabolism, methionine metabolism, and sarcosine oncometabolite pathway. Sarcosine is also involved in several metabolic disorders, some of which include homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, hyperglycinemia, non-ketotic, hypermethioninemia, and dimethylglycine dehydrogenase deficiency. Moreover, sarcosine is found to be associated with sarcosinemia. Sarcosine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Sarcosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-97-1 (retrieved 2024-07-01) (CAS RN: 107-97-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Sarcosine (N-Methylglycine), an endogenous amino acid, is a competitive glycine transporter type I (GlyT1) inhibitor and N-methyl-D-aspartate (NMDA) receptor co-agonist. Sarcosine increases the glycine concentration, resulting in an indirect potentiation of the NMDA receptor. Sarcosine is commonly used for the research of schizophrenia[1][2]. Sarcosine (N-Methylglycine), an endogenous amino acid, is a competitive glycine transporter type I (GlyT1) inhibitor and N-methyl-D-aspartate (NMDA) receptor co-agonist. Sarcosine increases the glycine concentration, resulting in an indirect potentiation of the NMDA receptor. Sarcosine is commonly used for the research of schizophrenia[1][2].

   

Nicotianamine

(S,S,S)-nicotianamine

C12H21N3O6 (303.143)


The (S,S,S)-stereoisomer of nicotianamine. IPB_RECORD: 2921; CONFIDENCE confident structure

   

(2E)-Decenoyl-ACP

1-Amino-1-cyclopentanecarboxylic acid

C6H11NO2 (129.079)


(2E)-Decenoyl-ACP, also known as Cycloleucine or 1-Aminocyclopentanecarboxylic acid, is classified as a member of the L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. (2E)-Decenoyl-ACP is considered to be soluble (in water) and acidic Acquisition and generation of the data is financially supported in part by CREST/JST. C308 - Immunotherapeutic Agent > C574 - Immunosuppressant KEIO_ID A050

   

threo-b-methylaspartate

DL-threo-beta-Methylaspartic acid

C5H9NO4 (147.0532)


Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M009

   

Beta-Leucine

(±)-3-Amino-4-methylpentanoic acid, (±)-3-Amino-4-methylvaleric acid

C6H13NO2 (131.0946)


Beta-leucine is a metabolite that is in the middle of a controversy over its presence in the human body. While there are reports that claim it as a human metabolite, there are others that deny its existence. Two examples:. Circulating levels of beta-leucine are elevated in the cobalamin-deficient state of pernicious anemia. Levels of leucine, on the other hand, are much lower. It is proposed that leucine 2,3-aminomutase, the cobalamin-dependent enzyme that catalyzes the interconversion of leucine and beta-leucine, is the affected enzyme in pernicious anemia and causes these results by preventing the synthesis of leucine from beta-leucine. The synthesis of leucine by human leukocytes and hair roots and by rat liver extracts has been shown to occur when either branched chain fatty acids or valine metabolites are the substances. The synthesis is dependent upon adenosylcobalamin and is inhibited by intrinsic factor (PMID:7430116). Using forms of beta-leucine and leucine that contain several deuterium atoms in place of several hydrogen atoms as internal standards, techniques have been developed which make it possible to detect and quantitate as little as 0.1 mumol/liter of beta-leucine or leucine in human serum and in incubations containing rat liver supernatant. beta-Leucine was not detectable, i.e. less than 0.1 mumol/liter, in any sera from 50 normal human subjects or in any sera from 50 cobalamin-deficient patients. Experiments in which beta-leucine, leucine, isostearic acid, or isocaproic acid were incubated with rat liver supernatant in the presence or absence of adenosylcobalamin or cobalamin-binding protein failed to demonstrate the formation of leucine or beta-leucine or their interconversion under any of the conditions studied. We conclude that beta-leucine is not present in human blood and that the existence of leucine 2,3-aminomutase in mammalian tissues remains to be established (PMID 3356699). Beta-leucine is found to be associated with cobalamin deficiency, which is an inborn error of metabolism. Beta-leucine is a metabolite that is in the middle of a controversy over its presence in the human body. While there are reports that claim it as a human metabolite, there are others that deny its existence. Two examples: Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID L057 3-Amino-4-methylpentanoic acid is a beta amino acid and positional isomer of L-leucine which is naturally produced in humans via the metabolism of L-leucine by the enzyme leucine 2,3-aminomutase.

   

Isobutyryl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-methylpropanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


Isobutyryl-CoA is a substrate for Acyl-CoA dehydrogenase (short-chain specific, mitochondrial), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial) and Acyl-CoA dehydrogenase (long-chain specific, mitochondrial). [HMDB] Isobutyryl-CoA is a substrate for Acyl-CoA dehydrogenase (short-chain specific, mitochondrial), Acyl-CoA dehydrogenase (medium-chain specific, mitochondrial) and Acyl-CoA dehydrogenase (long-chain specific, mitochondrial). Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Nicotinic acid mononucleotide

3-carboxy-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-1lambda5-pyridin-1-ylium

[C11H15NO9P]+ (336.0484)


Nicotinic acid mononucleotide, also known as nicotinate ribonucleotide, belongs to the class of organic compounds known as nicotinic acid nucleotides. These are pyridine nucleotides in which the pyridine base is nicotinic acid or a derivative thereof. Nicotinic acid mononucleotide is an extremely weak basic (essentially neutral) compound (based on its pKa). Nicotinic acid mononucleotide an intermediate in the cofactor biosynthesis and the nicotinate and nicotinamide metabolism pathways. It is a substrate for nicotinamide riboside kinase, ectonucleotide pyrophosphatase/phosphodiesterase, nicotinamide mononucleotide adenylyltransferase, 5-nucleotidase, nicotinate-nucleotide pyrophosphorylase, and 5(3)-deoxyribonucleotidase. Nicotinic acid mononucleotide is an intermediate in the metabolism of Nicotinate and nicotinamide. It is a substrate for Ectonucleotide pyrophosphatase/phosphodiesterase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 1, Nicotinamide mononucleotide adenylyltransferase 3, Cytosolic 5-nucleotidase IA, Cytosolic 5-nucleotidase IB, Nicotinate-nucleotide pyrophosphorylase, 5(3)-deoxyribonucleotidase (cytosolic type), Cytosolic purine 5-nucleotidase, Nicotinamide mononucleotide adenylyltransferase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 3, 5-nucleotidase, 5(3)-deoxyribonucleotidase (mitochondrial) and Nicotinamide mononucleotide adenylyltransferase 1. [HMDB] NaMN is the most common mononucleotide intermediate (a hub) in NAD biogenesis. For example, in E. coli all three pyridine precursors are converted into NaMN (Table 1 and Figure 3(a)). Qa produced by the de novo Asp–DHAP pathway (genes nadB and nadA) is converted into NaMN by QAPRT (gene nadC). Salvage of both forms of niacin proceeds via NAPRT (gene pncB) either directly upon or after deamidation by NMDSE (gene pncA). Overall, more than 90\% of approximately 680 analyzed bacterial genomes contain at least one of the pathways leading to the formation of NaMN. Most of them (∼480 genomes) have the entire set of nadBAC genes for NaMN de novo synthesis from Asp that are often clustered on the chromosome and/or are co-regulated by the same transcription factors (see Section 7.08.3.1.2). Among the examples provided in Table 1, F. tularensis (Figure 4(c)) has all three genes of this de novo pathway forming a single operon-like cluster and supporting the growth of this organism in the absence of any pyridine precursors in the medium. More than half the genomes with the Asp–DHAP pathway also contain a deamidating niacin salvage pathway (genes pncAB) as do many representatives of the α-, β-, and γ-Proteobacteria, Actinobacteria, and Bacillus/Clostridium group. As already emphasized, the genomic reconstruction approach provides an assessment of the metabolic potential of an organism, which may or may not be realized under given conditions. For example, E. coli and B. subtilis can utilize both de novo and PncAB Nm salvage pathways under the same growth conditions, whereas in M. tuberculosis (having the same gene pattern) the latter pathway was considered nonfunctional, so that the entire NAD pool is generated by the de novo NadABC route. However, a recent study demonstrated the functional activity of the Nm salvage pathway in vivo, under hypoxic conditions in infected macrophages.221 This study also implicated the two downstream enzymes of NAD synthesis (NAMNAT and NADSYN) as attractive chemotherapeutic targets to treat acute and latent forms of tuberculosis. In approximately 100 species, including many Cyanobacteria (e.g., Synechococcus spp.), Bacteroidetes (e.g., Chlorobium spp.) and Proteobacteria (e.g., Caulobacter crescentus, Zymomonas mobilis, Desulfovibrio spp., and Shewanella spp. representing α-, β-, δ-, and γ-groups, respectively) the Asp–DHAP pathway is the only route to NAD biogenesis. Among them, nearly all Helicobacter spp. (except H. hepaticus), contain only the two genes nadA and nadC but lack the first gene of the pathway (nadB), which is a likely subject of nonorthologous gene replacement. One case of NadB (ASPOX) replacement by the ASPDH enzyme in T. maritima (and methanogenic archaea) was discussed in Section 7.08.2.1. However, no orthologues of the established ASPDH could be identified in Helicobacter spp. as well as in approximately 15 other diverse bacterial species that have the nadAC but lack the nadB gene (e.g., all analyzed Corynebacterium spp. except for C. diphtheriae). Therefore, the identity of the ASPOX or ASPDH enzyme in these species is still unknown, representing one of the few remaining cases of ‘locally missing genes’220 in the NAD subsystem. All other bacterial species contain either both the nadA and nadB genes (plus nadC) or none. In a limited number of bacteria (∼20 species), mostly in the two distant groups of Xanthomonadales (within γ-Proteobacteria) and Flavobacteriales (within Bacteroidetes), the Asp–DHAP pathway of Qa synthesis is replaced by the Kyn pathway. As described in Section 7.08.2.1.2, four out of five enzymes (TRDOX, KYNOX, KYNSE, and HADOX) in the bacterial version of this pathway are close homologues of the respective eukaryotic enzymes, whereas the KYNFA gene is a subject of multiple nonorthologous replacements. Although the identity of one alternative form of KYNFA (gene kynB) was established in a group of bacteria that have a partial Kyn pathway for Trp degradation to anthranilate (e.g., in P. aeruginosa or B. cereus57), none of the known KYNFA homologues are present in Xanthomonadales or Flavobacteriales. In a few species (e.g., Salinispora spp.) a complete gene set of the Kyn pathway genes co-occurs with a complete Asp–DHAP pathway. Further experiments would be required to establish to what extent and under what conditions these two pathways contribute to Qa formation. As discussed, the QAPRT enzyme is shared by both de novo pathways, and a respective gene, nadC is always found in the genomes containing one or the other pathway. Similarly, gene nadC always co-occurs with Qa de novo biosynthetic genes with one notable exception of two groups of Streptococci, S. pneumonaie and S. pyogenes. Although all other members of the Lactobacillales group also lack the Qa de novo biosynthetic machinery and rely entirely on niacin salvage, only these two human pathogens contain a nadC gene. The functional significance of this ‘out of context’ gene is unknown, but it is tempting to speculate that it may be involved in a yet-unknown pathway of Qa salvage from the human host. Among approximately 150 bacterial species that lack de novo biosynthesis genes and rely on deamidating salvage of niacin (via NAPRT), the majority (∼100) are from the group of Firmicutes. Such a functional variant (illustrated for Staphylococcus aureus in Figure 4(b)) is characteristic of many bacterial pathogens, both Gram-positive and Gram-negative (e.g., Brucella, Bordetella, and Campylobacter spp. from α-, β-, and δ-Proteobacteria, Borrelia, and Treponema spp. from Spirochaetes). Most of the genomes in this group contain both pncA and pncB genes that are often clustered on the chromosome and/or are co-regulated (see Section 7.08.3.1.2). In some cases (e.g., within Mollicutes and Spirochaetales), only the pncB, but not the pncA gene, can be reliably identified, suggesting that either of these species can utilize only the deamidated form of niacin (Na) or that some of them contain an alternative (yet-unknown) NMASE. Although the nondeamidating conversion of Nm into NMN (via NMPRT) appears to be present in approximately 50 bacterial species (mostly in β- and γ-Proteobacteria), it is hardly ever the only route of NAD biogenesis in these organisms. The only possible exception is observed in Mycoplasma genitalium and M. pneumoniae that contain the nadV gene as the only component of pyridine mononucleotide biosynthetic machinery. In some species (e.g., in Synechocystes spp.), the NMPRT–NMNAT route is committed primarily to the recycling of endogenous Nm. On the other hand, in F. tularensis (Figure 4(c)), NMPRT (gene nadV) together with NMNAT (of the nadM family) constitute the functional nondeamidating Nm salvage pathway as it supports the growth of the nadE′-mutant on Nm but not on Na (L. Sorci et al., unpublished). A similar nondeamidating Nm salvage pathway implemented by NMPRT and NMNAT (of the nadR family) is present in some (but not all) species of Pasteurellaceae in addition to (but never instead of) the RNm salvage pathway (see below), as initially demonstrated for H. ducreyi.128 A two-step conversion of NaMN into NAD via a NaAD intermediate (Route I in Figure 2) is present in the overwhelming majority of bacteria. The signature enzyme of Route I, NAMNAT of the NadD family is present in nearly all approximately 650 bacterial species that are expected to generate NaMN via de novo or salvage pathways (as illustrated by Figures 3(a) and 3(b)). All these species, without a single exception, also contain NADSYN (encoded by either a short or a long form of the nadE gene), which is required for this route. The species that lack the NadD/NadE signature represent several relatively rare functional variants, including: 1. Route I of NAD synthesis (NaMN → NaAD → NAD) variant via a bifunctional NAMNAT/NMNAT enzyme of the NadM family is common for archaea (see Section 7.08.3.2), but it appears to be present in only a handful of bacteria, such as Acinetobacter, Deinococcus, and Thermus groups. Another unusual feature of the latter two groups is the absence of the classical NADKIN, a likely subject of a nonorthologous replacement that remains to be elucidated. 2. Route II of NAD synthesis (NaMN → NMN → NAD). This route is implemented by a combination of the NMNAT of either the NadM family (as in F. tularensis) or the NadR family (as in M. succinoproducens and A. succinogenes) with NMNSYN of the NadE′ family. The case of F. tularensis described in Section 7.08.2.4 is illustrated in Figure 3(b). The rest of the NAD biosynthetic machinery in both species from the Pasteurellaceae group, beyond the shared Route II, is remarkably different from that in F. tularensis. Instead of de novo biosynthesis, they harbor a Na salvage pathway via NAPRT encoded by a pncB gene that is present in a chromosomal cluster with nadE′. Neither of these two genes are present in other Pasteurellaceae that lack the pyridine carboxylate amidation machinery (see below). 3. Salvage of RNm (RNm → NMN → NAD). A genomic signature of this pathway, a combination of the PnuC-like transporter and a bifunctional NMNAT/RNMKIN of the NadR family, is present in many Enterobacteriaceae and in several other diverse species (e.g., in M. tuberculosis). However, in H. influenzae (Figure 3(d)) and related members of Pasteurellaceae, it is the only route of NAD biogenesis. As shown in Table 1, H. influenzae as well as many other members of this group have lost nearly all components of the rich NAD biosynthetic machinery that are present in their close phylogenetic neighbors (such as E. coli and many other Enterobacteriaceae). This pathway is an ultimate route for utilization of the so called V-factors (NADP, NAD, NMN, or RNm) that are required to support growth of H. influenzae. It was established that all other V-factors are degraded to RNm by a combination of periplasmic- and membrane-associated hydrolytic enzymes.222 Although PnuC was initially considered an NMN transporter,223 its recent detailed analysis in both H. influenzae and Salmonella confirmed that its actual physiological function is in the uptake of RNm coupled with the phosphorylation of RNM to NMN by RNMKIN.17,148,224 As already mentioned, H. ducreyi and several other V-factor-independent members of the Pasteurellaceae group (H. somnus, Actinobacillus pleuropneumoniae, and Actinomycetemcomitans) harbor the NMNAT enzyme (NadV) that allows them to grow in the presence of Nm (but not Na) in the medium (Section 7.08.2.2). 4. Uptake of the intact NAD. Several groups of phylogenetically distant intracellular endosymbionts with extremely truncated genomes contain only a single enzyme, NADKIN, from the entire subsystem. Among them are all analyzed species of the Wolbachia, Rickettsia, and Blochmannia groups. These species are expected to uptake and utilize the intact NAD from their host while retaining the ability to convert it into NADP. Among all analyzed bacteria, only the group of Chlamydia does not have NADKIN and depends on the salvage of both NAD and NADP via a unique uptake system.157 A comprehensive genomic reconstruction of the metabolic potential (gene annotations and asserted pathways) across approximately 680 diverse bacterial genomes sets the stage for the accurate cross-genome projection and prediction of regulatory mechanisms that control the realization of this potential in a variety of species and growth conditions. In the next section, we summarize the recent accomplishments in the genomic reconstruction of NAD-related regulons in bacteria. Nicotinic acid mononucleotide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=321-02-8 (retrieved 2024-06-29) (CAS RN: 321-02-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Mesna

2-Mercaptoethanesulfonic acid solution

C2H6O3S2 (141.9758)


Mesna is a chemoprotectant. Chemoprotectants have been developed as a means of ameliorating the toxicity associated with cytotoxic agents by providing site-specific protection for normal tissues, without compromising antitumour efficacy. Mesna eliminates the risk of therapy-limiting urotoxic side effects of oxazaphosphorines. Mesna is widely used for the prevention of cyclophosphamide-related hemorrhagic cystitis. It has been associated with hypersensitivity-like cutaneous and systemic reactions in adult patients. Mesna offers significant uroprotection in patients receiving high dose cyclophosphamide, and is widely used in paediatric oncology practice It is, therefore, important to recognize that it may be associated with a rare but significant systemic adverse reaction. A hypersensitivity-like reaction to mesna was first reported in a young adult receiving treatment for Hodgkin disease over 20 years ago. Oral administration of mesna can facilitate outpatient ifosfamide therapy. Blood and urinary mesna concentrations are more steady and prolonged after oral delivery compared with after intravenous delivery. (PMID: 16333822, 10193684, 1485175) [HMDB] Mesna is a chemoprotectant. Chemoprotectants have been developed as a means of ameliorating the toxicity associated with cytotoxic agents by providing site-specific protection for normal tissues, without compromising antitumour efficacy. Mesna eliminates the risk of therapy-limiting urotoxic side effects of oxazaphosphorines. Mesna is widely used for the prevention of cyclophosphamide-related hemorrhagic cystitis. It has been associated with hypersensitivity-like cutaneous and systemic reactions in adult patients. Mesna offers significant uroprotection in patients receiving high dose cyclophosphamide, and is widely used in paediatric oncology practice It is, therefore, important to recognize that it may be associated with a rare but significant systemic adverse reaction. A hypersensitivity-like reaction to mesna was first reported in a young adult receiving treatment for Hodgkin disease over 20 years ago. Oral administration of mesna can facilitate outpatient ifosfamide therapy. Blood and urinary mesna concentrations are more steady and prolonged after oral delivery compared with after intravenous delivery. (PMID: 16333822, 10193684, 1485175). Acquisition and generation of the data is financially supported in part by CREST/JST. D020011 - Protective Agents

   

L-Homocysteic acid

(2S)-2-Amino-4-sulphobutanoic acid

C4H9NO5S (183.0201)


L-homocysteic acid is a homocysteic acid with L-configuration. It has a role as a NMDA receptor agonist. It is an enantiomer of a D-homocysteic acid. L-Homocysteic acid is a sulfur-containing glutamic acid analog and a potent NMDA receptor agonist. It is related to homocysteine, a by-product of methionine metabolism. It belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Short-term incubation of lymphocytes with homocysteine or its oxidation product homocysteinic acid increased the formation of reactive oxygen species and cell necrosis [HMDB]

   

Cobamamide

[(2R,3S,4R,5S)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]1-[3-[(9Z,14Z)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2,7,12,17-tetrahydro-1H-corrin-21-id-3-yl]propanoylamino]propan-2-yl phosphate

C72H100CoN18O17P (1578.6583)


A member of the class of cobalamins that is vitamin B12 in which the cyano group is replaced by a 5-deoxyadenos-5-yl moiety. It is one of the two metabolically active form of vitamin B12. B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BA - Vitamin b12 (cyanocobalamin and analogues) Adenosylcobalamin (Coenzyme B12;Cobamamide;AdoCbl) is an active form of Vitamin B12 which is a cofactor for methylmalonyl CoA mutase[1] Adenosylcobalamin (Coenzyme B12;Cobamamide;AdoCbl) is an active form of Vitamin B12 which is a cofactor for methylmalonyl CoA mutase[1]

   

Pterin

2-amino-3,4-dihydropteridin-4-one

C6H5N5O (163.0494)


Pterin is a chemical compound composed of a pyrazine ring and a pyrimidine ring; Pterin is a heterocyclic compound composed of a pyrazine ring and a pyrimidine ring (a pteridine ring system); the pyrimidine ring has a carbonyl oxygen and an amino group. Several tautomers of pterin exist and are shown below. As a group, pterins are compounds that are derivatives of 2-amino-4-oxopteridine, with additional functional groups attached to the pyrazine ring.; the pyrimidine ring has a carbonyl oxygen and an amino group. Several tautomers of pterin exist and are shown below. Pterin belongs to the pteridine family of heterocycles. -- Wikipedia. Pterin is found in soy bean. Pterin is a chemical compound composed of a pyrazine ring and a pyrimidine ring; the pyrimidine ring has a carbonyl oxygen and an amino group. Several tautomers of pterin exist and are shown below. Pterin belongs to the pteridine family of heterocycles. -- Wikipedia.

   

2-Methylcitric acid

2-hydroxy-1-methylpropane-1,2,3-tricarboxylic acid

C7H10O7 (206.0427)


Methylcitric acid (MCA) is elevated in body fluids of patients with propionic acidaemia (PA; OMIM 232000, 232050), methylmalonic aciduria (MMA; OMIM 251000, 251120) and multiple carboxylase deficiency (OMIM 253260, 253270), which are inherited disorders. MCA is formed by condensation of accumulated propionyl- CoA and oxalacetate by the enzyme si-citrate synthase (EC 4.1.3.7). MCA molecule has two stereogenic centers so that it can occur in the form of four stereoisomers. Only two stereoisomers of MCA, (2S, 3S) and (2R, 3S), were found in human urine (PMID: 17295121). Methylcitric acid (MCA) is elevated in body fluids of patients with propionic acidaemia (PA; OMIM 232000, 232050), methylmalonic aciduria (MMA; OMIM 251000, 251120) and multiple carboxylase deficiency (OMIM 253260, 253270). MCA is formed by condensation of accumulated propionyl- CoA and oxalacetate by the enzyme si-citrate synthase (EC 4.1.3.7). MCA molecule has two stereogenic centers so that it can occur in the form of four stereoisomers. Only two stereoisomers of MCA, (2S, 3S) and (2R, 3S), were found in human urine. (PMID: 17295121) [HMDB] 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1].

   

Dimethylsulfide

Dimethyl sulfoxide(reduced)

C2H6S (62.019)


Dimethylsulfide is the predominant volatile sulfur compound (VSC) in breadth malodor, a metabolite of suplatast tosilate (a dimethylsulphonium compound for the treatment of asthma) in patients that regularly take that medication. (PMID 14628896). Dimethylsulfide is a sulfur containing organic chemical compound with a disagreeable odor. In vapor form it is produced by cooking of certain vegetables, notably corn and cabbage, and seafood. It is also an indication of bacterial infection in malt production and brewing. It is a breakdown product of dimethylsulfoniopropionate, and is also produced by the bacterial metabolism of methanethiol. Dimethylsulfide in concentrated liquid form is insoluble and a flammable. This is a microbial metabolite that can be found in Bradyrhizobium, Cyanothece, Escherichia, Pseudomonas and Rhizobiaceae (PMID:25807229). Dimethyl sulfide (DMS) or methylthiomethane is an organosulfur compound with the formula (CH3)2S. Dimethyl sulfide is a water-insoluble flammable liquid that boils at 37 °C (99 °F) and has a characteristic disagreeable odor. It is a component of the smell produced from cooking of certain vegetables, notably maize, cabbage, beetroot and seafoods. It is also an indication of bacterial infection in malt production and brewing. It is a breakdown product of dimethylsulfoniopropionate (DMSP), and is also produced by the bacterial metabolism of methanethiol. Dimethyl sulfide is found in many foods, some of which are soft-necked garlic, chives, spearmint, and potato.

   

Formic acid

Formic acid, cromium (+3), sodium (4:1:1) salt

CH2O2 (46.0055)


Formic acid is the simplest carboxylic acid. Formate is an intermediate in normal metabolism. It takes part in the metabolism of one-carbon compounds and its carbon may appear in methyl groups undergoing transmethylation. It is eventually oxidized to carbon dioxide. Formate is typically produced as a byproduct in the production of acetate. It is responsible for both metabolic acidosis and disrupting mitochondrial electron transport and energy production by inhibiting cytochrome oxidase activity, the terminal electron acceptor of the electron transport chain. Cell death from cytochrome oxidase inhibition by formate is believed to result partly from depletion of ATP, reducing energy concentrations so that essential cell functions cannot be maintained. Furthermore, inhibition of cytochrome oxidase by formate may also cause cell death by increased production of cytotoxic reactive oxygen species (ROS) secondary to the blockade of the electron transport chain. In nature, formic acid is found in the stings and bites of many insects of the order Hymenoptera, including bees and ants. The principal use of formic acid is as a preservative and antibacterial agent in livestock feed. When sprayed on fresh hay or other silage, it arrests certain decay processes and causes the feed to retain its nutritive value longer. Urinary formate is produced by Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Enterobacter, Acinetobacter, Proteus mirabilis, Citrobacter frundii, Enterococcus faecalis, Streptococcus group B, Staphylococcus saprophyticus (PMID: 22292465). It is used as a flavouring adjunct, an animal feed additive, a brewing antiseptic and as a food preservative

   

Succinyl-CoA

4-[(2-{3-[(2R)-3-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-2-hydroxy-3-methylbutanamido]propanamido}ethyl)sulfanyl]-4-oxobutanoic acid

C25H40N7O19P3S (867.1312)


Succinyl-CoA is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase (EC 1.2.4.2) through decarboxylation, and is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (EC 6.2.1.5). Succinyl-CoA may be an end product of peroxisomal beta-oxidation of dicarboxylic fatty acids; the identification of an apparently specific succinyl-CoA thioesterase (ACOT4, EC 3.1.2.3, hydrolyzes succinyl-CoA) in peroxisomes strongly suggests that succinyl-CoA is formed in peroxisomes. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A, thereby regulating levels of these compounds. (PMID: 16141203) [HMDB]. Succinyl-CoA is found in many foods, some of which are fruits, sea-buckthornberry, pomegranate, and sweet orange. Succinyl-CoA is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase (EC 1.2.4.2) through decarboxylation, and is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (EC 6.2.1.5). Succinyl-CoA may be an end product of peroxisomal beta-oxidation of dicarboxylic fatty acids; the identification of an apparently specific succinyl-CoA thioesterase (ACOT4, EC 3.1.2.3, hydrolyzes succinyl-CoA) in peroxisomes strongly suggests that succinyl-CoA is formed in peroxisomes. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A, thereby regulating levels of these compounds. (PMID: 16141203).

   

Tetrahydrofolic acid

2-{[4-({[(6S)-4-hydroxy-2-imino-5,6,7,8-tetrahydro-1H-pteridin-6-yl]methyl}amino)phenyl]formamido}pentanedioic acid

C19H23N7O6 (445.171)


Tetrahydrofolate is a soluble coenzyme (vitamin B9) that is synthesized de novo by plants and microorganisms, and absorbed from the diet by animals. It is composed of three distinct parts: a pterin ring, a p-ABA (p-aminobenzoic acid) and a polyglutamate chain with a number of residues varying between 1 and 8. Only the tetra-reduced form of the molecule serves as a coenzyme for C1 transfer reactions. In biological systems, the C1-units exist under various oxidation states and the different tetrahydrofolate derivatives constitute a family of related molecules named indistinctly under the generic term folate. (PMID 16042593). Folate is important for cells and tissues that rapidly divide. Cancer cells divide rapidly, and drugs that interfere with folate metabolism are used to treat cancer. Methotrexate is a drug often used to treat cancer because it inhibits the production of the active form, tetrahydrofolate. Unfortunately, methotrexate can be toxic, producing side effects such as inflammation in the digestive tract that make it difficult to eat normally. -- Wikipedia; Signs of folic acid deficiency are often subtle. Diarrhea, loss of appetite, and weight loss can occur. Additional signs are weakness, sore tongue, headaches, heart palpitations, irritability, and behavioral disorders. Women with folate deficiency who become pregnant are more likely to give birth to low birth weight and premature infants, and infants with neural tube defects. In adults, anemia is a sign of advanced folate deficiency. In infants and children, folate deficiency can slow growth rate. Some of these symptoms can also result from a variety of medical conditions other than folate deficiency. It is important to have a physician evaluate these symptoms so that appropriate medical care can be given. -- Wikipedia; Folinic acid is a form of folate that can help rescue or reverse the toxic effects of methotrexate. Folinic acid is not the same as folic acid. Folic acid supplements have little established role in cancer chemotherapy. There have been cases of severe adverse effects of accidental substitution of folic acid for folinic acid in patients receiving methotrexate cancer chemotherapy. It is important for anyone receiving methotrexate to follow medical advice on the use of folic or folinic acid supplements. -- Wikipedia. Low concentrations of folate, vitamin B12, or vitamin B6 may increase the level of homocysteine, an amino acid normally found in blood. There is evidence that an elevated homocysteine level is an independent risk factor for heart disease and stroke. The evidence suggests that high levels of homocysteine may damage coronary arteries or make it easier for blood clotting cells called platelets to clump together and form a clot. However, there is currently no evidence available to suggest that lowering homocysteine with vitamins will reduce your risk of heart disease. Clinical intervention trials are needed to determine whether supplementation with folic acid, vitamin B12 or vitamin B6 can lower your risk of developing coronary heart disease. -- Wikipedia. Tetrahydrofolate is a soluble coenzyme (vitamin B9) that is synthesized de novo by plants and microorganisms, and absorbed from the diet by animals. It is composed of three distinct parts: a pterin ring, a p-ABA (p-aminobenzoic acid) and a polyglutamate chain with a number of residues varying between 1 and 8. Only the tetra-reduced form of the molecule serves as a coenzyme for C1 transfer reactions. In biological systems, the C1-units exist under various oxidation states and the different tetrahydrofolate derivatives constitute a family of related molecules named indistinctly under the generic term folate. (PMID 16042593)

   

5,10-Methylene-THF

2-({4-[(6aR)-1-hydroxy-3-imino-3H,4H,5H,6H,6aH,7H,8H,9H-imidazo[1,5-f]pteridin-8-yl]phenyl}formamido)pentanedioic acid

C20H23N7O6 (457.171)


5,10-Methylene-THF is an intermediate in glycine, serine and threonine metabolism and one carbon metabolism. 5,10-CH2-THF can also be used as a coenzyme in the biosynthesis of thymidine. More specifically it is the C1-donor in the reactions catalyzed by thymidylate synthase and thymidylate synthase (FAD). It also acts as a coenzyme in the synthesis of serine from glycine via the enzyme serine hydroxymethyl transferase. 5,10-Methylene-THF is a substrate for Methylenetetrahydrofolate reductase. This enzyme converts 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate. This reaction is required for the multistep process that converts the amino acid homocysteine to methionine. The body uses methionine to make proteins and other important compounds. 5,10-CH2-THF is a substrate for many enzymes including Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (mitochondrial), Aminomethyltransferase (mitochondrial), Serine hydroxymethyltransferase (mitochondrial), Methylenetetrahydrofolate reductase, C-1-tetrahydrofolate synthase (cytoplasmic), Serine hydroxymethyltransferase (cytosolic) and Thymidylate synthase. 5,10-Methylene-THF is an intermediate in the metabolism of Methane and the metabolism of Nitrogen. It is a substrate for Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (mitochondrial), Aminomethyltransferase (mitochondrial), Serine hydroxymethyltransferase (mitochondrial), Methylenetetrahydrofolate reductase, C-1-tetrahydrofolate synthase (cytoplasmic), Serine hydroxymethyltransferase (cytosolic) and Thymidylate synthase. [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cobaltous Cation

Cobaltous Cation

Co+2 (58.9332)


   

Formiminoglutamic acid

(2S)-2-methanimidamidopentanedioic acid

C6H10N2O4 (174.0641)


Measurement of this acid in the urine after oral administration of histidine provides the basis for the diagnostic test of folic acid deficiency and of megaloblastic anemia of pregnancy. [HMDB] Measurement of this acid in the urine after oral administration of histidine provides the basis for the diagnostic test of folic acid deficiency and of megaloblastic anemia of pregnancy.

   

5,10-Methenyl-tetrahydrofolate

5,10-Methenyl-tetrahydrofolate

C20H22N7O6+ (456.1631)


   

Nitrous oxide

Nitrous oxide, refrigerated liquid

N2O (44.0011)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents Aerosol propellant for foods. Nitrous oxide is a flavouring ingredien N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics Aerosol propellant for foods. Flavouring ingredient [DFC]

   

(3S)-3,6-Diaminohexanoate

(3S)-3,6-Diaminohexanoic acid

C6H14N2O2 (146.1055)


(3S)-3,6-Diaminohexanoate is found in the lysine degradation pathway. (3S)-3,6-Diaminohexanoate is created from L-lysine through the action of lysine 2,3-aminomutase [EC:5.4.3.2]. (3S)-3,6-Diaminohexanoate is then reversibly converted to (3S,5S)-3,5-Diaminohexanoate by beta-lysine 5,6-aminomutase [EC:5.4.3.3]. (3S)-3,6-Diaminohexanoate is found in the lysine degradation pathway.

   

UDP-N-acetylmuramoyl-L-alanine

Uridine-5-diphosphate-n-acetylmuramoyl-l-alanine

C23H36N4O20P2 (750.1398)


   

methyl coenzyme M

methyl coenzyme M

C3H8O3S2 (155.9915)


   

Dimethylpropiothetin

Sulfonium, (2-carboxyethyl)dimethyl-, chloride (1:1)

C5H10O2S (134.0401)


Dimethylsulfoniopropionate, also known as dimethylpropiothetin or S-dimethylsulfonium propionic acid, is a member of the class of compounds known as carboxylic acid salts. Carboxylic acid salts are ionic derivatives of carboxylic acid. Dimethylsulfoniopropionate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Dimethylsulfoniopropionate can be found in a number of food items such as sugar apple, american butterfish, coriander, and oxheart cabbage, which makes dimethylsulfoniopropionate a potential biomarker for the consumption of these food products. Dimethylsulfoniopropionate (DMSP), is an organosulfur compound with the formula (CH3)2S+CH2CH2COO−. This zwitterionic metabolite can be found in marine phytoplankton, seaweeds, and some species of terrestrial and aquatic vascular plants. It functions as an osmolyte as well as several other physiological and environmental roles have also been identified. DMSP was first identified in the marine red alga Polysiphonia fastigiata by Frederick Challenger and Margaret Simpson (later Dr. Whitaker) . D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents

   

Coenzyme B

3-phosphonooxy-2-(7-sulfanylheptanoylamino)butanoic acid

C11H22NO7PS (343.0855)


   

N1-(5-Phospho-a-D-ribosyl)-5,6-dimethylbenzimidazole

PHOSPHORIC ACID mono-[5-(5,6-dimethyl-benzoimidazol-1-yl)-3,4-dihydroxy-tetrahydro-furan-2ylmethyl] ester

C14H19N2O7P (358.093)


N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole (or alpha-ribazole-5-Phosphate) is an intermediate in Riboflavin metabolism. In particular, alpha-Ribazole 5-phosphate is converted from Dimethylbenzimidazole via the enzyme nicotinate-nucleotide-dimethylbenzimidazole. phosphoribosyltransferase (EC 2.4.2.21). It is then converted to alpha-Ribazole via the enzyme (EC 3.1.3.-). N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole (or alpha-ribazole-5-Phosphate) is an intermediate in Riboflavin metabolism. In particular, alpha-Ribazole 5-phosphate is converted from Dimethylbenzimidazole via the enzyme nicotinate-nucleotide-dimethylbenzimidazole

   

Selenohomocysteine

(2S)-2-Amino-4-selenylbutanoic acid

C4H9NO2Se (182.9798)


Selenohomocysteine is the precursor of selenocysteine, which is synthesized by catalysis of cystathionine beta-synthase (EC 4.2.1.22) and cystathionine gamma-lyase (EC 4.4.1.1), in mammalian systems (both enzymes require pyridoxal phosphate). Selenohomocysteine (lactone) has been found to be a competitive and irreversible inhibitor of lysyl oxidase; this may relate to the development of connective tissue defects seen in homocystinuria. L-Selenohomocysteine also can serve as a substituent donor in the beta-replacement reaction to yield selenocystathionine. (PMID: 10609891, 9405445, 6456763, 3338973) [HMDB]. Selenohomocysteine is found in many foods, some of which are alaska wild rhubarb, kai-lan, towel gourd, and vanilla. Selenohomocysteine (CAS: 29412-93-9) is the precursor of selenocysteine, which is synthesized by the catalysis of cystathionine beta-synthase (EC 4.2.1.22) and cystathionine gamma-lyase (EC 4.4.1.1) in mammalian systems (both enzymes require pyridoxal phosphate). Selenohomocysteine (lactone) has been found to be a competitive and irreversible inhibitor of lysyl oxidase; this may relate to the development of connective tissue defects seen in homocystinuria. L-Selenohomocysteine also can serve as a substituent donor in the beta-replacement reaction to yield selenocystathionine (PMID: 10609891, 9405445, 6456763, 3338973).

   

N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole

(2S,5R)-2-(5,6-dimethyl-1H-1,3-benzodiazol-1-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C14H18N2O4 (278.1267)


N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole is an intermediate in riboflavin metabolism. It is converted from N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via dephosphorylation by the enzyme phosphohistidine phosphatase 1 (EC 3.1.3.-). Humans do not have all the enzymes needed to synthesize or metabolize riboflavin. However, gut microflora do have the necessary enzymatic machinery to produce and metabolize this vitamin. Riboflavin (or vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors FAD and FMN, and is therefore required by all flavoproteins. Riboflavin is yellow or yellow-orange in color and in addition to being used as a food coloring it is also used to fortify some foods including baby foods, breakfast cereals, pastas, sauces, processed cheese, fruit drinks, vitamin-enriched milk products, some energy drinks, and vitamin supplements. [HMDB] N1-(alpha-D-ribosyl)-5,6-dimethyl-benzimidazole is an intermediate in riboflavin metabolism. It is converted from N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via dephosphorylation by the enzyme phosphohistidine phosphatase 1 (EC 3.1.3.-). Humans do not have all the enzymes needed to synthesize or metabolize riboflavin. However, gut microflora do have the necessary enzymatic machinery to produce and metabolize this vitamin. Riboflavin (or vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors FAD and FMN, and is therefore required by all flavoproteins. Riboflavin is yellow or yellow-orange in color and in addition to being used as a food coloring it is also used to fortify some foods including baby foods, breakfast cereals, pastas, sauces, processed cheese, fruit drinks, vitamin-enriched milk products, some energy drinks, and vitamin supplements.

   

N(omega)-Hydroxyarginine

(2S)-2-amino-5-[(Z)-N-hydroxycarbamimidamido]pentanoic acid

C6H14N4O3 (190.1066)


N-omega-hydroxy-l-arginine, also known as 6-noha, belongs to arginine and derivatives class of compounds. Those are compounds containing arginine or a derivative thereof resulting from reaction of arginine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. N-omega-hydroxy-l-arginine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). N-omega-hydroxy-l-arginine can be found in a number of food items such as chinese cinnamon, chervil, sugar apple, and safflower, which makes N-omega-hydroxy-l-arginine a potential biomarker for the consumption of these food products. N(omega)-Hydroxyarginine is a product of the arginine-nitric oxide pathway, and is the first intermediate in the process catalyzed by nitric oxide synthase (NOS) (EC 1.14.13.99). NOS is a heme protein that catalyzes the oxygenation of L-arginine in the presence of NADPH to form nitric oxide and citrulline. N(omega)-Hydroxyarginine appears to interfere with cell proliferation/cell growth by inhibiting arginase, a binuclear Mn(2+) metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea (EC 3.5.3.1). Arginase has 6R-tetrahydrobiopterin (H4B) as an enzyme-bound cofactor (PMID: 11259671, 11258880, 14504282, 9735327).

   

Neuraminic acid

(2S,4S,5R,6R)-5-amino-2,4-dihydroxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C9H17NO8 (267.0954)


Neuraminic acids are the commonest sialic acids in nature. Most sialic acids on gangliosides share a core neuraminic acid (Neu) structure and are N-acylated at the C-5 position with either an N-acetyl or an N-glycolyl group (giving Neu5Ac or Neu5Gc, respectively). It was originally thought that unsubstituted glycosidically linked Neu did not occur in nature. However, there have been several reports suggesting its presence in gangliosides and more recently in mucin-type glycoproteins. The N- or O-substituted derivatives of neuraminic acid are collectively known as sialic acids, the predominant one being N-acetylneuraminic acid. The amino group bears either an acetyl or a glycolyl group. The hydroxyl substituents may vary considerably: acetyl, lactyl, methyl, sulfate and phosphate groups have been found. Sialic acids are found widely distributed in animal tissues. Sialic acid rich glycoproteins bind selectin in humans and other organisms. Cancer cells that can metastasize often have a lot of sialic acid rich glycoproteins. This helps these late stage cancer cells enter the blood stream. (PMID: 11884388) [HMDB] Neuraminic acids are the commonest sialic acids in nature. Most sialic acids on gangliosides share a core neuraminic acid (Neu) structure and are N-acylated at the C-5 position with either an N-acetyl or an N-glycolyl group (giving Neu5Ac or Neu5Gc, respectively). It was originally thought that unsubstituted glycosidically linked Neu did not occur in nature. However, there have been several reports suggesting its presence in gangliosides and more recently in mucin-type glycoproteins. The N- or O-substituted derivatives of neuraminic acid are collectively known as sialic acids, the predominant one being N-acetylneuraminic acid. The amino group bears either an acetyl or a glycolyl group. The hydroxyl substituents may vary considerably: acetyl, lactyl, methyl, sulfate and phosphate groups have been found. Sialic acids are found widely distributed in animal tissues. Sialic acid rich glycoproteins bind selectin in humans and other organisms. Cancer cells that can metastasize often have a lot of sialic acid rich glycoproteins. This helps these late stage cancer cells enter the blood stream. (PMID: 11884388).

   

Mycothiol

Mycothiol disulfide - Stabilised with trifluoroacetic acid ammonium salt

C17H30N2O12S (486.1519)


A pseudodisaccharide, 1D-myo-inosityl-alpha-D-glucopyranoside, in which the hydroxy group at the 2-position of the glucose moiety is replaced by an (N-acetyl-L-cysteinyl)amido group.

   

2,2,2-Trichloroethanol

2,2,2-Trichloroethanol (acd/name 4.0)

C2H3Cl3O (147.9249)


2,2,2-trichloroethanol belongs to the family of Primary Alcohols. These are compounds comprising the primary alcohol functional group, with the general strucuture RCOH (R=alkyl, aryl). C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic 2,2,2-Trichloroethanol, the active form of Chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1]. 2,2,2-Trichloroethanol, the active form of Chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1].

   

Ophiobolin A

(+)-Ophiobolin A

C25H36O4 (400.2613)


   

Succinylsulfathiazole

3-({4-[(1,3-thiazol-2-yl)sulphamoyl]phenyl}carbamoyl)propanoic acid

C13H13N3O5S2 (355.0297)


Same as: D07060

   

methyl farnesoate

(2E,6E)-METHYL 3,7,11-TRIMETHYLDODECA-2,6,10-TRIENOATE

C16H26O2 (250.1933)


A member of the juvenile hormone family of compounds that is the methyl ester of farnesoic acid. Found in several species of crustaceans.

   

Racemethionine

alpha-Amino-gamma-methylmercaptobutyric acid

C5H11NO2S (149.051)


Racemethionine, also known as DL-methionine or hmet, belongs to the class of organic compounds known as methionine and derivatives. Methionine and derivatives are compounds containing methionine or a derivative thereof resulting from reaction of methionine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Methionine is an alpha-amino acid with the chemical formula HO2CCH(NH2)CH2CH2SCH3. This essential amino acid is classified as nonpolar. Racemethionine exists in all living organisms, ranging from bacteria to humans. Racemethionine is a mild, acidic, and sulfurous tasting compound. Racemethionine is found, on average, in the highest concentration within a few different foods, such as wheats, oats, and ryes and in a lower concentration in spinachs, white cabbages, and green zucchinis. Racemethionine is used as a flavouring ingredient and dietary supplement. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes C26170 - Protective Agent > C2081 - Hepatoprotective Agent Flavouring ingredient; dietary supplement DL-Methionine is an essential amino acid containing sulfur with oxidative stress defense effects. DL-Methionine can be used for animal natural feed. DL-Methionine also kills H. rostochiensis on potato plants[1][2][3]. DL-Methionine is an essential amino acid containing sulfur with oxidative stress defense effects. DL-Methionine can be used for animal natural feed. DL-Methionine also kills H. rostochiensis on potato plants[1][2][3].

   

DL-Cysteine

2-Amino-3-sulphanylpropanoic acid

C3H7NO2S (121.0197)


   

succinylsulfathiazole

Succinyl sulfathiazole

C13H13N3O5S2 (355.0297)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AB - Sulfonamides C254 - Anti-Infective Agent > C29739 - Sulfonamide Anti-Infective Agent D000890 - Anti-Infective Agents > D013432 - Sulfathiazoles D000890 - Anti-Infective Agents > D013424 - Sulfanilamides Same as: D07060

   

DL-Homocysteine

2-Amino-4-mercaptobutyric acid

C4H9NO2S (135.0354)


DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain. DL-Homocysteine is a weak neurotoxin, and can affect the production of kynurenic acid in the brain.

   

5,6,7,8-Tetrahydrofolic acid

2-[(4-{[(4-hydroxy-2-imino-5,6,7,8-tetrahydro-1H-pteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C19H23N7O6 (445.171)


Tetrahydrofolate is a soluble coenzyme (vitamin B9) that is synthesized de novo by plants and microorganisms, and absorbed from the diet by animals. It is composed of three distinct parts: a pterin ring, a p-ABA (p-aminobenzoic acid) and a polyglutamate chain with a number of residues varying between 1 and 8. Only the tetra-reduced form of the molecule serves as a coenzyme for C1 transfer reactions. In biological systems, the C1-units exist under various oxidation states and the different tetrahydrofolate derivatives constitute a family of related molecules named indistinctly under the generic term folate. (PMID 16042593)

   

3-Amino-4-methylpentanoic acid

3-Amino-4-methylpentanoic acid

C6H13NO2 (131.0946)


3-Amino-4-methylpentanoic acid is a beta amino acid and positional isomer of L-leucine which is naturally produced in humans via the metabolism of L-leucine by the enzyme leucine 2,3-aminomutase.

   

DL-Homocysteic acid

Homocysteic acid, monosodium salt, (+-)-isomer

C4H9NO5S (183.0201)


   

Cystathione

2-amino-4-[(2-amino-2-carboxyethyl)sulfanyl]butanoic acid

C7H14N2O4S (222.0674)


Cystathione, also known as dl-cystathionine, belongs to cysteine and derivatives class of compounds. Those are compounds containing cysteine or a derivative thereof resulting from reaction of cysteine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Cystathione is soluble (in water) and a moderately acidic compound (based on its pKa). Cystathione can be found in corn, which makes cystathione a potential biomarker for the consumption of this food product. Cystathione may be a unique E.coli metabolite.

   

H-D-Abu-OH

(R)-2-Aminobutanoic acid

C4H9NO2 (103.0633)


[Spectral] D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] D-2-Aminobutyrate (exact mass = 103.06333) and L-Cysteine (exact mass = 121.01975) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

4-Pyridoxic acid

4-Pyridoxic acid

C8H9NO4 (183.0532)


4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

METHIONINE

poly-l-methionine

C5H11NO2S (149.051)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant.

   

Choline

Choline

[C5H14NO]+ (104.1075)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   

Methylmalonic acid

Methylmalonic acid

C4H6O4 (118.0266)


A dicarboxylic acid that is malonic acid in which one of the methylene hydrogens is substituted by a methyl group. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer.

   

Betaine

2-(trimethylazaniumyl)acetate

C5H11NO2 (117.079)


Betaine or trimethylglycine is a methylated derivative of glycine. It functions as a methyl donor in that it carries and donates methyl functional groups to facilitate necessary chemical processes. The donation of methyl groups is important to proper liver function, cellular replication, and detoxification reactions. Betaine also plays a role in the manufacture of carnitine and serves to protect the kidneys from damage. Betaine has also been of interest for its role in osmoregulation. As a drug, betaine hydrochloride has been used as a source of hydrochloric acid in the treatment of hypochlorhydria. Betaine has also been used in the treatment of liver disorders, for hyperkalemia, for homocystinuria, and for gastrointestinal disturbances. (From Martindale, The Extra Pharmacopoeia, 30th Ed, p1341). Betaine is found in many foods, some of which are potato puffs, poppy, hazelnut, and garden cress. Betaine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-43-7 (retrieved 2024-06-28) (CAS RN: 107-43-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

H-D-Abu-OH

D-alpha-Aminobutyric acid

C4H9NO2 (103.0633)


An optically active form of alpha-aminobutyric acid having D-configuration. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase. D(-)-2-Aminobutyric acid is a substrate of D-amino acid oxidase.

   

Methamphetamine

D-Methamphetamine

C10H15N (149.1204)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 1560

   

Choline

Choline chloride

[C5H14NO]+ (104.1075)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OEYIOHPDSNJKLS_STSL_0152_Choline_0125fmol_180430_S2_LC02_MS02_80; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents IPB_RECORD: 922; CONFIDENCE confident structure D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   

Methionine

2-amino-4-(methylthio)butanoic acid

C5H11NO2S (149.051)


A sulfur-containing amino acid that is butyric acid bearing an amino substituent at position 2 and a methylthio substituent at position 4. Methionine (symbol Met or M)[3] (⫽mɪˈθaɪəniːn⫽)[4] is an essential amino acid in humans. As the precursor of other non-essential amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical role in the metabolism and health of many species, including humans. Methionine is also involved in angiogenesis and various processes related to DNA transcription, epigenetic expression, and gene regulation. Methionine was first isolated in 1921 by John Howard Mueller.[5] It is encoded by the codon AUG. It was named by Satoru Odake in 1925, as an abbreviation of its structural description 2-amino-4-(methylthio)butanoic acid. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant.

   

Riboflavin

Riboflavin (Vitamin B2)

C17H20N4O6 (376.1383)


D-Ribitol in which the hydroxy group at position 5 is substituted by a 7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl moiety. It is a nutritional factor found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables, but the richest natural source is yeast. The free form occurs only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as flavin mononucleotide and flavin-adenine dinucleotide. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals D003879 - Dermatologic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.581 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.582 Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient. Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient.

   

2-Aminoethanesulfinic acid

2-Aminoethanesulfinic acid

C2H7NO2S (109.0197)


An aminosulfinic acid comprising ethylamine having the sulfo group at the 2-position. Hypotaurine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=300-84-5 (retrieved 2024-07-15) (CAS RN: 300-84-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Hypotaurine (2-aminoethanesulfinic acid), an intermediate in taurine biosynthesis from cysteine in astrocytes, is an endogenous inhibitory amino acid of the glycine receptor. Antioxidant[1].

   

Methylthioadenosine

(2R,3R,4S,5S)-2-(6-aminopurin-9-yl)-5-(methylsulfanylmethyl)oxolane-3,4-diol

C11H15N5O3S (297.0896)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents Adenosine with the hydroxy group at C-5 substituted with a methylthio (methylsulfanyl) group. COVID info from COVID-19 Disease Map D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2]. 5'-Methylthioadenosine (5'-(Methylthio)-5'-deoxyadenosine) is a nucleoside generated from S-adenosylmethionine (SAM) during polyamine synthesis[1]. 5'-Methylthioadenosine suppresses tumors by inhibiting tumor cell proliferation, invasion, and the induction of apoptosis while controlling the inflammatory micro-environments of tumor tissue. 5'-Methylthioadenosine and its associated materials have striking regulatory effects on tumorigenesis[2]. 5'-(Methylthio)adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2457-80-9 (retrieved 2024-11-05) (CAS RN: 2457-80-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Pyridoxine

4,5-bis(hydroxymethyl)-2-methylpyridin-3-ol

C8H11NO3 (169.0739)


A hydroxymethylpyridine with hydroxymethyl groups at positions 4 and 5, a hydroxy group at position 3 and a methyl group at position 2. The 4-methanol form of vitamin B6, it is converted intoto pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters, sphingolipids and aminolevulinic acid. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.

   

L-Cystathionine

L-Cystathionine

C7H14N2O4S (222.0674)


A modified amino acid generated by enzymic means from L-homocysteine and L-serine. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2]. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2].

   

5-Thymidylic acid

Thymidine-5-monophosphate

C10H15N2O8P (322.0566)


   

Folic acid

Folic acid ,approx

C19H19N7O6 (441.1397)


CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2727; ORIGINAL_PRECURSOR_SCAN_NO 2725 B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BB - Folic acid and derivatives COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D006397 - Hematinics D018977 - Micronutrients > D014815 - Vitamins V - Various > V04 - Diagnostic agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2742; ORIGINAL_PRECURSOR_SCAN_NO 2740 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2705; ORIGINAL_PRECURSOR_SCAN_NO 2702 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2726; ORIGINAL_PRECURSOR_SCAN_NO 2724 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2724; ORIGINAL_PRECURSOR_SCAN_NO 2722 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2722; ORIGINAL_PRECURSOR_SCAN_NO 2720 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5826; ORIGINAL_PRECURSOR_SCAN_NO 5821 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5819; ORIGINAL_PRECURSOR_SCAN_NO 5814 Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4]. Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4].

   

Cycloleucine

1-Amino-1-cyclopentanecarboxylic acid

C6H11NO2 (129.079)


C308 - Immunotherapeutic Agent > C574 - Immunosuppressant

   

Ademetionine

S-(5′-Adenosyl)-L-methionine chloride

C15H22N6O5S (398.1372)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives A sulfonium betaine that is a conjugate base of S-adenosyl-L-methionine obtained by the deprotonation of the carboxy group. C26170 - Protective Agent > C275 - Antioxidant COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Physiologic methyl radical donor involved in enzymatic transmethylation reactions and present in all living organisms. It possesses anti-inflammatory activity and has been used in treatment of chronic liver disease. (From Merck, 11th ed) [HMDB]

   

Cystathionine

Homocysteine,S-(2-amino-2-carboxyethyl)-

C7H14N2O4S (222.0674)


A modified amino acid generated by enzymic means from homocysteine and serine. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2]. L-Cystathionine is a nonprotein thioether and is a key amino acid associated with the metabolic state of sulfur-containing amino acids. L-Cystathionine protects against Homocysteine-induced mitochondria-dependent apoptosis of vascular endothelial cells (HUVECs). L-Cystathionine plays an important role in cardiovascular protection[1][2].

   

N,N-dimethylglycine

N,N-Dimethylglycine hydrochloride

C4H9NO2 (103.0633)


An N-methylglycine that is glycine carrying two N-methyl substituents. N-Methylsarcosine is an amino acid building block for protein, found in a small amount in the body.

   

S-Adenosyl-L-homocysteine

S-Adenosyl-L-homocysteine

C14H20N6O5S (384.1216)


An organic sulfide that is the S-adenosyl derivative of L-homocysteine. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS SAH (S-Adenosylhomocysteine) is an amino acid derivative and a modulartor in several metabolic pathways. It is an intermediate in the synthesis of cysteine and adenosine[1]. SAH is an inhibitor for METTL3-METTL14 heterodimer complex (METTL3-14) with an IC50 of 0.9 μM[2]. SAH (S-Adenosylhomocysteine) is an amino acid derivative and a modulartor in several metabolic pathways. It is an intermediate in the synthesis of cysteine and adenosine[1]. SAH is an inhibitor for METTL3-METTL14 heterodimer complex (METTL3-14) with an IC50 of 0.9 μM[2].

   

glycocyamine

2-Guanidinoacetic acid

C3H7N3O2 (117.0538)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; BPMFZUMJYQTVII-UHFFFAOYSA-N_STSL_0241_Glycocyamine_1000fmol_190403_S2_LC02MS02_057; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

2-Mercaptoethanesulfonic acid

2-Mercaptoethanesulfonic acid solution

C2H6O3S2 (141.9758)


D020011 - Protective Agents

   

L-Homocysteic acid

L-Homocysteic acid

C4H9NO5S (183.0201)


   

L-Homocysteine

DL-Homocysteine

C4H9NO2S (135.0354)


A homocysteine that has L configuration. L-Homocysteine, a homocysteine metabolite, is a homocysteine that has L configuration. L-Homocysteine induces upregulation of cathepsin V that mediates vascular endothelial inflammation in hyperhomocysteinaemia[1][2].

   

sarcosine

2-(methylamino)acetic acid

C3H7NO2 (89.0477)


A N-alkylglycine that is the N-methyl derivative of glycine. It is an intermediate in the metabolic pathway of glycine. Sarcosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-97-1 (retrieved 2024-07-01) (CAS RN: 107-97-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Sarcosine (N-Methylglycine), an endogenous amino acid, is a competitive glycine transporter type I (GlyT1) inhibitor and N-methyl-D-aspartate (NMDA) receptor co-agonist. Sarcosine increases the glycine concentration, resulting in an indirect potentiation of the NMDA receptor. Sarcosine is commonly used for the research of schizophrenia[1][2]. Sarcosine (N-Methylglycine), an endogenous amino acid, is a competitive glycine transporter type I (GlyT1) inhibitor and N-methyl-D-aspartate (NMDA) receptor co-agonist. Sarcosine increases the glycine concentration, resulting in an indirect potentiation of the NMDA receptor. Sarcosine is commonly used for the research of schizophrenia[1][2].

   

Pterin

2-aminopteridin-4-ol

C6H5N5O (163.0494)


   

4-Pyridoxic acid

4-Pyridoxic acid

C8H9NO4 (183.0532)


A methylpyridine that is 2-methylpyridine substituted by a hydroxy group at C-3, a carboxy group at C-4, and a hydroxymethyl group at C-5. It is the catabolic product of vitamin B6 and is excreted in the urine. 4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

5,6-Dimethylbenzimidazole

5,6-Dimethylbenzimidazole

C9H10N2 (146.0844)


A dimethylbenzimidazole carrying methyl substituents at positions 5 and 6. 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.

   

Benazepril

Benazepril

C24H28N2O5 (424.1998)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

2-deoxyuridine

2-deoxyuridine

C9H12N2O5 (228.0746)


A pyrimidine 2-deoxyribonucleoside having uracil as the nucleobase. D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.

   

Flavin mononucleotide

Flavin mononucleotide

C17H21N4O9P (456.1046)


A flavin mononucleotide that is riboflavin (vitamin B2) in which the primary hydroxy group has been converted to its dihydrogen phosphate ester. D018977 - Micronutrients > D014815 - Vitamins

   

Choline

Choline Hydroxide

C5H14NO+ (104.1075)


A choline that is the parent compound of the cholines class, consisting of ethanolamine having three methyl substituents attached to the amino function. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   

Benzyladenine

6-benzylaminopurine

C12H11N5 (225.1014)


D006133 - Growth Substances > D010937 - Plant Growth Regulators 6-Benzylaminopurine (Benzyladenine) is the first cytokinin that causes plant growth and development by stimulating cell division and inhibiting respiratory kinases, thereby prolonging the preservation of green vegetables[1]. 6-Benzylaminopurine is the first cytokinin that causes plant growth and development by stimulating cell division and inhibiting respiratory kinases, thereby prolonging the preservation of green vegetables.

   

FA 4:1;O2

xi-3-Hydroxy-2-oxobutanoic acid

C4H6O4 (118.0266)


Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer.

   

CoA 4:0

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(2-methylpropanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C25H42N7O17P3S (837.1571)


   

CAR 3:0

(3S)-3-(propionyloxy)-4-(trimethylammonio)butanoate

C10H19NO4 (217.1314)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents

   

Coenzyme A, S-(hydrogen methylpropanedioate)

Coenzyme A, S-(hydrogen methylpropanedioate)

C25H40N7O19P3S (867.1312)


   

Pelmin

InChI=1\C6H6N2O\c7-6(9)5-2-1-3-8-4-5\h1-4H,(H2,7,9

C6H6N2O (122.048)


COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A - Alimentary tract and metabolism > A11 - Vitamins C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].

   

AIDS-228041

2,6,10-Dodecatrienoic acid, 3,7,11-trimethyl-, methyl ester, (2E,6E)-

C16H26O2 (250.1933)


   

AIDS-113822

1-((2R,4S,5R)-4-Hydroxy-5-hydroxymethyl-tetrahydro-furan-2-yl)-1-H-pyrimidine-2,4-dione

C9H12N2O5 (228.0746)


D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine. 2'-Deoxyuridine could increase chromosome breakage and results in a decreased thymidylate synthetase activity. A known use of 2'-Deoxyuridine is as a precursor in the synthesis of Edoxudine.

   

Exact-S

Dimethyl sulfide [UN1164] [Flammable liquid]

C2H6S (62.019)


   

Pyridoxin

InChI=1\C8H11NO3\c1-5-8(12)7(4-11)6(3-10)2-9-5\h2,10-12H,3-4H2,1H

C8H11NO3 (169.0739)


A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.

   

Picoline

o-Picoline [UN2313] [Flammable liquid]

C6H7N (93.0578)


   

Ethapon

4-01-00-01383 (Beilstein Handbook Reference)

C2H3Cl3O (147.9249)


C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic 2,2,2-Trichloroethanol, the active form of Chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1]. 2,2,2-Trichloroethanol, the active form of Chloral hydrate, is an agonist for the nonclassical K2P channels TREK-1 (KCNK2) and TRAAK (KCNK4)[1].

   

Trimethylglycine

Methanaminium, 1-carboxy-N,N,N-trimethyl-, hydroxide, inner salt

C5H11NO2 (117.079)


Glycine betaine is the amino acid betaine derived from glycine. It has a role as a fundamental metabolite. It is an amino-acid betaine and a glycine derivative. It is a conjugate base of a N,N,N-trimethylglycinium. Betaine is a methyl group donor that functions in the normal metabolic cycle of methionine. It is a naturally occurring choline derivative commonly ingested through diet, with a role in regulating cellular hydration and maintaining cell function. Homocystinuria is an inherited disorder that leads to the accumulation of homocysteine in plasma and urine. Currently, no treatments are available to correct the genetic causes of homocystinuria. However, in order to normalize homocysteine levels, patients can be treated with vitamin B6 ([pyridoxine]), vitamin B12 ([cobalamin]), [folate] and specific diets. Betaine reduces plasma homocysteine levels in patients with homocystinuria. Although it is present in many food products, the levels found there are insufficient to treat this condition. The FDA and EMA have approved the product Cystadane (betaine anhydrous, oral solution) for the treatment of homocystinuria, and the EMA has approved the use of Amversio (betaine anhydrous, oral powder). Betaine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Betaine is a Methylating Agent. The mechanism of action of betaine is as a Methylating Activity. Betaine is a modified amino acid consisting of glycine with three methyl groups that serves as a methyl donor in several metabolic pathways and is used to treat the rare genetic causes of homocystinuria. Betaine has had only limited clinical use, but has not been linked to instances of serum enzyme elevations during therapy or to clinically apparent liver injury. Betaine is a natural product found in Hypoestes phyllostachya, Barleria lupulina, and other organisms with data available. Betaine is a metabolite found in or produced by Saccharomyces cerevisiae. A naturally occurring compound that has been of interest for its role in osmoregulation. As a drug, betaine hydrochloride has been used as a source of hydrochloric acid in the treatment of hypochlorhydria. Betaine has also been used in the treatment of liver disorders, for hyperkalemia, for homocystinuria, and for gastrointestinal disturbances. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1341) See also: Arnica montana Flower (part of); Betaine; panthenol (component of); Betaine; scutellaria baicalensis root (component of) ... View More ... A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents The amino acid betaine derived from glycine. D009676 - Noxae > D000963 - Antimetabolites D005765 - Gastrointestinal Agents

   

formic acid

formic acid

CH2O2 (46.0055)


The simplest carboxylic acid, containing a single carbon. Occurs naturally in various sources including the venom of bee and ant stings, and is a useful organic synthetic reagent. Principally used as a preservative and antibacterial agent in livestock feed. Induces severe metabolic acidosis and ocular injury in human subjects.

   

dimethyl sulfide

dimethyl sulfide

C2H6S (62.019)


A methyl sulfide in which the sulfur atom is substituted by two methyl groups. It is produced naturally by some marine algae.

   

nitrous oxide

nitrous oxide

N2O (44.0011)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Racemethionine

poly-l-methionine

C5H11NO2S (149.051)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes C26170 - Protective Agent > C2081 - Hepatoprotective Agent DL-Methionine is an essential amino acid containing sulfur with oxidative stress defense effects. DL-Methionine can be used for animal natural feed. DL-Methionine also kills H. rostochiensis on potato plants[1][2][3]. DL-Methionine is an essential amino acid containing sulfur with oxidative stress defense effects. DL-Methionine can be used for animal natural feed. DL-Methionine also kills H. rostochiensis on potato plants[1][2][3].

   

METOLCARB

METOLCARB

C9H11NO2 (165.079)


C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor

   

5-Methyltetrahydrofolic acid

(2R)-2-[(4-{[(2-amino-5-methyl-4-oxo-3,4,5,6,7,8-hexahydropteridin-6-yl)methyl]amino}phenyl)formamido]pentanedioic acid

C20H25N7O6 (459.1866)


5-Methyltetrahydrofolic acid (5-Methyl THF) is a biologically active form of folic acid. 5-Methyltetrahydrofolic acid is a methylated derivate of tetrahydrofolate. 5-Methyltetrahydrofolic acid is the predominant natural dietary folate and the principal form of folate in plasma and cerebrospinal fluid[1]. Levomefolic acid (5-MTHF) is an orally active, brain-penetrant natural active form of folic acid and is one of the most widely used folic acid food supplements[1][2].

   

DL-Cysteine

DL-CYSTEINE (1-13C)

C3H7NO2S (121.0197)


   

Dihydrofolic acid

Dihydrofolic acid

C19H21N7O6 (443.1553)


A folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid. It interacts with bacteria during cell division and is targeted by various drugs to prevent nucleic acid synthesis. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrofolic acid is a folic acid derivative acted upon by dihydrofolate reductase to produce tetrahydrofolic acid.

   

Isobutyryl-CoA

Isobutyryl-CoA

C25H42N7O17P3S (837.1571)


A short-chain, methyl-branched fatty acyl-CoA that is the S-isobutyryl derivative of coenzyme A.

   
   

Formiminoglutamic acid

N-Formimidoyl-L-glutamic acid

C6H10N2O4 (174.0641)


The N-formimidoyl derivative of L-glutamic acid

   

N-OMEGA-hydroxy-L-arginine

N-OMEGA-hydroxy-L-arginine

C6H14N4O3 (190.1066)


   

Nicotinate mononucleotide

Nicotinate mononucleotide

C11H15NO9P+ (336.0484)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Dimethylpropiothetin

Dimethylsulfoniopropionate

C5H10O2S (134.0401)


D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents

   

threo-3-methyl-L-aspartic acid

threo-3-methyl-L-aspartic acid

C5H9NO4 (147.0532)


An aspartic acid derivative having a 3-methyl substituent.

   

ALPHA-RIBAZOLE-5-phosphATE

ALPHA-RIBAZOLE-5-phosphATE

C14H19N2O7P (358.093)


   
   

Neuraminic acid

Neuraminic acid

C9H17NO8 (267.0954)


   

Homocysteic acid

DL-Homocysteic acid

C4H9NO5S (183.0201)


   

2-picoline

2-METHYLPYRIDINE

C6H7N (93.0578)


   

2-Methylcitric acid

2-Methylcitric acid

C7H10O7 (206.0427)


2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1]. 2-Methylcitric acid (Methylcitric acid) is an endogenous metabolite in the 2-methylcitric acid cycle. 2-Methylcitric acid accumulates in methylmalonic and propionic acidemias and acts as a marker metabolite. 2-Methylcitric acid markedly inhibits ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate[1].