Mycothiol (BioDeep_00000006294)
代谢物信息卡片
化学式: C17H30N2O12S (486.15193800000003)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 0.27%
分子结构信息
SMILES: CC(=O)NC(CS)C(=O)NC1C(C(C(OC1OC2C(C(C(C(C2O)O)O)O)O)CO)O)O
InChI: InChI=1S/C17H30N2O12S/c1-4(21)18-5(3-32)16(29)19-7-9(23)8(22)6(2-20)30-17(7)31-15-13(27)11(25)10(24)12(26)14(15)28/h5-15,17,20,22-28,32H,2-3H2,1H3,(H,18,21)(H,19,29)/t5-,6+,7+,8+,9+,10-,11-,12+,13+,14+,15-,17+/m0/s1
描述信息
A pseudodisaccharide, 1D-myo-inosityl-alpha-D-glucopyranoside, in which the hydroxy group at the 2-position of the glucose moiety is replaced by an (N-acetyl-L-cysteinyl)amido group.
同义名列表
数据库引用编号
12 个数据库交叉引用编号
- ChEBI: CHEBI:16768
- KEGG: C06717
- PubChem: 441148
- PubChem: 580
- Metlin: METLIN66499
- KNApSAcK: C00028629
- CAS: 192126-76-4
- PMhub: MS000019316
- MetaboLights: MTBLC16768
- PubChem: 8940
- PDB-CCD: XGZ
- NIKKAJI: J663.936D
分类词条
相关代谢途径
Reactome(11)
- Disease
- Mycobacterium tuberculosis biological processes
- Mycothiol metabolism
- Mycothiol-dependent detoxification
- Infectious disease
- Latent infection of Homo sapiens with Mycobacterium tuberculosis
- Latent infection - Other responses of Mtb to phagocytosis
- Infection with Mycobacterium tuberculosis
- Bacterial Infection Pathways
- Tolerance by Mtb to nitric oxide produced by macrophages
- Mycothiol biosynthesis
BioCyc(3)
PlantCyc(0)
代谢反应
30 个相关的代谢反应过程信息。
Reactome(12)
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Mycothiol metabolism:
GlcNAc-Ins + H2O ⟶ CH3COO- + GlcNI
- Mycothiol catabolism:
H2O + MSH ⟶ AcCyS + GlcNI
- Disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Infectious disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Latent infection of Homo sapiens with Mycobacterium tuberculosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Latent infection - Other responses of Mtb to phagocytosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Tolerance by Mtb to nitric oxide produced by macrophages:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Mycothiol biosynthesis:
GlcNAc-Ins + H2O ⟶ CH3COO- + GlcNI
- Mycothiol-dependent detoxification:
FMYC + H2O ⟶ H+ + HCOOH + MSH
- Infection with Mycobacterium tuberculosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Bacterial Infection Pathways:
H+ + NADH + dlaT(ox.) ⟶ NAD + dlaT
BioCyc(18)
- mycothiol-mediated detoxification:
monobromobimane + mycothiol ⟶ H+ + bromide + mycothiol-bimane conjugate
- mycothiol-mediated detoxification:
monobromobimane + mycothiol ⟶ H+ + bromide + mycothiol-bimane conjugate
- methanol oxidation to carbon dioxide:
MeOH + NAD+ ⟶ H+ + NADH + formaldehyde
- arsenate detoxification III (mycothiol):
NAD(P)+ + mycothiol ⟶ H+ + NAD(P)H + mycothione
- mycothiol oxidation:
hydrogen peroxide + mycothiol ⟶ H2O + mycothione
- mycothiol biosynthesis:
acetyl-CoA + deacetylmycothiol ⟶ H+ + coenzyme A + mycothiol
- formaldehyde oxidation III (mycothiol-dependent):
S-formylmycothiol + H2O ⟶ H+ + formate + mycothiol
- mycothiol biosynthesis:
1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O ⟶ 1-(2-amino-2-deoxy-α-D-glucopyranoside)-1D-myo-inositol + acetate
- mycothiol oxidation:
NAD(P)+ + mycothiol ⟶ H+ + NAD(P)H + mycothione
- mycothiol biosynthesis:
acetyl-CoA + deacetylmycothiol ⟶ H+ + coenzyme A + mycothiol
- formaldehyde oxidation III (mycothiol-dependent):
S-formylmycothiol + H2O ⟶ H+ + formate + mycothiol
- mycothiol biosynthesis:
1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O ⟶ GlcN-Ins + acetate
- mycothiol oxidation:
hydrogen peroxide + mycothiol ⟶ H2O + mycothione
- mycothiol biosynthesis:
1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O ⟶ GlcN-Ins + acetate
- methanol oxidation to carbon dioxide:
H2O + NAD+ + formaldehyde ⟶ H+ + NADH + formate
- formaldehyde oxidation III (mycothiol-dependent):
S-formylmycothiol + H2O ⟶ H+ + formate + mycothiol
- arsenate detoxification III (mycothiol):
arsenate + mycothiol ⟶ H2O + mycothiol-arsenate conjugate
- mycothiol biosynthesis:
1-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-1D-myo-inositol + H2O ⟶ GlcN-Ins + acetate
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
7 个相关的物种来源信息
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 1886 - Streptomyces albidoflavus: 10.1111/J.1365-2958.2008.06191.X
- 68174 - Streptomyces anthocyanicus: 10.1111/J.1365-2958.2008.06191.X
- 1901 - Streptomyces clavuligerus: 10.1111/J.1365-2958.2008.06191.X
- 1902 - Streptomyces coelicolor: 10.1111/J.1365-2958.2008.06191.X
- 1945 - Streptomyces jumonjinensis: 10.1111/J.1365-2958.2008.06191.X
- 1916 - Streptomyces lividans: 10.1111/J.1365-2958.2008.06191.X
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- H Zeitoun, M Bahey-El-Din, M A Kassem, H M Aboushleib. Mycothiol acetyltransferase (Rv0819) of Mycobacterium tuberculosis is a potential biomarker for direct diagnosis of tuberculosis using patient serum specimens.
Letters in applied microbiology.
2017 Dec; 65(6):504-511. doi:
10.1111/lam.12801
. [PMID: 28905401] - Melanie Hillion, Marcel Imber, Brandán Pedre, Jörg Bernhardt, Malek Saleh, Vu Van Loi, Sandra Maaß, Dörte Becher, Leonardo Astolfi Rosado, Lorenz Adrian, Christoph Weise, Rüdiger Hell, Markus Wirtz, Joris Messens, Haike Antelmann. The glyceraldehyde-3-phosphate dehydrogenase GapDH of Corynebacterium diphtheriae is redox-controlled by protein S-mycothiolation under oxidative stress.
Scientific reports.
2017 07; 7(1):5020. doi:
10.1038/s41598-017-05206-2
. [PMID: 28694441] - Melanie Hillion, Jörg Bernhardt, Tobias Busche, Martina Rossius, Sandra Maaß, Dörte Becher, Mamta Rawat, Markus Wirtz, Rüdiger Hell, Christian Rückert, Jörn Kalinowski, Haike Antelmann. Monitoring global protein thiol-oxidation and protein S-mycothiolation in Mycobacterium smegmatis under hypochlorite stress.
Scientific reports.
2017 04; 7(1):1195. doi:
10.1038/s41598-017-01179-4
. [PMID: 28446771] - Meiru Si, Chao Zhao, Bing Zhang, Dawei Wei, Keqi Chen, Xu Yang, He Xiao, Xihui Shen. Overexpression of Mycothiol Disulfide Reductase Enhances Corynebacterium glutamicum Robustness by Modulating Cellular Redox Homeostasis and Antioxidant Proteins under Oxidative Stress.
Scientific reports.
2016 07; 6(?):29491. doi:
10.1038/srep29491
. [PMID: 27383057] - Mansi Mehta, Raju S Rajmani, Amit Singh. Mycobacterium tuberculosis WhiB3 Responds to Vacuolar pH-induced Changes in Mycothiol Redox Potential to Modulate Phagosomal Maturation and Virulence.
The Journal of biological chemistry.
2016 Feb; 291(6):2888-903. doi:
10.1074/jbc.m115.684597
. [PMID: 26637353] - Vikram Saini, Bridgette M Cumming, Loni Guidry, Dirk A Lamprecht, John H Adamson, Vineel P Reddy, Krishna C Chinta, James H Mazorodze, Joel N Glasgow, Melissa Richard-Greenblatt, Anaximandro Gomez-Velasco, Horacio Bach, Yossef Av-Gay, Hyungjin Eoh, Kyu Rhee, Adrie J C Steyn. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis.
Cell reports.
2016 Jan; 14(3):572-585. doi:
10.1016/j.celrep.2015.12.056
. [PMID: 26774486] - José Sebastián Dávila Costa, Erika Kothe, Carlos Mauricio Abate, María Julia Amoroso. Unraveling the Amycolatopsis tucumanensis copper-resistome.
Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine.
2012 Oct; 25(5):905-17. doi:
10.1007/s10534-012-9557-3
. [PMID: 22585085] - Benjamin P Duckworth, Kathryn M Nelson, Courtney C Aldrich. Adenylating enzymes in Mycobacterium tuberculosis as drug targets.
Current topics in medicinal chemistry.
2012; 12(7):766-96. doi:
10.2174/156802612799984571
. [PMID: 22283817] - Yasu S Morita, Takeshi Fukuda, Chubert B C Sena, Yoshiki Yamaryo-Botte, Malcolm J McConville, Taroh Kinoshita. Inositol lipid metabolism in mycobacteria: biosynthesis and regulatory mechanisms.
Biochimica et biophysica acta.
2011 Jun; 1810(6):630-41. doi:
10.1016/j.bbagen.2011.03.017
. [PMID: 21477636] - Maria-Teresa Gutierrez-Lugo, Carole A Bewley. Susceptibility and mode of binding of the Mycobacterium tuberculosis cysteinyl transferase mycothiol ligase to tRNA synthetase inhibitors.
Bioorganic & medicinal chemistry letters.
2011 Apr; 21(8):2480-3. doi:
10.1016/j.bmcl.2011.02.042
. [PMID: 21392992] - Philong Ta, Nancy Buchmeier, Gerald L Newton, Mamta Rawat, Robert C Fahey. Organic hydroperoxide resistance protein and ergothioneine compensate for loss of mycothiol in Mycobacterium smegmatis mutants.
Journal of bacteriology.
2011 Apr; 193(8):1981-90. doi:
10.1128/jb.01402-10
. [PMID: 21335456] - Bernd Zechmann, Ana Tomasić, Lucija Horvat, Hrvoje Fulgosi. Subcellular distribution of glutathione and cysteine in cyanobacteria.
Protoplasma.
2010 Oct; 246(1-4):65-72. doi:
10.1007/s00709-010-0126-8
. [PMID: 20349253] - L Aravind, Robson F de Souza, Lakshminarayan M Iyer. Predicted class-I aminoacyl tRNA synthetase-like proteins in non-ribosomal peptide synthesis.
Biology direct.
2010 Aug; 5(?):48. doi:
10.1186/1745-6150-5-48
. [PMID: 20678224] - Willem van Schaik, Janetta Top, David R Riley, Jos Boekhorst, Joyce E P Vrijenhoek, Claudia M E Schapendonk, Antoni P A Hendrickx, Isaäc J Nijman, Marc J M Bonten, Hervé Tettelin, Rob J L Willems. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island.
BMC genomics.
2010 Apr; 11(?):239. doi:
10.1186/1471-2164-11-239
. [PMID: 20398277] - Sannah P N Mativandlela, Tshilidzi Muthivhi, Haruhisa Kikuchi, Yoshiteru Oshima, Chris Hamilton, Ahmed A Hussein, Martha L van der Walt, Peter J Houghton, Namrita Lall. Antimycobacterial flavonoids from the leaf extract of Galenia africana.
Journal of natural products.
2009 Dec; 72(12):2169-71. doi:
10.1021/np800778b
. [PMID: 20035557] - Maria-Teresa Gutierrez-Lugo, Heather Baker, Joseph Shiloach, Helena Boshoff, Carole A Bewley. Dequalinium, a new inhibitor of Mycobacterium tuberculosis mycothiol ligase identified by high-throughput screening.
Journal of biomolecular screening.
2009 Jul; 14(6):643-52. doi:
10.1177/1087057109335743
. [PMID: 19525487] - Anita Mahapatra, Sannah P N Mativandlela, B Binneman, P B Fourie, Chris J Hamilton, J J M Meyer, F van der Kooy, Peter Houghton, Namrita Lall. Activity of 7-methyljuglone derivatives against Mycobacterium tuberculosis and as subversive substrates for mycothiol disulfide reductase.
Bioorganic & medicinal chemistry.
2007 Dec; 15(24):7638-46. doi:
10.1016/j.bmc.2007.08.064
. [PMID: 17888665] - Belhu B Metaferia, Brandon J Fetterolf, Syed Shazad-Ul-Hussan, Matthew Moravec, Jeremy A Smith, Satyajit Ray, Maria-Teresa Gutierrez-Lugo, Carole A Bewley. Synthesis of natural product-inspired inhibitors of Mycobacterium tuberculosis mycothiol-associated enzymes: the first inhibitors of GlcNAc-Ins deacetylase.
Journal of medicinal chemistry.
2007 Dec; 50(25):6326-36. doi:
10.1021/jm070669h
. [PMID: 18020307] - Belhu B Metaferia, Satyajit Ray, Jeremy A Smith, Carole A Bewley. Design and synthesis of substrate-mimic inhibitors of mycothiol-S-conjugate amidase from Mycobacterium tuberculosis.
Bioorganic & medicinal chemistry letters.
2007 Jan; 17(2):444-7. doi:
10.1016/j.bmcl.2006.10.031
. [PMID: 17084627] - Robert H Michell. Evolution of the diverse biological roles of inositols.
Biochemical Society symposium.
2007; ?(74):223-46. doi:
10.1042/bss0740223
. [PMID: 17233593] - Maria-Teresa Gutierrez-Lugo, Gerald L Newton, Robert C Fahey, Carole A Bewley. Cloning, expression and rapid purification of active recombinant mycothiol ligase as B1 immunoglobulin binding domain of streptococcal protein G, glutathione-S-transferase and maltose binding protein fusion proteins in Mycobacterium smegmatis.
Protein expression and purification.
2006 Nov; 50(1):128-36. doi:
10.1016/j.pep.2006.07.005
. [PMID: 16908186] - Gillian M Nicholas, Lisa L Eckman, Pavol Kovác, Sarah Otero-Quintero, Carole A Bewley. Synthesis of 1-D- and 1-L-myo-inosityl 2-N-acetamido-2-deoxy-alpha-D-glucopyranoside establishes substrate specificity of the Mycobacterium tuberculosis enzyme AcGI deacetylase.
Bioorganic & medicinal chemistry.
2003 Jun; 11(12):2641-7. doi:
10.1016/s0968-0896(03)00154-8
. [PMID: 12757730] - Janaki Mahadevan, Gillian M Nicholas, Carole A Bewley. Solution conformations of mycothiol bimane, 1-D-GlcNAc-alpha-(1 --> 1)-D-myo-Ins and 1-D-GlcNAc-alpha-(1 --> 1)-L-myo-Ins.
The Journal of organic chemistry.
2003 May; 68(9):3380-6. doi:
10.1021/jo026872w
. [PMID: 12713335] - Shelley D Copley, Jasvinder K Dhillon. Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes.
Genome biology.
2002; 3(5):research0025. doi:
10.1186/gb-2002-3-5-research0025
. [PMID: 12049666] - M D Unson, G L Newton, K F Arnold, C E Davis, R C Fahey. Improved methods for immunoassay of mycothiol.
Journal of clinical microbiology.
1999 Jul; 37(7):2153-7. doi:
10.1128/jcm.37.7.2153-2157.1999
. [PMID: 10364578] - M D Unson, G L Newton, C Davis, R C Fahey. An immunoassay for the detection and quantitative determination of mycothiol.
Journal of immunological methods.
1998 May; 214(1-2):29-39. doi:
10.1016/s0022-1759(98)00034-9
. [PMID: 9692856] - . .
.
. doi:
. [PMID: 14871480]