6-Benzylaminopurine (BioDeep_00000001763)
Secondary id: BioDeep_00000420937, BioDeep_00001893685
human metabolite PANOMIX_OTCML-2023 Plant Hormones
代谢物信息卡片
化学式: C12H11N5 (225.1014)
中文名称: 6-苄氨基嘌呤
谱图信息:
最多检出来源 Viridiplantae(plant) 13.2%
分子结构信息
SMILES: C(NC1=C2N=CN=C2N=CN1)C1=CC=CC=C1
InChI: InChI=1S/C12H11N5/c1-2-4-9(5-3-1)6-13-11-10-12(15-7-14-10)17-8-16-11/h1-5,7-8H,6H2,(H2,13,14,15,16,17)
描述信息
6-Benzylaminopurine (6-BAP), also known as N6-benzyladenine or cytokinin B, belongs to the class of organic compounds known as 6-alkylaminopurines. 6-Alkylaminopurines are compounds that contain an alkylamine group attached at the 6-position of a purine. Purine is a bicyclic aromatic compound made up of a pyrimidine ring fused to an imidazole ring. 6-Benzylaminopurine is a very strong basic compound (based on its pKa). Outside of the human body, 6-benzylaminopurine has been detected, but not quantified in, garden tomato (var.) and wild celeries. This could make 6-benzylaminopurine a potential biomarker for the consumption of these foods. 6-Benzylaminopurine is a synthetic cytokinin applied externally postharvest to maintain the quality, delay senescence, and improve the nutritional value of green vegetables (PMID: 22148319).
6-Benzylaminopurine, benzyl adenine or BAP is a first-generation synthetic cytokinin which elicits plant growth and development responses, setting blossoms and stimulating fruit richness by stimulating cell division. It is an inhibitor of respiratory kinase in plants, and increases post-harvest life of green vegetables. Cytokinin B is found in wild celery and garden tomato (variety).
CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6963; ORIGINAL_PRECURSOR_SCAN_NO 6960
CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3175; ORIGINAL_PRECURSOR_SCAN_NO 3173
CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6962; ORIGINAL_PRECURSOR_SCAN_NO 6960
CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6947; ORIGINAL_PRECURSOR_SCAN_NO 6945
CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6966; ORIGINAL_PRECURSOR_SCAN_NO 6965
CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6971; ORIGINAL_PRECURSOR_SCAN_NO 6967
CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3236; ORIGINAL_PRECURSOR_SCAN_NO 3235
CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6911; ORIGINAL_PRECURSOR_SCAN_NO 6907
CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3181; ORIGINAL_PRECURSOR_SCAN_NO 3179
CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3214; ORIGINAL_PRECURSOR_SCAN_NO 3213
CONFIDENCE standard compound; INTERNAL_ID 202; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3173; ORIGINAL_PRECURSOR_SCAN_NO 3171
D006133 - Growth Substances > D010937 - Plant Growth Regulators
KEIO_ID B015; [MS2] KO008874
KEIO_ID B015
6-Benzylaminopurine (Benzyladenine) is the first cytokinin that causes plant growth and development by stimulating cell division and inhibiting respiratory kinases, thereby prolonging the preservation of green vegetables[1].
6-Benzylaminopurine is the first cytokinin that causes plant growth and development by stimulating cell division and inhibiting respiratory kinases, thereby prolonging the preservation of green vegetables.
同义名列表
33 个代谢物同义名
N-(Phenylmethyl)-1H-purin-6-amine; 6-[(Phenylmethyl)amino]-9H-purine; N-(Phenylmethyl)-9H-purin-6-amine; N-benzyl-7H-purin-1-ium-6-amine; N-Benzyl-1H-purin-6-amine; N-BENZYL-9H-purin-6-amine; N(6)-(Benzylamino)purine; Benzyl(purin-6-yl)amine; 6-(N-Benzylamino)purine; N(6)-Benzylaminopurine; N6-(Benzylamino)purine; 6-(Benzylamino)purine; Aminopurine, 6-benzyl; N6-Benzylaminopurine; 6-Benzylaminoadenine; 6-benzylaminopurine; N(6)-Benzyladenine; 6-Benzylaminopurin; Benzylaminopurine; N-6-Benzyladenine; N-Benzyl-adenine; 6-Benzyl adenine; N6-Benzyladenine; N-Benzyladenine; 6-Benzyladenine; Benzyladenine; Cytokinin b; 6-BA CPD; 6-BAP; 6-BA; BAP; Ba; 6-Benzylaminopurine
数据库引用编号
43 个数据库交叉引用编号
- ChEBI: CHEBI:29022
- KEGG: C11263
- PubChem: 6314485
- PubChem: 62389
- PubChem: 13440
- HMDB: HMDB0039238
- Metlin: METLIN68947
- ChEMBL: CHEMBL228862
- Wikipedia: 6-Benzylaminopurine
- MetaCyc: CPD-4604
- KNApSAcK: C00000092
- foodb: FDB018775
- chemspider: 56177
- CAS: 1214-39-7
- MoNA: LU020253
- MoNA: KO008874
- MoNA: LU020204
- MoNA: LU020252
- MoNA: KO002458
- MoNA: LU020205
- MoNA: KO000338
- MoNA: KO002462
- MoNA: LU020251
- MoNA: LU020255
- MoNA: KO008875
- MoNA: KO000339
- MoNA: KO002460
- MoNA: LU020254
- MoNA: LU020203
- MoNA: KO000337
- MoNA: LU020206
- MoNA: KO000336
- MoNA: LU020202
- MoNA: KO000340
- MoNA: KO002459
- MoNA: LU020201
- MoNA: KO002461
- PMhub: MS000001138
- PDB-CCD: EMU
- NIKKAJI: J1.764G
- RefMet: Cytokinin B
- medchemexpress: HY-B0941
- KNApSAcK: 29022
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
代谢反应
480 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(4)
- cytokinins 7-N-glucoside biosynthesis:
N6-dimethylallyladenine + UDP-α-D-glucose ⟶ H+ + UDP + isopentenyladenine-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
N6-dimethylallyladenine + UDP-α-D-glucose ⟶ H+ + UDP + isopentenyladenine-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
N6-dimethylallyladenine + UDP-α-D-glucose ⟶ H+ + UDP + isopentenyladenine-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
N6-dimethylallyladenine + UDP-α-D-glucose ⟶ H+ + UDP + isopentenyladenine-9-N-glucoside
WikiPathways(0)
Plant Reactome(292)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- Cytokinins conjugates biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-7-N-glucoside
- Cytokinins 9-N-glucoside biosynthesis:
UDP-Glc + kinetin ⟶ UDP + kinetin-9-N-glucoside
INOH(0)
PlantCyc(184)
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
N6-dimethylallyladenine + UDP-α-D-glucose ⟶ H+ + UDP + isopentenyladenine-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
N6-dimethylallyladenine + UDP-α-D-glucose ⟶ H+ + UDP + isopentenyladenine-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
N6-dimethylallyladenine + UDP-α-D-glucose ⟶ H+ + UDP + isopentenyladenine-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
N6-dimethylallyladenine + UDP-α-D-glucose ⟶ H+ + UDP + isopentenyladenine-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
N6-dimethylallyladenine + UDP-α-D-glucose ⟶ H+ + UDP + isopentenyladenine-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
N6-dimethylallyladenine + UDP-α-D-glucose ⟶ H+ + UDP + isopentenyladenine-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 7-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-7-N-glucoside
- cytokinins 9-N-glucoside biosynthesis:
UDP-α-D-glucose + kinetin ⟶ H+ + UDP + kinetin-9-N-glucoside
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
5 个相关的物种来源信息
- 40674 - Animals: -
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Galal I Eliwa, El-Refaey F El-Dengawy, Mohamed S Gawish, Mona M Yamany. Comprehensive study on in vitro propagation of some imported peach rootstocks: in vitro explant surface sterilization and bud proliferation.
Scientific reports.
2024 03; 14(1):5586. doi:
10.1038/s41598-024-55685-3
. [PMID: 38454056] - Alejandro Torres-Haro, Jorge Verdín, Manuel R Kirchmayr, Melchor Arellano-Plaza. Combined 6-benzylaminopurine and H2O2 stimulate the astaxanthin biosynthesis in Xanthophyllomyces dendrorhous.
Applied microbiology and biotechnology.
2024 Jan; 108(1):158. doi:
10.1007/s00253-023-12875-9
. [PMID: 38252271] - Marziyeh Jafari, Mohammad Hosein Daneshvar. Machine learning-mediated Passiflora caerulea callogenesis optimization.
PloS one.
2024; 19(1):e0292359. doi:
10.1371/journal.pone.0292359
. [PMID: 38266002] - Denis O Omelchenko, Elena S Glagoleva, Anna Y Stepanova, Maria D Logacheva. Callus Induction Followed by Regeneration and Hairy Root Induction in Common Buckwheat.
Methods in molecular biology (Clifton, N.J.).
2024; 2791(?):1-14. doi:
10.1007/978-1-0716-3794-4_1
. [PMID: 38532087] - Guiyi Gong, Hiotong Kam, Yubin Bai, Wai San Cheang, Shuilong Wu, Xiaoning Cheng, John P Giesy, Simon Ming-Yuen Lee. 6-benzylaminopurine causes endothelial dysfunctions to human umbilical vein endothelial cells and exacerbates atorvastatin-induced cerebral hemorrhage in zebrafish.
Environmental toxicology.
2023 Nov; ?(?):. doi:
10.1002/tox.24012
. [PMID: 37929299] - Anna V Shirokova, Lev B Dmitriev, Sergey L Belopukhov, Valeria L Dmitrieva, Irina L Danilova, Viktor A Kharchenko, Olga A Pekhova, Elena F Myagkih, Andrey N Tsitsilin, Alexander A Gulevich, Ekaterina V Zhuravleva, Yulia N Kostanchuk, Ekaterina N Baranova. The Accumulation of Volatile Compounds and the Change in the Morphology of the Leaf Wax Cover Accompanied the "Anti-Aging" Effect in Anethum graveolens L. Plants Sprayed with 6-Benzylaminopurine.
International journal of molecular sciences.
2023 Oct; 24(20):. doi:
10.3390/ijms242015137
. [PMID: 37894818] - Qiqi Quan, Zhiwei Liu, Zhaodong Li, Kangliang Pan, Anastasios Koidis, Yi Lei, Xiaoqin Yu, Qiuhua Mo, Xinan Huang, Hongtao Lei. Authenticating Emergent Adulterant 6-Benzylaminopurine in Bean Sprouts: Virtual Hapten Similarity Enhanced Immunoassay.
Journal of agricultural and food chemistry.
2023 May; 71(21):8203-8210. doi:
10.1021/acs.jafc.3c01696
. [PMID: 37199564] - Guiyi Gong, Hiotong Kam, Yubin Bai, Hongxia Zhao, John P Giesy, Simon Ming-Yuen Lee. 6-Benzylaminopurine causes lipid dyshomeostasis via disruption of glycerophospholipid metabolism in zebrafish.
The Science of the total environment.
2023 Mar; 878(?):163194. doi:
10.1016/j.scitotenv.2023.163194
. [PMID: 37001669] - Xinyuan Li, Meiling Gao, Yu Guo, Ziwei Zhang, Zhaomin Zhang, Li Chi, Zhongcheng Qu, Lei Wang, Rongyan Huang. 6-Benzyladenine alleviates NaCl stress in watermelon (Citrullus lanatus) seedlings by improving photosynthesis and upregulating antioxidant defences.
Functional plant biology : FPB.
2022 Dec; ?(?):. doi:
10.1071/fp22047
. [PMID: 36456536] - Qiaomei Lu, Shuting Lin, Qingqing Ding, Huiling Zhang, Ping Tong, Min Fang, Wenmin Zhang, Lan Zhang. An agaric-like covalent organic framework composite for efficient extraction of trace cytokinins in plant samples.
Journal of chromatography. A.
2022 Nov; 1683(?):463524. doi:
10.1016/j.chroma.2022.463524
. [PMID: 36195005] - Ekaterina M Savelieva, Anastasia A Zenchenko, Mikhail S Drenichev, Anna A Kozlova, Nikolay N Kurochkin, Dmitry V Arkhipov, Alexander O Chizhov, Vladimir E Oslovsky, Georgy A Romanov. In Planta, In Vitro and In Silico Studies of Chiral N6-Benzyladenine Derivatives: Discovery of Receptor-Specific S-Enantiomers with Cytokinin or Anticytokinin Activities.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911334
. [PMID: 36232653] - Junjun Feng, Haiyun Jiang, Jing Wang, Zhengyi Jing, Fan Zhang, Tianyu Tan, Feng He, Lihua Jiang, Haiqin Li, Shimin Chang, Tengfei Li. [Simultaneous determination of 40 plant growth regulators, fungicides, insecticides, and antibiotics in bean sprouts by QuEChERS-high performance liquid chromatography-tandem mass spectrometry].
Se pu = Chinese journal of chromatography.
2022 Sep; 40(9):843-853. doi:
10.3724/sp.j.1123.2021.12028
. [PMID: 36156631] - Mengying Yang, Jialu Luan, Yixin Xu, Chengtian Zhao, Mingzhu Sun, Xizeng Feng. Cardiotoxicity of Zebrafish Induced by 6-Benzylaminopurine Exposure and Its Mechanism.
International journal of molecular sciences.
2022 Jul; 23(15):. doi:
10.3390/ijms23158438
. [PMID: 35955574] - Ci-Mei Wang, Ying-Ying Yang, Nan-Hui Chen, Ze-Xiang Zeng, Shu-Juan Ji, Wei Shan, Jian-Fei Kuang, Wang-Jin Lu, Xin-Guo Su, Jian-Ye Chen, Ya-Ting Zhao. Physiological and transcription analyses reveal regulatory pathways of 6-benzylaminopurine delaying leaf senescence and maintaining quality in postharvest Chinese flowering cabbage.
Food research international (Ottawa, Ont.).
2022 07; 157(?):111455. doi:
10.1016/j.foodres.2022.111455
. [PMID: 35761692] - Jingtong Ruan, Peishan Yi. Exogenous 6-benzylaminopurine inhibits tip growth and cytokinesis via regulating actin dynamics in the moss Physcomitrium patens.
Planta.
2022 May; 256(1):1. doi:
10.1007/s00425-022-03914-2
. [PMID: 35616774] - Guiyi Gong, Hiotong Kam, Hanbin Chen, Yan Chen, Wai San Cheang, John P Giesy, Qiaohong Zhou, Simon Ming-Yuen Lee. Role of endocrine disruption in toxicity of 6-benzylaminopurine (6-BA) to early-life stages of Zebrafish.
Ecotoxicology and environmental safety.
2022 Mar; 232(?):113287. doi:
10.1016/j.ecoenv.2022.113287
. [PMID: 35149407] - Juan Hu, Baizhao Ren, Shuting Dong, Peng Liu, Bin Zhao, Jiwang Zhang. 6-Benzyladenine increasing subsequent waterlogging-induced waterlogging tolerance of summer maize by increasing hormone signal transduction.
Annals of the New York Academy of Sciences.
2022 03; 1509(1):89-112. doi:
10.1111/nyas.14708
. [PMID: 34766352] - Puthukkolli P Sameena, Hazem M Kalaji, Krystyna Żuk-Gołaszewska, Tomasz Horaczek, Edyta Sierka, Jos T Puthur. 6-Benzylaminopurine Alleviates the Impact of Cu2+ Toxicity on Photosynthetic Performance of Ricinus communis L. Seedlings.
International journal of molecular sciences.
2021 Dec; 22(24):. doi:
10.3390/ijms222413349
. [PMID: 34948146] - Xuan Xu, Sylvain Legay, Roberto Berni, Jean-Francois Hausman, Gea Guerriero. Transcriptomic Changes in Internode Explants of Stinging Nettle during Callogenesis.
International journal of molecular sciences.
2021 Nov; 22(22):. doi:
10.3390/ijms222212319
. [PMID: 34830202] - Mengying Yang, Jiaxing Huang, Shuhui Zhang, Xin Zhao, Daofu Feng, Xizeng Feng. Melatonin mitigated circadian disruption and cardiovascular toxicity caused by 6-benzylaminopurine exposure in zebrafish.
Ecotoxicology and environmental safety.
2021 Oct; 223(?):112555. doi:
10.1016/j.ecoenv.2021.112555
. [PMID: 34332249] - Izabela Grzegorczyk-Karolak, Katarzyna Hnatuszko-Konka, Marta Krzemińska, Monika A Olszewska, Aleksandra Owczarek. Cytokinin-Based Tissue Cultures for Stable Medicinal Plant Production: Regeneration and Phytochemical Profiling of Salvia bulleyana Shoots.
Biomolecules.
2021 10; 11(10):. doi:
10.3390/biom11101513
. [PMID: 34680145] - Mat Yunus Najhah, Hawa Z E Jaafar, Jaafar Juju Nakasha, Mansor Hakiman. Shoot Multiplication and Callus Induction of Labisia pumila var. alata as Influenced by Different Plant Growth Regulators Treatments and Its Polyphenolic Activities Compared with the Wild Plant.
Molecules (Basel, Switzerland).
2021 May; 26(11):. doi:
10.3390/molecules26113229
. [PMID: 34072168] - Ivan Chóez-Guaranda, José García, Carolina Sánchez, Carlos Pesantes, José Flores, Patricia Manzano. Identification of lupeol produced by Vernonanthura patens (Kunth) H. Rob. leaf callus culture.
Natural product research.
2021 Feb; 35(3):503-507. doi:
10.1080/14786419.2019.1636239
. [PMID: 31282206] - Muhammad Kamran, Mohammad Danish, Muhammad Hamzah Saleem, Zaffar Malik, Aasma Parveen, Ghulam Hassan Abbasi, Moazzam Jamil, Shafaqat Ali, Sobia Afzal, Muhammad Riaz, Muhammad Rizwan, Muhammad Ali, Yaoyu Zhou. Application of abscisic acid and 6-benzylaminopurine modulated morpho-physiological and antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake.
Chemosphere.
2021 Jan; 263(?):128169. doi:
10.1016/j.chemosphere.2020.128169
. [PMID: 33297138] - Jakub Lang, Jędrzej Pankowski, Piotr Grabarz, Bartosz Pluciński, Paweł Jedynak. Comparing the effects of different exogenous hormone combinations on seed-derived callus induction in Nicotiana tabacum.
Acta biochimica Polonica.
2020 Nov; 67(4):449-452. doi:
10.18388/abp.2020_5456
. [PMID: 33245659] - J Mao, C Niu, K Li, M Mobeen Tahir, A Khan, H Wang, S Li, Y Liang, G Li, Z Yang, L Zuo, M Han, X Ren, N An, D Zhang. Exogenous 6-benzyladenine application affects root morphology by altering hormone status and gene expression of developing lateral roots in Malus hupehensis.
Plant biology (Stuttgart, Germany).
2020 Nov; 22(6):1150-1159. doi:
10.1111/plb.13154
. [PMID: 32597557] - Sissi Miguel, Cindy Michel, Flore Biteau, Alain Hehn, Frédéric Bourgaud. In vitro plant regeneration and Agrobacterium-mediated genetic transformation of a carnivorous plant, Nepenthes mirabilis.
Scientific reports.
2020 10; 10(1):17482. doi:
10.1038/s41598-020-74108-7
. [PMID: 33060701] - Muhammad Farooq, Rahmatullah Jan, Kyung-Min Kim. Gravistimulation effects on Oryza sativa amino acid profile, growth pattern and expression of OsPIN genes.
Scientific reports.
2020 10; 10(1):17303. doi:
10.1038/s41598-020-74531-w
. [PMID: 33057095] - Zahra Rezaei Ghaleh, Mostafa K Sarmast, Sadegh Atashi. 6-Benzylaminopurine (6-BA) ameliorates drought stress response in tall fescue via the influencing of biochemicals and strigolactone-signaling genes.
Plant physiology and biochemistry : PPB.
2020 Oct; 155(?):877-887. doi:
10.1016/j.plaphy.2020.08.009
. [PMID: 32905982] - Li Huan, Wang Jin-Qiang, Liu Qing. Photosynthesis product allocation and yield in sweet potato with spraying exogenous hormones under drought stress.
Journal of plant physiology.
2020 Oct; 253(?):153265. doi:
10.1016/j.jplph.2020.153265
. [PMID: 32947245] - Shuangyan Chen, Yuping Xiong, Teng Wu, Kunlin Wu, Jaime A Teixeira da Silva, Youhua Xiong, Songjun Zeng, Guohua Ma. Axillary shoot proliferation and plant regeneration in Euryodendron excelsum H. T. Chang, a critically endangered species endemic to China.
Scientific reports.
2020 09; 10(1):14402. doi:
10.1038/s41598-020-71360-9
. [PMID: 32873835] - Yali Li, Jiangtao Hu, Hao Wei, Byoung Ryong Jeong. A Long-Day Photoperiod and 6-Benzyladenine Promote Runner Formation through Upregulation of Soluble Sugar Content in Strawberry.
International journal of molecular sciences.
2020 Jul; 21(14):. doi:
10.3390/ijms21144917
. [PMID: 32664642] - Guoren He, Panpan Yang, Yuchao Tang, Yuwei Cao, Xianyu Qi, Leifeng Xu, Jun Ming. Mechanism of exogenous cytokinins inducing bulbil formation in Lilium lancifolium in vitro.
Plant cell reports.
2020 Jul; 39(7):861-872. doi:
10.1007/s00299-020-02535-x
. [PMID: 32270280] - S A Shoba, I V Gorepekin, G N Fedotov, T A Gracheva. Plant Growth Hormones Increase the Stimulation Efficiency of Seedlings Development for Spring Wheat Seeds upon Pre-sowing Treatment.
Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections.
2020 Jul; 493(1):128-131. doi:
10.1134/s0012496620040080
. [PMID: 32894427] - Harichandra A Nikule, Kirti M Nitnaware, Mahadev R Chambhare, Nitin S Kadam, Mahesh Y Borde, Tukaram D Nikam. In-vitro propagation, callus culture and bioactive lignan production in Phyllanthus tenellus Roxb: a new source of phyllanthin, hypophyllanthin and phyltetralin.
Scientific reports.
2020 06; 10(1):10668. doi:
10.1038/s41598-020-67637-8
. [PMID: 32606305] - Pascual García-Pérez, Eva Lozano-Milo, Mariana Landín, Pedro Pablo Gallego. Machine Learning Technology Reveals the Concealed Interactions of Phytohormones on Medicinal Plant In Vitro Organogenesis.
Biomolecules.
2020 05; 10(5):. doi:
10.3390/biom10050746
. [PMID: 32403395] - Muhammet Dogan. The effectiveness of light emitting diodes on shoot regeneration in vitro from shoot tip tissues of Limnophila aromatica (Lamk.) Merr. and Rotala rotundifolia (Buch-Ham. ex Roxb) Koehne.
Biotechnic & histochemistry : official publication of the Biological Stain Commission.
2020 Apr; 95(3):225-232. doi:
10.1080/10520295.2019.1670359
. [PMID: 31650867] - Manas Ranjan Sahoo, Tongbram Roshni Devi, Madhumita Dasgupta, Potshangbam Nongdam, Narendra Prakash. Reactive oxygen species scavenging mechanisms associated with polyethylene glycol mediated osmotic stress tolerance in Chinese potato.
Scientific reports.
2020 03; 10(1):5404. doi:
10.1038/s41598-020-62317-z
. [PMID: 32214180] - Anran Xuan, Yuepeng Song, Chenhao Bu, Panfei Chen, Yousry A El-Kassaby, Deqiang Zhang. Changes in DNA Methylation in Response to 6-Benzylaminopurine Affect Allele-Specific Gene Expression in Populus Tomentosa.
International journal of molecular sciences.
2020 Mar; 21(6):. doi:
10.3390/ijms21062117
. [PMID: 32204454] - Hao Huang, Ying Wei, Yongjin Zhai, Kunxi Ouyang, Xiaoyang Chen, Longhua Bai. High frequency regeneration of plants via callus-mediated organogenesis from cotyledon and hypocotyl cultures in a multipurpose tropical tree (Neolamarkia Cadamba).
Scientific reports.
2020 03; 10(1):4558. doi:
10.1038/s41598-020-61612-z
. [PMID: 32165694] - Yan Luo, Bang-Zhen Pan, Lu Li, Chen-Xuan Yang, Zeng-Fu Xu. Developmental basis for flower sex determination and effects of cytokinin on sex determination in Plukenetia volubilis (Euphorbiaceae).
Plant reproduction.
2020 03; 33(1):21-34. doi:
10.1007/s00497-019-00382-9
. [PMID: 31907610] - Lixiang Cheng, Dongxia Wang, Yuping Wang, Hongwei Xue, Feng Zhang. An integrative overview of physiological and proteomic changes of cytokinin-induced potato (Solanum tuberosum L.) tuber development in vitro.
Physiologia plantarum.
2020 Mar; 168(3):675-693. doi:
10.1111/ppl.13014
. [PMID: 31343748] - Juan Hu, Baizhao Ren, Shuting Dong, Peng Liu, Bin Zhao, Jiwang Zhang. Comparative proteomic analysis reveals that exogenous 6-benzyladenine (6-BA) improves the defense system activity of waterlogged summer maize.
BMC plant biology.
2020 Jan; 20(1):44. doi:
10.1186/s12870-020-2261-5
. [PMID: 31996151] - Yanqing Liu, Li Tang, Can Wang, Jinting Li. NAA and 6-BA promote accumulation of oleanolic acid by JA regulation in Achyranthes bidentata Bl.
PloS one.
2020; 15(2):e0229490. doi:
10.1371/journal.pone.0229490
. [PMID: 32107496] - Le Van Trong, Bui Bao Thinh, Nguyen Hung, Le Thi Huyen, Ha Thi Phuong. Effects of Cytokinin on Physiological and Biochemical Indicators of Some Tomato Varieties (Solanum lycopersicum L.) Cultivated in Vietnam.
Pakistan journal of biological sciences : PJBS.
2020 Jan; 23(11):1462-1472. doi:
10.3923/pjbs.2020.1462.1472
. [PMID: 33274876] - Philip Turner, Laurent Nottale, John Zhao, Edouard Pesquet. New insights into the physical processes that underpin cell division and the emergence of different cellular and multicellular structures.
Progress in biophysics and molecular biology.
2020 01; 150(?):13-42. doi:
10.1016/j.pbiomolbio.2019.04.006
. [PMID: 31029570] - Atsbeha Hailu, Desta Berhe Sbhatu, Haftom Baraki Abraha. In Vitro Micropropagation of Industrially and Medicinally Useful Plant Aloe trichosantha Berger Using Offshoot Cuttings.
TheScientificWorldJournal.
2020; 2020(?):3947162. doi:
10.1155/2020/3947162
. [PMID: 32724302] - Mingwei Wang, Hailiang Nie, Dandan Han, Xiaoqiang Qiao, Hongyuan Yan, Shigang Shen. Cauliflower-like resin microspheres with tuneable surface roughness as solid-phase extraction adsorbent for efficient extraction and determination of plant growth regulators in cucumbers.
Food chemistry.
2019 Oct; 295(?):259-266. doi:
10.1016/j.foodchem.2019.05.130
. [PMID: 31174757] - Weixiang Wang, Binrong Wang, Zihao Liu, Xuemei Xia. Developmental toxicity and alteration of gene expression in zebrafish embryo exposed to 6-benzylaminopurine.
Chemosphere.
2019 Oct; 233(?):336-346. doi:
10.1016/j.chemosphere.2019.05.261
. [PMID: 31176896] - Yuki Hata, Satoshi Naramoto, Junko Kyozuka. BLADE-ON-PETIOLE genes are not involved in the transition from protonema to gametophore in the moss Physcomitrella patens.
Journal of plant research.
2019 Sep; 132(5):617-627. doi:
10.1007/s10265-019-01132-8
. [PMID: 31432295] - Faïza Masmoudi-Allouche, Walid Kriaa, Noureddine Drira. Staminodes evolution and in vitro development innovation in date palm (Phoenix dactylifera L.).
Comptes rendus biologies.
2019 Jun; 342(5-6):220-229. doi:
10.1016/j.crvi.2019.06.001
. [PMID: 31400945] - Xin-Jun Yu, Hong Chen, Chang-Yi Huang, Xiao-Yu Zhu, Zhi-Peng Wang, Dong-Sheng Wang, Xiao-Yan Liu, Jie Sun, Jian-Yong Zheng, Hui-Juan Li, Zhao Wang. Transcriptomic Mechanism of the Phytohormone 6-Benzylaminopurine (6-BAP) Stimulating Lipid and DHA Synthesis in Aurantiochytrium sp.
Journal of agricultural and food chemistry.
2019 May; 67(19):5560-5570. doi:
10.1021/acs.jafc.8b07117
. [PMID: 30901205] - Yangyang Han, Mingchen Liu, Xinting Li, Peng Liang, Yali Song, Xiaoqiang Qiao. Polyhedral oligomeric silsesquioxane grafted silica-based core-shell microspheres for reversed-phase high-performance liquid chromatography.
Mikrochimica acta.
2019 05; 186(6):331. doi:
10.1007/s00604-019-3441-6
. [PMID: 31062100] - Sher Mohammad, Mubarak Ali Khan, Amir Ali, Latif Khan, Muhammad Shahsawar Khan, Zia-Ur-Rehman Mashwani. Feasible production of biomass and natural antioxidants through callus cultures in response to varying light intensities in olive (Olea europaea. L) cult. Arbosana.
Journal of photochemistry and photobiology. B, Biology.
2019 Apr; 193(?):140-147. doi:
10.1016/j.jphotobiol.2019.03.001
. [PMID: 30852387] - Arman Pazuki, Fatemeh Aflaki, Buhara Yücesan, Songül Gürel. Effects of cytokinins, gibberellic acid 3, and gibberellic acid 4/7 on in vitro growth, morphological traits, and content of steviol glycosides in Stevia rebaudiana.
Plant physiology and biochemistry : PPB.
2019 Apr; 137(?):154-161. doi:
10.1016/j.plaphy.2019.02.009
. [PMID: 30784987] - Youmei Li, Dong Zhang, Na An, Sheng Fan, Xiya Zuo, Xin Zhang, Lizhi Zhang, Cai Gao, Mingyu Han, Libo Xing. Transcriptomic analysis reveals the regulatory module of apple (Malus × domestica) floral transition in response to 6-BA.
BMC plant biology.
2019 Mar; 19(1):93. doi:
10.1186/s12870-019-1695-0
. [PMID: 30841918] - Shudan Xue, Mingming Dong, Xingwang Liu, Shuo Xu, Jinan Pang, Wenzhu Zhang, Yiqun Weng, Huazhong Ren. Classification of fruit trichomes in cucumber and effects of plant hormones on type II fruit trichome development.
Planta.
2019 Feb; 249(2):407-416. doi:
10.1007/s00425-018-3004-9
. [PMID: 30225671] - Tasiu Isah. De novo in vitro shoot morphogenesis from shoot tip-induced callus cultures of Gymnema sylvestre (Retz.) R.Br. ex Sm.
Biological research.
2019 Jan; 52(1):3. doi:
10.1186/s40659-019-0211-1
. [PMID: 30660192] - David S Letham, Xue-Dong Zhang, Charles H Hocart. The Synthesis of ³H-Labelled 8-Azido-N⁶-Benzyladenine and Related Compounds for Photoaffinity Labelling of Cytokinin-Binding Proteins.
Molecules (Basel, Switzerland).
2019 Jan; 24(2):. doi:
10.3390/molecules24020349
. [PMID: 30669410] - Dikayani, Anas, Anne Nuraini, Warid Ali Qosim. Effect of Salinity Stress on Shoot Musa acuminata L. Barangan Cultivar in vitro Culture.
Pakistan journal of biological sciences : PJBS.
2019 Jan; 22(4):201-205. doi:
10.3923/pjbs.2019.201.205
. [PMID: 31930822] - Fauziyah Harahap, Diky Setya Diningrat, Roedhy Poerwanto, Nanda Eska Anugrah Nasution, Rifa Fadhilah Munifah Hasibuan. In vitro Callus Induction of Sipahutar Pineapple (Ananas comosus L.) from North Sumatra Indonesia.
Pakistan journal of biological sciences : PJBS.
2019 Jan; 22(11):518-526. doi:
10.3923/pjbs.2019.518.526
. [PMID: 31930830] - Hyeran Kim, Jongseok Lim. Leaf-induced callus formation in two cultivars: hot pepper 'CM334' and bell pepper 'Dempsey'.
Plant signaling & behavior.
2019; 14(7):1604016. doi:
10.1080/15592324.2019.1604016
. [PMID: 30983498] - Xiaomei Xu, Xiaofen Wang, Menghan Liu, Ting Tan, Yiqun Wan. ZIF-8@SiO2 core-shell microsphere extraction coupled with liquid chromatography and triple quadrupole tandem mass spectrometry for the quantitative analysis of four plant growth regulators in navel oranges.
Journal of separation science.
2018 Sep; 41(18):3561-3568. doi:
10.1002/jssc.201800286
. [PMID: 30055075] - Sheng Fang, Kai Gao, Wei Hu, John L Snider, Shanshan Wang, Binglin Chen, Zhiguo Zhou. Chemical priming of seed alters cotton floral bud differentiation by inducing changes in hormones, metabolites and gene expression.
Plant physiology and biochemistry : PPB.
2018 Sep; 130(?):633-640. doi:
10.1016/j.plaphy.2018.08.010
. [PMID: 30130740] - Joana P S Oliveira, Maria Gabriela B Koblitz, Mariana S L Ferreira, L C Cameron, Andrea F Macedo. Comparative metabolomic responses to gibberellic acid and 6-benzylaminopurine in Cunila menthoides Benth. (Lamiaceae): a contribution to understand the metabolic pathways.
Plant cell reports.
2018 Aug; 37(8):1173-1185. doi:
10.1007/s00299-018-2303-8
. [PMID: 29796946] - Shinjiro Ogita, Taiji Nomura, Yasuo Kato, Yukiko Uehara-Yamaguchi, Komaki Inoue, Takuhiro Yoshida, Tetsuya Sakurai, Kazuo Shinozaki, Keiichi Mochida. Transcriptional alterations during proliferation and lignification in Phyllostachys nigra cells.
Scientific reports.
2018 07; 8(1):11347. doi:
10.1038/s41598-018-29645-7
. [PMID: 30054534] - Muhammad Idrees, Bibi Sania, Bibi Hafsa, Sana Kumari, Haji Khan, Hina Fazal, Ishfaq Ahmad, Fazal Akbar, Naveed Ahmad, Sadeeq Ali, Nisar Ahmad. Spectral lights trigger biomass accumulation and production of antioxidant secondary metabolites in adventitious root cultures of Stevia rebaudiana (Bert.).
Comptes rendus biologies.
2018 Jul; 341(6):334-342. doi:
10.1016/j.crvi.2018.05.003
. [PMID: 29859915] - Alireza Zebarjadi, Saeideh Dianatkhah, Payam Pour Mohammadi, Ardeshir Qaderi. Influence of abiotic elicitors on improvement production of artemisinin in cell culture of Artemisia annua L.
Cellular and molecular biology (Noisy-le-Grand, France).
2018 Jun; 64(9):1-5. doi:
10.14715/cmb/2018.64.9.1
. [PMID: 30030948] - Xudong Zhu, Yanbo Zeng, Zulei Zhang, Yiwen Yang, Yunyun Zhai, Hailong Wang, Lingyu Liu, Jian Hu, Lei Li. A new composite of graphene and molecularly imprinted polymer based on ionic liquids as functional monomer and cross-linker for electrochemical sensing 6-benzylaminopurine.
Biosensors & bioelectronics.
2018 Jun; 108(?):38-45. doi:
10.1016/j.bios.2018.02.032
. [PMID: 29499557] - Huma Ali, Mubarak Ali Khan, Nazif Ullah, Raham Sher Khan. Impacts of hormonal elicitors and photoperiod regimes on elicitation of bioactive secondary volatiles in cell cultures of Ajuga bracteosa.
Journal of photochemistry and photobiology. B, Biology.
2018 Jun; 183(?):242-250. doi:
10.1016/j.jphotobiol.2018.04.044
. [PMID: 29730585] - Mukul Joshi, Ravi Singh Baghel, Edna Fogelman, Raphael A Stern, Idit Ginzberg. Identification of candidate genes mediating apple fruit-cracking resistance following the application of gibberellic acids 4 + 7 and the cytokinin 6-benzyladenine.
Plant physiology and biochemistry : PPB.
2018 Jun; 127(?):436-445. doi:
10.1016/j.plaphy.2018.04.015
. [PMID: 29684828] - Jun Ni, Faheem Afzal Shah, Wenbo Liu, Qiaojian Wang, Dongdong Wang, Weiwei Zhao, Weili Lu, Shengwei Huang, Songling Fu, Lifang Wu. Comparative transcriptome analysis reveals the regulatory networks of cytokinin in promoting the floral feminization in the oil plant Sapium sebiferum.
BMC plant biology.
2018 May; 18(1):96. doi:
10.1186/s12870-018-1314-5
. [PMID: 29848288] - Alireza Zebarjadi, Samaneh Kazem, Danial Kahrizi. Cell dedifferentiation and multiplication of Burdock (Arctium Lappa) as a medicinal plant.
Cellular and molecular biology (Noisy-le-Grand, France).
2018 May; 64(7):92-96. doi:
10.14715/cmb/2018.64.7.16
. [PMID: 29974852] - Binay Bhushan Panda, Sudhanshu Sekhar, Sushant Kumar Dash, Lamboder Behera, Birendra Prasad Shaw. Biochemical and molecular characterisation of exogenous cytokinin application on grain filling in rice.
BMC plant biology.
2018 May; 18(1):89. doi:
10.1186/s12870-018-1279-4
. [PMID: 29783938] - Victor M Zuñiga-Mayo, Cesar R Baños-Bayardo, David Díaz-Ramírez, Nayelli Marsch-Martínez, Stefan de Folter. Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana.
Scientific reports.
2018 05; 8(1):6836. doi:
10.1038/s41598-018-25017-3
. [PMID: 29717220] - Tiago Fidemann, Gabriela Aparecida de Araujo Pereira, Lia Bossard Nascimento, Milena Cristina Moraes, Mônica Rosa Bertão, Regildo Márcio Gonçalves da Silva, Eutimio Gustavo Fernández Núñez. Holistic protocol for callus culture optimization using statistical modelling.
Natural product research.
2018 May; 32(9):1109-1117. doi:
10.1080/14786419.2017.1380026
. [PMID: 28956460] - Martin Hönig, Lucie Plíhalová, Lukáš Spíchal, Jiří Grúz, Alena Kadlecová, Jiří Voller, Alena Rajnochová Svobodová, Jitka Vostálová, Jitka Ulrichová, Karel Doležal, Miroslav Strnad. New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress.
European journal of medicinal chemistry.
2018 Apr; 150(?):946-957. doi:
10.1016/j.ejmech.2018.03.043
. [PMID: 29604584] - Ming Tan, Guofang Li, Siyan Qi, Xiaojie Liu, Xilong Chen, Juanjuan Ma, Dong Zhang, Mingyu Han. Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.).
Gene.
2018 Apr; 651(?):106-117. doi:
10.1016/j.gene.2018.01.101
. [PMID: 29409851] - Samira Samea-Andabjadid, Kazem Ghassemi-Golezani, Safar Nasrollahzadeh, Nosratollah Najafi. Exogenous salicylic acid and cytokinin alter sugar accumulation, antioxidants and membrane stability of faba bean.
Acta biologica Hungarica.
2018 Mar; 69(1):86-96. doi:
10.1556/018.68.2018.1.7
. [PMID: 29575914] - Qiantang Fu, Longjian Niu, Mao-Sheng Chen, Yan-Bin Tao, Xiulan Wang, Huiying He, Bang-Zhen Pan, Zeng-Fu Xu. De novo transcriptome assembly and comparative analysis between male and benzyladenine-induced female inflorescence buds of Plukenetia volubilis.
Journal of plant physiology.
2018 Feb; 221(?):107-118. doi:
10.1016/j.jplph.2017.12.006
. [PMID: 29275214] - Ping Zhang, Li M Wang, Da W Zheng, Tai F Lin, Xiao D Wei, Xiao Y Liu, Hui Q Wang. Surface-enhanced Raman spectroscopic analysis of N6-benzylaminopurine residue quantity in sprouts with gold nanoparticles.
Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes.
2018; 53(9):561-566. doi:
10.1080/03601234.2018.1473954
. [PMID: 29768098] - Radim Simerský, Ivo Chamrád, Jindřich Kania, Miroslav Strnad, Marek Šebela, René Lenobel. Chemical proteomic analysis of 6-benzylaminopurine molecular partners in wheat grains.
Plant cell reports.
2017 Oct; 36(10):1561-1570. doi:
10.1007/s00299-017-2174-4
. [PMID: 28688084] - Jun Ni, Mei-Li Zhao, Mao-Sheng Chen, Bang-Zhen Pan, Yan-Bin Tao, Zeng-Fu Xu. Comparative transcriptome analysis of axillary buds in response to the shoot branching regulators gibberellin A3 and 6-benzyladenine in Jatropha curcas.
Scientific reports.
2017 09; 7(1):11417. doi:
10.1038/s41598-017-11588-0
. [PMID: 28900192] - Il-Doo Kim, Sanjeev Kumar Dhungana, Yong-Sung Park, Dong Joon Kim, Dong-Hyun Shin. Persimmon Fruit Powder May Substitute Indolbi, a Synthetic Growth Regulator, in Soybean Sprout Cultivation.
Molecules (Basel, Switzerland).
2017 Sep; 22(9):. doi:
10.3390/molecules22091462
. [PMID: 28869525] - Aude M Gourieroux, Bruno P Holzapfel, Margaret E McCully, Geoffrey R Scollary, Suzy Y Rogiers. Vascular development of the grapevine (Vitis vinifera L.) inflorescence rachis in response to flower number, plant growth regulators and defoliation.
Journal of plant research.
2017 Sep; 130(5):873-883. doi:
10.1007/s10265-017-0944-2
. [PMID: 28421372] - Wenxin Yuan, Zhiping Liu, Ping Liu, Rong Zhao, Guohua Wu, Sai Fan, Yang Zhou. [Determination of 4 kinds of plant growth regulator in bean sprout by solid phase extraction column coupled with ultra-high performance liquid chromatography].
Wei sheng yan jiu = Journal of hygiene research.
2017 Sep; 46(5):783-812. doi:
. [PMID: 29903308]
- Nishikant Wase, Boqiang Tu, James W Allen, Paul N Black, Concetta C DiRusso. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae.
Plant physiology.
2017 Aug; 174(4):2146-2165. doi:
10.1104/pp.17.00433
. [PMID: 28652262] - Paweł Kubica, Agnieszka Szopa, Halina Ekiert. Production of verbascoside and phenolic acids in biomass of Verbena officinalis L. (vervain) cultured under different in vitro conditions.
Natural product research.
2017 Jul; 31(14):1663-1668. doi:
10.1080/14786419.2017.1286477
. [PMID: 28278649] - Karla A Quiroz, Miguel Berríos, Basilio Carrasco, Jorge B Retamales, Peter D S Caligari, Rolando García-Gonzáles. Meristem culture and subsequent micropropagation of Chilean strawberry (Fragaria chiloensis (L.) Duch.).
Biological research.
2017 Jun; 50(1):20. doi:
10.1186/s40659-017-0125-8
. [PMID: 28578707] - Agnieszka Szopa, Adam Kokotkiewicz, Maria Luczkiewicz, Halina Ekiert. Schisandra lignans production regulated by different bioreactor type.
Journal of biotechnology.
2017 Apr; 247(?):11-17. doi:
10.1016/j.jbiotec.2017.02.007
. [PMID: 28223005] - Jingjing Wang, Haibin Wang, Lian Ding, Aiping Song, Feng Shen, Jiafu Jiang, Sumei Chen, Fadi Chen. Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium 'Jinba'.
Plant molecular biology.
2017 Apr; 93(6):593-606. doi:
10.1007/s11103-017-0584-x
. [PMID: 28108965] - Yehong Han, Chunliu Yang, Yang Zhou, Dandan Han, Hongyuan Yan. Ionic Liquid-Hybrid Molecularly Imprinted Material-Filter Solid-Phase Extraction Coupled with HPLC for Determination of 6-Benzyladenine and 4-Chlorophenoxyacetic Acid in Bean Sprouts.
Journal of agricultural and food chemistry.
2017 Mar; 65(8):1750-1757. doi:
10.1021/acs.jafc.6b03922
. [PMID: 28147482] - Hussam S M Khierallah, Saleh M Bader, Makki A Al-Khafaji. NAA-Induced Direct Organogenesis from Female Immature Inflorescence Explants of Date Palm.
Methods in molecular biology (Clifton, N.J.).
2017; 1637(?):17-25. doi:
10.1007/978-1-4939-7156-5_2
. [PMID: 28755332] - Qingfen Li, Cheng Deng, Yan Xia, Lisheng Kong, Hanguo Zhang, Shougong Zhang, Junhui Wang. Identification of novel miRNAs and miRNA expression profiling in embryogenic tissues of Picea balfouriana treated by 6-benzylaminopurine.
PloS one.
2017; 12(5):e0176112. doi:
10.1371/journal.pone.0176112
. [PMID: 28486552] - Marjan Roshanfekrrad, Reza Zarghami, Hassan Hassani, Hedayat Zakizadeh, Ali Salari. Effect of AgNO3 and BAP on Root as a Novel Explant in Date Palm (Phoenix dactylifera cv. Medjool) Somatic Embryogenesis.
Pakistan journal of biological sciences : PJBS.
2017; 20(1):20-27. doi:
10.3923/pjbs.2017.20.27
. [PMID: 29023011] - Ian H Street, Dennis E Mathews, Maria V Yamburkenko, Ali Sorooshzadeh, Roshen T John, Ranjan Swarup, Malcolm J Bennett, Joseph J Kieber, G Eric Schaller. Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root.
Development (Cambridge, England).
2016 11; 143(21):3982-3993. doi:
10.1242/dev.132035
. [PMID: 27697901] - Yossi Buskila, Noa Sela, Paula Teper-Bamnolker, Iris Tal, Eilon Shani, Roy Weinstain, Victor Gaba, Yehudit Tam, Amnon Lers, Dani Eshel. Stronger sink demand for metabolites supports dominance of the apical bud in etiolated growth.
Journal of experimental botany.
2016 10; 67(18):5495-5508. doi:
10.1093/jxb/erw315
. [PMID: 27580624] - Jing Zhang, MeiZhu Gai, XueYan Li, TianLai Li, HongMei Sun. Somatic embryogenesis and direct as well as indirect organogenesis in Lilium pumilum DC. Fisch., an endangered ornamental and medicinal plant.
Bioscience, biotechnology, and biochemistry.
2016 Oct; 80(10):1898-906. doi:
10.1080/09168451.2016.1194178
. [PMID: 27285948] - Tao Xu, Xin Liu, Rong Wang, Xiufen Dong, Xiaoxi Guan, Yanling Wang, Yun Jiang, Zihang Shi, Mingfang Qi, Tianlai Li. SlARF2a plays a negative role in mediating axillary shoot formation.
Scientific reports.
2016 09; 6(?):33728. doi:
10.1038/srep33728
. [PMID: 27645097]