Caffeoyl-CoA (BioDeep_00000001074)

 

Secondary id: BioDeep_00000912140

PANOMIX_OTCML-2023


代谢物信息卡片


S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enethioate

化学式: C30H42N7O19P3S (929.1469)
中文名称:
谱图信息: 最多检出来源 Macaca mulatta(otcml) 38.59%

分子结构信息

SMILES: CC(C)(COP(=O)(O)OP(=O)(O)OCC1C(C(C(O1)N2C=NC3=C(N=CN=C32)N)O)OP(=O)(O)O)C(C(=O)NCCC(=O)NCCSC(=O)C=CC4=CC(=C(C=C4)O)O)O
InChI: InChI=1S/C30H42N7O19P3S/c1-30(2,25(43)28(44)33-8-7-20(40)32-9-10-60-21(41)6-4-16-3-5-17(38)18(39)11-16)13-53-59(50,51)56-58(48,49)52-12-19-24(55-57(45,46)47)23(42)29(54-19)37-15-36-22-26(31)34-14-35-27(22)37/h3-6,11,14-15,19,23-25,29,38-39,42-43H,7-10,12-13H2,1-2H3,(H,32,40)(H,33,44)(H,48,49)(H,50,51)(H2,31,34,35)(H2,45,46,47)/t19-,23-,24-,25+,29-/m1/s1

描述信息

Caffeoyl-CoA is an acyl CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of caffeic acid. It is functionally related to a caffeic acid. It is a conjugate acid of a caffeoyl-CoA(4-).
An acyl CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of caffeic acid.

同义名列表

21 个代谢物同义名

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enethioate; 3-phosphoadenosine 5-{3-[(3R)-4-{[3-({2-[(2E)-(3,4-dihydroxyphenylprop-2-enoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-3-hydroxy-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}; 3-phosphoadenosine 5-{3-[(3R)-4-{[3-({2-[(3,4-dihydroxyphenylprop-2-enoyl)sulfanyl]ethyl}amino)-3-oxopropyl]amino}-3-hydroxy-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}; Coenzyme A, S-[(2E)-3-(3,4-dihydroxyphenyl)-2-propenoate]; (2E)-3-(3,4-Dihydroxyphenyl)prop-2-enoyl-CoA; trans-3,4-dihydroxycinnamoyl-coenzyme A; (E)-3,4-dihydroxycinnamoyl-coenzyme A; 3,4-dihydroxyacryloyl-Coenzyme A; trans-3,4-dihydroxycinnamoyl-CoA; (E)-3,4-dihydroxycinnamoyl-CoA; QHRGJMIMHCLHRG-ZSELIEHESA-N; trans-caffeoyl-coenzyme A; 3,4-dihydroxyacryloyl-CoA; (E)-caffeoyl-coenzyme A; coenzyme A, caffeoyl-; caffeoyl-coenzyme A; Caffeoyl-Coenzym A; trans-caffeoyl-CoA; Caffeoyl-CoA; CoA 9:5;O2; Caffeoyl-CoA



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

364 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(362)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(2)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 CCR1, CCR2, DND1, FASN, GAPDH, HMBS, HPGDS, MTR, PRX, SYK
Peripheral membrane protein 2 CYP1B1, PRX
Endoplasmic reticulum membrane 2 CYP1B1, HSP90B1
Nucleus 6 DND1, GAPDH, HSP90B1, MYB, PRX, SYK
cytosol 10 COMT, FASN, GAPDH, HMBS, HPGDS, HSP90B1, LIPE, MTR, MYB, SYK
dendrite 3 ACVRL1, CCR2, COMT
nucleoplasm 4 ATP2B1, DND1, HPGDS, MYB
RNA polymerase II transcription regulator complex 1 MYB
Cell membrane 9 ACVRL1, ATP2B1, CCR1, CCR2, CCR7, COMT, LIPE, PRX, SYK
Cytoplasmic side 1 PRX
Multi-pass membrane protein 4 ATP2B1, CCR1, CCR2, CCR7
Synapse 2 ATP2B1, COMT
cell junction 1 PRX
cell surface 3 ACVRL1, CCR7, TNR
glutamatergic synapse 2 ATP2B1, TNR
Golgi apparatus 1 FASN
neuronal cell body 2 ACVRL1, CCR2
presynaptic membrane 1 ATP2B1
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 3 GAPDH, LIPE, SYK
plasma membrane 10 ACVRL1, ATP2B1, CCR1, CCR2, CCR7, COMT, FASN, GAPDH, PRX, SYK
synaptic vesicle membrane 1 ATP2B1
Membrane 10 ACVRL1, ATP2B1, CCR2, COMT, CYP1B1, FASN, GAPDH, HSP90B1, LIPE, MYB
axon 1 COMT
basolateral plasma membrane 1 ATP2B1
caveola 1 LIPE
extracellular exosome 5 ATP2B1, COMT, FASN, GAPDH, HSP90B1
endoplasmic reticulum 1 HSP90B1
extracellular space 1 TNR
perinuclear region of cytoplasm 3 CCR2, GAPDH, HSP90B1
Schaffer collateral - CA1 synapse 1 TNR
mitochondrion 2 CCR7, CYP1B1
protein-containing complex 2 HSP90B1, SYK
intracellular membrane-bounded organelle 5 ATP2B1, COMT, CYP1B1, GAPDH, HPGDS
Microsome membrane 1 CYP1B1
Single-pass type I membrane protein 1 ACVRL1
Secreted 1 PRB1
extracellular region 3 HSP90B1, PRB1, TNR
Extracellular side 1 COMT
anchoring junction 1 PRX
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
nuclear membrane 1 GAPDH
external side of plasma membrane 3 CCR1, CCR2, CCR7
Secreted, extracellular space, extracellular matrix 1 TNR
perikaryon 1 CCR2
microtubule cytoskeleton 1 GAPDH
midbody 1 HSP90B1
Single-pass type II membrane protein 1 COMT
vesicle 1 GAPDH
Cytoplasm, perinuclear region 1 GAPDH
Membrane raft 1 TNR
Cytoplasm, cytoskeleton 1 GAPDH
focal adhesion 1 HSP90B1
collagen-containing extracellular matrix 2 HSP90B1, TNR
lateral plasma membrane 1 ATP2B1
cell projection 1 ATP2B1
cytoskeleton 1 GAPDH
Basolateral cell membrane 1 ATP2B1
fibrillar center 1 CCR2
Lipid droplet 2 GAPDH, LIPE
Membrane, caveola 1 LIPE
Melanosome 2 FASN, HSP90B1
Presynaptic cell membrane 1 ATP2B1
sperm plasma membrane 1 HSP90B1
endoplasmic reticulum lumen 1 HSP90B1
nuclear matrix 1 MYB
immunological synapse 1 ATP2B1
perineuronal net 1 TNR
[Isoform 2]: Cytoplasm 1 PRX
Sarcoplasmic reticulum lumen 1 HSP90B1
ribonucleoprotein complex 1 GAPDH
[Isoform 1]: Cell membrane 1 PRX
early phagosome 1 SYK
GAIT complex 1 GAPDH
endocytic vesicle lumen 1 HSP90B1
T cell receptor complex 1 SYK
endoplasmic reticulum chaperone complex 1 HSP90B1
photoreceptor ribbon synapse 1 ATP2B1
B cell receptor complex 1 SYK
BMP receptor complex 1 ACVRL1
[Isoform Soluble]: Cytoplasm 1 COMT
[Isoform Membrane-bound]: Cell membrane 1 COMT
tenascin complex 1 TNR
glycogen granule 1 FASN


文献列表

  • Guang Yang, Wenqiu Pan, Ruoyu Zhang, Yan Pan, Qifan Guo, Weining Song, Weijun Zheng, Xiaojun Nie. Genome-wide identification and characterization of caffeoyl-coenzyme A O-methyltransferase genes related to the Fusarium head blight response in wheat. BMC genomics. 2021 Jul; 22(1):504. doi: 10.1186/s12864-021-07849-y. [PMID: 34218810]
  • Ping-Ping Wang, Hui Liu, Shuai Gao, Ai-Xia Cheng. Functional Characterization of a Hydroxyacid/Alcohol Hydroxycinnamoyl Transferase Produced by the Liverwort Marchantia emarginata. Molecules (Basel, Switzerland). 2017 Oct; 22(11):. doi: 10.3390/molecules22111854. [PMID: 29088080]
  • Brent Wiens, Vincenzo De Luca. Molecular and biochemical characterization of a benzenoid/phenylpropanoid meta/para-O-methyltransferase from Rauwolfia serpentina roots. Phytochemistry. 2016 Dec; 132(?):5-15. doi: 10.1016/j.phytochem.2016.10.004. [PMID: 27771009]
  • Alexander M Walker, Steven A Sattler, Matt Regner, Jeffrey P Jones, John Ralph, Wilfred Vermerris, Scott E Sattler, ChulHee Kang. The Structure and Catalytic Mechanism of Sorghum bicolor Caffeoyl-CoA O-Methyltransferase. Plant physiology. 2016 09; 172(1):78-92. doi: 10.1104/pp.16.00845. [PMID: 27457122]
  • Nur Fariza M Shaipulah, Joëlle K Muhlemann, Benjamin D Woodworth, Alex Van Moerkercke, Julian C Verdonk, Aldana A Ramirez, Michel A Haring, Natalia Dudareva, Robert C Schuurink. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia. Plant physiology. 2016 Feb; 170(2):717-31. doi: 10.1104/pp.15.01646. [PMID: 26620524]
  • Matías Ariel Valiñas, María Luciana Lanteri, Arjen ten Have, Adriana Balbina Andreu. Chlorogenic Acid Biosynthesis Appears Linked with Suberin Production in Potato Tuber (Solanum tuberosum). Journal of agricultural and food chemistry. 2015 May; 63(19):4902-13. doi: 10.1021/jf505777p. [PMID: 25921651]
  • Xiaoxiao Peng, Weidong Li, Wenquan Wang, Genben Bai. Cloning and characterization of a cDNA coding a hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase involved in chlorogenic acid biosynthesis in Lonicera japonica. Planta medica. 2010 Nov; 76(16):1921-6. doi: 10.1055/s-0030-1250020. [PMID: 20539970]
  • Joost Lücker, Stefan Martens, Steven T Lund. Characterization of a Vitis vinifera cv. Cabernet Sauvignon 3',5'-O-methyltransferase showing strong preference for anthocyanins and glycosylated flavonols. Phytochemistry. 2010 Sep; 71(13):1474-84. doi: 10.1016/j.phytochem.2010.05.027. [PMID: 20580386]
  • Jakub G Kopycki, Daniel Rauh, Alexander A Chumanevich, Piotr Neumann, Thomas Vogt, Milton T Stubbs. Biochemical and structural analysis of substrate promiscuity in plant Mg2+-dependent O-methyltransferases. Journal of molecular biology. 2008 Apr; 378(1):154-64. doi: 10.1016/j.jmb.2008.02.019. [PMID: 18342334]
  • Kevin C Lam, Ragai K Ibrahim, Bahareh Behdad, Selvadurai Dayanandan. Structure, function, and evolution of plant O-methyltransferases. Genome. 2007 Nov; 50(11):1001-13. doi: 10.1139/g07-077. [PMID: 18059546]
  • Richard Lukacin, Ulrich Matern, Silvia Specker, Thomas Vogt. Cations modulate the substrate specificity of bifunctional class I O-methyltransferase from Ammi majus. FEBS letters. 2004 Nov; 577(3):367-70. doi: 10.1016/j.febslet.2004.10.032. [PMID: 15556611]
  • Ricarda Niggeweg, Anthony J Michael, Cathie Martin. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature biotechnology. 2004 Jun; 22(6):746-54. doi: 10.1038/nbt966. [PMID: 15107863]
  • Mwafaq Ibdah, Xing-Hai Zhang, Jürgen Schmidt, Thomas Vogt. A novel Mg(2+)-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. The Journal of biological chemistry. 2003 Nov; 278(45):43961-72. doi: 10.1074/jbc.m304932200. [PMID: 12941960]
  • Laurent Hoffmann, Stephane Maury, Francoise Martz, Pierrette Geoffroy, Michel Legrand. Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. The Journal of biological chemistry. 2003 Jan; 278(1):95-103. doi: 10.1074/jbc.m209362200. [PMID: 12381722]
  • Till Beuerle, Eran Pichersky. Enzymatic synthesis and purification of aromatic coenzyme a esters. Analytical biochemistry. 2002 Mar; 302(2):305-12. doi: 10.1006/abio.2001.5574. [PMID: 11878812]
  • Scott A Harding, Jacqueline Leshkevich, Vincent L Chiang, Chung-Jui Tsai. Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme a ligases with spatially distinct metabolic roles in quaking aspen. Plant physiology. 2002 Feb; 128(2):428-38. doi: 10.1104/pp.010603. [PMID: 11842147]
  • H Meyermans, K Morreel, C Lapierre, B Pollet, A De Bruyn, R Busson, P Herdewijn, B Devreese, J Van Beeumen, J M Marita, J Ralph, C Chen, B Burggraeve, M Van Montagu, E Messens, W Boerjan. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. The Journal of biological chemistry. 2000 Nov; 275(47):36899-909. doi: 10.1074/jbc.m006915200. [PMID: 10934215]
  • N Obel, H V Scheller. Enzymatic synthesis and purification of caffeoyl-CoA, p-coumaroyl-CoA, and feruloyl-CoA. Analytical biochemistry. 2000 Nov; 286(1):38-44. doi: 10.1006/abio.2000.4760. [PMID: 11038271]
  • Z H Ye, R E Kneusel, U Matern, J E Varner. An alternative methylation pathway in lignin biosynthesis in Zinnia. The Plant cell. 1994 Oct; 6(10):1427-39. doi: 10.1105/tpc.6.10.1427. [PMID: 7994176]
  • R E Kneusel, U Matern, K Nicolay. Formation of trans-caffeoyl-CoA from trans-4-coumaroyl-CoA by Zn2+-dependent enzymes in cultured plant cells and its activation by an elicitor-induced pH shift. Archives of biochemistry and biophysics. 1989 Mar; 269(2):455-62. doi: 10.1016/0003-9861(89)90129-x. [PMID: 2919878]
  • . . . . doi: . [PMID: 10482677]