Glucose (BioDeep_00000002160)
Main id: BioDeep_00000014321
Secondary id: BioDeep_00000271269, BioDeep_00000405203
human metabolite PANOMIX_OTCML-2023 BioNovoGene_Lab2019 natural product
代谢物信息卡片
化学式: C6H12O6 (180.0634)
中文名称: α-D-葡萄糖, D(+)-葡萄糖,无水, D-(+)-葡萄糖,无水, 葡萄糖
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C(C1C(C(C(C(O1)O)O)O)O)O
InChI: InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3+,4+,5+,6+/m1/s1
描述信息
Glucose, also known as D-glucose or dextrose, is a member of the class of compounds known as hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moiety. Glucose contains an aldehyde group and is therefore referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a neutral, hydrophilic molecule that readily dissolves in water. It exists as a white crystalline powder. Glucose is the primary source of energy for almost all living organisms. As such, it is the most abundant monosaccharide and the most widely used aldohexose in living organisms. When not circulating freely in blood (in animals) or resin (in plants), glucose is stored as a polymer. In plants it is mainly stored as starch and amylopectin and in animals as glycogen. Glucose is produced by plants through the photosynthesis using sunlight, water and carbon dioxide where it is used as an energy and a carbon source Glucose is particularly abundant in fruits and other parts of plants in its free state. Foods that are particularly rich in glucose are honey, agave, molasses, apples (2g/100g), grapes (8g/100g), oranges (8.5g/100g), jackfruit, dried apricots, dates (32 g/100g), bananas (5.8 g/100g), grape juice, sweet corn, Glucose is about 75\\\\% as sweet as sucrose and about 50\\\\% as sweet as fructose. Sweetness is detected through the binding of sugars to the T1R3 and T1R2 proteins, to form a G-protein coupled receptor that is the sweetness receptor in mammals. Glucose was first isolated from raisins in 1747 by the German chemist Andreas Marggraf. It was discovered in grapes by Johann Tobias Lowitz in 1792 and recognized as different from cane sugar (sucrose). Industrially, glucose is mainly used for the production of fructose and in the production of glucose-containing foods. In foods, it is used as a sweetener, humectant, to increase the volume and to create a softer mouthfeel. Various sources of glucose, such as grape juice (for wine) or malt (for beer), are used for fermentation to ethanol during the production of alcoholic beverages. Glucose is found in many plants as glucosides. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolyzed by purely chemical means or decomposed by fermentation or enzymes. Glucose can be obtained by the hydrolysis of carbohydrates such as milk sugar (lactose), cane sugar (sucrose), maltose, cellulose, and glycogen. Glucose is a building block of the disaccharides lactose and sucrose (cane or beet sugar), of oligosaccharides such as raffinose and of polysaccharides such as starch and amylopectin, glycogen or cellulose. For most animals, while glucose is normally obtained from the diet, it can also be generated via gluconeogenesis. Gluconeogenesis is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In humans the main gluconeogenic precursors are lactate, glycerol (which is a part of the triacylglycerol molecule), alanine and glutamine.
B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions
V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes
V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials
D000074385 - Food Ingredients > D005503 - Food Additives
D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents
CONFIDENCE standard compound; INTERNAL_ID 226
KEIO_ID G002
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
alpha-D-glucose is an endogenous metabolite.
alpha-D-glucose is an endogenous metabolite.
同义名列表
45 个代谢物同义名
(3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol; WURCS=2.0/1,1,0/[a2122h-1x_1-5]/1/; Glucose, (alpha-D)-isomer; Glucose, (beta-D)-isomer; Glucose, (DL)-isomer; Monohydrate, glucose; Glucose, (L)-isomer; Dextrose, anhydrous; Glucose monohydrate; Anhydrous dextrose; Purified glucose; alpha-D-Glucose; D-Glucopyranose; Tabfine 097(HS); Clearsweet 95; Staleydex 111; Cerelose 2001; Staleydex 95m; D(+)-Glucose; CPC Hydrate; (+)-Glucose; Roferose ST; Grape sugar; Corn sugar; Clintose L; L Glucose; L-Glucose; D-Glucose; Goldsugar; Dextropur; Dextrosol; D Glucose; Meritose; Glucolin; Cerelose; dextrose; Glucodin; Glucose; D-GLCP; GLC-OH; D-GLC; Vadex; Hexose; D-Glucose; alpha-D-Glucose
数据库引用编号
41 个数据库交叉引用编号
- ChEBI: CHEBI:37661
- ChEBI: CHEBI:4167
- KEGG: C00031
- KEGGdrug: D00009
- PubChem: 5793
- HMDB: HMDB0304632
- ChEMBL: CHEMBL1222250
- Wikipedia: Glucose
- MeSH: Glucose
- MetaCyc: D-Glucose
- KNApSAcK: C00001122
- foodb: FDB093715
- chemspider: 5589
- CAS: 26655-34-5
- CAS: 2280-44-6
- CAS: 492-62-6
- CAS: 50-99-7
- CAS: 54-17-1
- MoNA: KO000807
- MoNA: RP022611
- MoNA: KO000805
- MoNA: KO000806
- MoNA: KO000808
- MoNA: RP022613
- MoNA: KO000804
- MoNA: RP022612
- PubChem: 3333
- KNApSAcK: C00042470
- PDB-CCD: BGC
- PDB-CCD: GLC
- 3DMET: B04623
- NIKKAJI: J4.109B
- RefMet: Glucose
- medchemexpress: HY-128417
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-788
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-544
- KNApSAcK: 4167
- KEGG: C00267
- PubChem: 3565
- KNApSAcK: 17925
- LOTUS: LTS0013597
分类词条
相关代谢途径
Reactome(0)
BioCyc(66)
- firefly bioluminescence
- chitin biosynthesis
- trehalose degradation II (cytosolic)
- β-(1,4)-mannan degradation
- superpathway of betalain biosynthesis
- aromatic glucosinolate activation
- fructan biosynthesis
- glycogen degradation I
- rutin degradation (plants)
- glycogen degradation III (via anhydrofructose)
- indole-3-acetate activation II
- indole-3-acetate inactivation IX
- superpathway of indole-3-acetate conjugate biosynthesis
- indole glucosinolate activation (herbivore attack)
- 1,3-propanediol biosynthesis (engineered)
- vindoline and vinblastine biosynthesis
- lactose and galactose degradation I
- linamarin degradation
- linustatin bioactivation
- esculetin modification
- superpathway of scopolin and esculin biosynthesis
- superpathway of formononetin derivative biosynthesis
- glycogen degradation II
- xyloglucan degradation I (endoglucanase)
- lactose degradation III
- ginsenoside degradation I
- ginsenoside degradation II
- afrormosin conjugates interconversion
- anthocyanidin 3-malylglucoside biosynthesis (acyl-glucose dependent)
- melibiose degradation
- amygdalin and prunasin degradation
- procollagen hydroxylation and glycosylation
- podophyllotoxin glucosides metabolism
- sucrose biosynthesis II
- Entner-Doudoroff pathway II (non-phosphorylative)
- trehalose degradation IV
- emetine biosynthesis
- UDP-N-acetyl-D-glucosamine biosynthesis II
- glycolysis V (Pyrococcus)
- glycolysis III (from glucose)
- Entner-Doudoroff pathway III (semi-phosphorylative)
- glucose degradation (oxidative)
- violdelphin biosynthesis
- maltose degradation
- glucose and glucose-1-phosphate degradation
- starch degradation II
- coniferin metabolism
- trehalose degradation
- trehalose degradation I (low osmolarity)
- trehalose degradation V
- trehalose biosynthesis VI
- trehalose biosynthesis VII
- trehalose degradation II (trehalase)
- ginsenoside degradation III
- rebeccamycin biosynthesis
- daphnin interconversion
- crocetin biosynthesis
- camptothecin biosynthesis
- cichoriin interconversion
- ajmaline and sarpagine biosynthesis
- phenylethanol glycoconjugate biosynthesis
- glycogen catabolism
- starch degradation V
- starch degradation IV
- starch degradation I
- galloylated catechin biosynthesis
PlantCyc(0)
代谢反应
1033 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(274)
- daphnetin modification:
D-glucopyranose + daphnetin ⟶ H2O + daphnetin-8-glucoside
- daphnin interconversion:
H2O + daphnin ⟶ D-glucopyranose + daphnetin
- sinapate ester biosynthesis:
1-O-sinapoyl-β-D-glucose + choline ⟶ O-sinapoylcholine + D-glucopyranose
- sinapate ester biosynthesis:
1-O-sinapoyl-β-D-glucose + choline ⟶ O-sinapoylcholine + D-glucopyranose
- taxiphyllin bioactivation:
H2O + taxiphyllin ⟶ 4-hydroxybenzaldehyde + D-glucopyranose + hydrogen cyanide
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- melibiose degradation:
H2O + melibiose ⟶ D-galactopyranose + D-glucopyranose
- camptothecin biosynthesis:
deoxypumiloside ⟶ D-glucopyranose + camptothecin
- coniferin metabolism:
H2O + coniferin ⟶ D-glucopyranose + coniferyl alcohol
- coniferin metabolism:
UDP-α-D-glucose + coniferyl alcohol ⟶ H+ + UDP + coniferin
- fructan biosynthesis:
1-kestotriose + sucrose ⟶ 1,6-kestotetraose + D-glucopyranose
- fructan biosynthesis:
sucrose ⟶ 1-kestotriose + D-glucopyranose
- superpathway of hydrolyzable tannin biosynthesis:
1,2,3,4,6-pentagalloylglucose + 1-O-galloyl-β-D-glucose ⟶ 2-O-digalloyl-1,3,4,6-tetra-O-β-D-galloylglucose + D-glucopyranose
- pentagalloylglucose biosynthesis:
1,2,3,6-tetrakis-O-galloyl-β-D-glucose + 1-O-galloyl-β-D-glucose ⟶ 1,2,3,4,6-pentagalloylglucose + D-glucopyranose
- gallotannin biosynthesis:
1,2,3,4,6-pentagalloylglucose + 1-O-galloyl-β-D-glucose ⟶ 2-O-digalloyl-1,3,4,6-tetra-O-β-D-galloylglucose + D-glucopyranose
- maackiain conjugates interconversion:
(-)-maackiain-3-O-glucoside + H2O ⟶ (-)-maackiain + D-glucopyranose
- ginsenoside degradation I:
H2O + ginsenoside Rd ⟶ D-glucopyranose + ginsenoside F2
- ginsenoside degradation II:
H2O + ginsenoside Rd ⟶ (20S)-ginsenoside Rg3 + D-glucopyranose
- cichoriin interconversion:
UDP-α-D-glucose + esculetin ⟶ H+ + UDP + cichoriin
- esculetin modification:
SAM + esculetin ⟶ H+ + SAH + scopoletin
- superpathway of scopolin and esculin biosynthesis:
(Z)-6'-hydroxyferulate ⟶ scopoletin
- superpathway of scopolin and esculin biosynthesis:
SAM + esculetin ⟶ H+ + SAH + scopoletin
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- starch degradation V:
D-glucopyranose + a maltodextrin ⟶ a maltodextrin + maltose
- starch degradation IV:
H2O + a maltodextrin ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- starch degradation I:
H2O + maltose ⟶ D-glucopyranose
- maltose degradation:
maltose + phosphate ⟶ β-D-glucopyranose 1-phosphate + D-glucopyranose
- glycogen degradation I:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycogen degradation I:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycogen degradation I:
D-glucopyranose + maltotetraose ⟶ maltose + maltotriose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- starch degradation V:
H2O + starch ⟶ D-glucopyranose + a maltodextrin + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
D-glucopyranose + maltotetraose ⟶ maltose + maltotriose
- glycogen degradation I:
D-glucopyranose + maltotetraose ⟶ maltose + maltotriose
- starch degradation I:
H2O + maltose ⟶ D-glucopyranose
- maltose degradation:
maltose + phosphate ⟶ β-D-glucopyranose 1-phosphate + D-glucopyranose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- maltose degradation:
maltose + phosphate ⟶ β-D-glucopyranose 1-phosphate + D-glucopyranose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen catabolism:
maltose + maltotriose ⟶ β-D-glucose + maltotetraose
- glycogen degradation I:
D-glucopyranose + maltotetraose ⟶ maltose + maltotriose
- starch degradation V:
H2O + starch ⟶ D-glucopyranose + a maltodextrin + maltose
- glycogen degradation I:
D-glucopyranose + maltotetraose ⟶ maltose + maltotriose
- starch degradation V:
H2O + starch ⟶ D-glucopyranose + a maltodextrin + maltose
- maltose degradation:
maltose + phosphate ⟶ β-D-glucopyranose 1-phosphate + D-glucopyranose
- maltose degradation:
maltose + phosphate ⟶ β-D-glucopyranose 1-phosphate + D-glucopyranose
- amygdalin and prunasin degradation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- β-(1,4)-mannan degradation:
β-1,4-D-mannobiose ⟶ β-D-mannosyl-(1→4)-D-glucose
- xyloglucan degradation I (endoglucanase):
a xyloglucan ⟶ α-D-xylopyranose + β-D-galactopyranose + D-glucopyranose + L-fucopyranose
- daidzein conjugates interconversion:
H2O + daidzin ⟶ D-glucopyranose + daidzein
- daidzin and daidzein degradation:
(3R,4S)-tetrahydrodaidzein + A(H2) ⟶ (S)-equol + A + H2O
- ginsenoside degradation III:
(20S)-ginsenoside Rg3 + H2O ⟶ (20S)-ginsenoside Rh2 + D-glucopyranose
- rebeccamycin biosynthesis:
4'-O-demethylrebeccamycin + SAM ⟶ H+ + SAH + rebeccamycin
- afrormosin conjugates interconversion:
H2O + afrormosin-7-O-glucoside ⟶ D-glucopyranose + afrormosin
- xyloglucan degradation II (exoglucanase):
H2O + XLFG xyloglucan oligosaccharide ⟶ L-fucopyranose + XLLG xyloglucan oligosaccharide
- gluconeogenesis:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- superpathway of conversion of glucose to acetyl CoA and entry into the TCA cycle:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- GDP-glucose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-galactosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- chitin biosynthesis:
UDP-N-acetyl-α-D-glucosamine + chitin ⟶ UDP + chitin
- trehalose degradation IV:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation I (low osmolarity):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation V:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- Bifidobacterium shunt:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- 1,3-propanediol biosynthesis (engineered):
1,3-propanediol + NADP+ ⟶ 3-hydroxypropionaldehyde + H+ + NADPH
- GDP-glucose biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- gluconeogenesis III:
ATP + hydrogencarbonate + pyruvate ⟶ ADP + H+ + oxaloacetate + phosphate
- UDP-N-acetyl-D-glucosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis V (Pyrococcus):
D-glyceraldehyde 3-phosphate + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ 3-phospho-D-glycerate + H+ + a reduced ferredoxin [iron-sulfur] cluster
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose degradation III (sucrose invertase):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- UDP-N-acetyl-D-galactosamine biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- homolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation I (low osmolarity):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose-6-phosphate biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose degradation III:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- chitin biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
D-glucopyranose 6-phosphate ⟶ F6P
- sucrose degradation III (sucrose invertase):
D-glucopyranose 6-phosphate ⟶ F6P
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (trehalase):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- GDP-glucose biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- gluconeogenesis III:
ATP + hydrogencarbonate + pyruvate ⟶ ADP + H+ + oxaloacetate + phosphate
- superpathway of sucrose and starch metabolism I (non-photosynthetic tissue):
D-glucopyranose 6-phosphate ⟶ F6P
- trehalose degradation I (low osmolarity):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation I (low osmolarity):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (cytosolic):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- homolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation I (low osmolarity):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation I (low osmolarity):
α,α-trehalose 6-phosphate + H2O ⟶ β-D-glucose 6-phosphate + D-glucopyranose
- sucrose degradation III (sucrose invertase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- trehalose degradation I (low osmolarity):
α,α-trehalose 6-phosphate + H2O ⟶ D-glucopyranose + D-glucopyranose 6-phosphate
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- homolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- homolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- Bifidobacterium shunt:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation V:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
α-D-glucopyranose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- trehalose degradation I (low osmolarity):
α,α-trehalose 6-phosphate + H2O ⟶ D-glucopyranose + D-glucopyranose 6-phosphate
- GDP-glucose biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- homolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation II (trehalase):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation I (low osmolarity):
α,α-trehalose 6-phosphate + H2O ⟶ β-D-glucose 6-phosphate + D-glucopyranose
- trehalose degradation I (low osmolarity):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation I (low osmolarity):
α,α-trehalose 6-phosphate + H2O ⟶ D-glucopyranose + D-glucopyranose 6-phosphate
- trehalose degradation V:
α-D-glucose ⟶ β-D-glucose
- glycolysis VI (metazoan):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- homolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose degradation III (sucrose invertase):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- homolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- homolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- glycolysis III (from glucose):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- homolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- heterolactic fermentation:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- trehalose degradation I (low osmolarity):
α,α-trehalose 6-phosphate + H2O ⟶ D-glucopyranose + D-glucopyranose 6-phosphate
- L-ascorbate biosynthesis VI (engineered pathway):
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose degradation (oxidative):
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose degradation (oxidative):
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose degradation (oxidative):
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose degradation (oxidative):
D-glucopyranose + UQ ⟶ D-glucono-1,5-lactone + UQH2
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucopyranose + phosphate
- formononetin conjugates interconversion:
H2O + ononin ⟶ D-glucopyranose + formononetin
- superpathway of formononetin derivative biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + formononetin ⟶ 2-hydroxyformononetin + H2O + an oxidized [NADPH-hemoprotein reductase]
- ternatin C3 biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + ternatin C5 ⟶ D-glucopyranose + ternatin C3
- sorbitol biosynthesis II:
keto-D-fructose + D-glucopyranose ⟶ D-glucono-1,5-lactone + D-sorbitol
- sorbitol biosynthesis II:
keto-D-fructose + D-glucopyranose ⟶ D-glucono-1,5-lactone + D-sorbitol
- sorbitol biosynthesis II:
D-glucopyranose + keto-D-fructose ⟶ D-glucono-1,5-lactone + D-sorbitol
- sorbitol biosynthesis II:
keto-D-fructose + D-glucopyranose ⟶ D-glucono-1,5-lactone + D-sorbitol
- crocetin biosynthesis:
β-citraurin + O2 ⟶ 3β-hydroxy-β-cyclocitral + 8',8-diapocarotene-8',8-dial
- galloylated catechin biosynthesis:
(-)-epicatechin + 1-O-galloyl-β-D-glucose ⟶ (-)-epicatechin-3-O-gallate + D-glucopyranose
- medicarpin conjugates interconversion:
(-)-medicarpin-3-O-glucoside + H2O ⟶ (-)-medicarpin + D-glucopyranose
- indole-3-acetate inactivation IX:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- superpathway of indole-3-acetate conjugate biosynthesis:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- sucrose degradation:
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- sucrose degradation V (sucrose α-glucosidase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + D-glucopyranose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactopyranose + D-glucopyranose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactopyranose + D-glucopyranose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactopyranose + D-glucopyranose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + D-glucopyranose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + D-glucopyranose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + D-glucopyranose
- lactose degradation III:
H2O + lactose ⟶ β-D-galactose + D-glucopyranose
- GDP-arabinose biosynthesis:
D-glucose ⟶ D-arabinose
- linustatin bioactivation:
2-hydroxy-2-methylpropanenitrile ⟶ acetone + hydrogen cyanide
- genistein conjugates interconversion:
H2O + malonylgenistin ⟶ H+ + genistin + malonate
- glycogenolysis:
H2O + a α-limit dextrin with short branches ⟶ D-glucopyranose + a debranched α-limit dextrin
- procollagen hydroxylation and glycosylation:
H2O + a [procollagen]-(5R)-5-O-[α-D-glucosyl-(1→2)-β-D-galactosyl]-5-hydroxy-L-lysine ⟶ D-glucopyranose + a [procollagen]-(5R)-5-O-(β-D-galactosyloxy)-L-lysine
- vindoline and vinblastine biosynthesis:
O2 + vinblastine ⟶ H+ + H2O + vincristine
- procollagen hydroxylation and glycosylation:
H2O + a [procollagen]-(5R)-5-O-[α-D-glucosyl-(1→2)-β-D-galactosyl]-5-hydroxy-L-lysine ⟶ D-glucopyranose + a [procollagen]-(5R)-5-O-(β-D-galactosyloxy)-L-lysine
- podophyllotoxin glucosides metabolism:
H2O + podophyllotoxin 7-glucoside ⟶ D-glucopyranose + podophyllotoxin
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- biochanin A conjugates interconversion:
H2O + biochanin A-7-O-glucoside ⟶ D-glucopyranose + H+ + biochanin-A
- 2-O-acetyl-3-O-trans-coutarate biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + meso-tartrate ⟶ trans-coutarate + D-glucopyranose
- hydroxycinnamate sugar acid ester biosynthesis:
1-O-sinapoyl-β-D-glucose + D-glucarate ⟶ D-glucopyranose + O-sinapoylglucarate
- Entner-Doudoroff pathway II (non-phosphorylative):
D-glucopyranose + NADP+ ⟶ D-glucono-1,5-lactone + H+ + NADPH
- phenylethanol glycoconjugate biosynthesis:
2-phenylethyl β-D-glucopyranoside + H2O ⟶ 2-phenylethanol + D-glucopyranose
- abscisic acid degradation by glucosylation:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- cellulose degradation I (cellulosome):
H2O + cellotetraose ⟶ D-glucopyranose
- cellulose degradation II (fungi):
β-D-cellobiose + H2O ⟶ D-glucopyranose
- linamarin degradation:
2-hydroxy-2-methylpropanenitrile ⟶ acetone + hydrogen cyanide
- DIMBOA-glucoside activation:
DIMBOA-β-D-glucoside + H2O ⟶ D-glucopyranose + DIMBOA + H+
- dhurrin degradation:
(S)-4-hydroxymandelonitrile ⟶ 4-hydroxybenzaldehyde + hydrogen cyanide
- lotaustralin degradation:
(2R)-2-hydroxy-2-methylbutanenitrile ⟶ butan-2-one + hydrogen cyanide
- neolinustatin bioactivation:
(2R)-2-hydroxy-2-methylbutanenitrile ⟶ butan-2-one + hydrogen cyanide
- lampranthin biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + H+ + betanin ⟶ D-glucopyranose + lampranthin I
- indole-3-acetate activation II:
1D-1-O-(indol-3-yl)acetyl-myo-inositol + H2O ⟶ (indol-3-yl)acetate + myo-inositol + H+
- emetine biosynthesis:
SAM + cephaeline ⟶ H+ + SAH + emetine
- oleandomycin activation/inactivation:
H2O + glucosyl-oleandomycin ⟶ D-glucopyranose + oleandomycin
- cyclobis-(1→6)-α-nigerosyl degradation:
H2O + cyclobis-(1→6)-α-nigerosyl ⟶ α-isomaltosyl-(1→3)-isomaltose
- starch degradation II:
H2O + a linear malto-oligosaccharide ⟶ a linear malto-oligosaccharide + maltose
- glycogen degradation II:
α-D-glucopyranose 1-phosphate ⟶ D-glucopyranose 6-phosphate
- glycogen degradation III (via anhydrofructose):
ascopyrone M ⟶ microthecin
- lactose and galactose degradation I:
H2O + lactose 6'-phosphate ⟶ D-galactopyranose 6-phosphate + D-glucopyranose
- sucrose degradation VII (sucrose 3-dehydrogenase):
A + sucrose ⟶ 3'-ketosucrose + A(H2)
- dalcochinin biosynthesis:
H2O + dalcochinin-8'-O-β-glucoside ⟶ D-glucopyranose + dalcochinin
- aloesone biosynthesis II:
D-glucopyranose + aloesone ⟶ H+ + H2O + aloesin
- Entner-Doudoroff pathway III (semi-phosphorylative):
D-glucopyranose + NADP+ ⟶ D-glucono-1,5-lactone + H+ + NADPH
- superpathway of betalain biosynthesis:
1-O-feruloyl-β-D-glucose + amaranthin ⟶ D-glucopyranose + celosianin II
- amaranthin biosynthesis:
1-O-feruloyl-β-D-glucose + amaranthin ⟶ D-glucopyranose + celosianin II
- des-methyl avenacin A-1 biosynthesis:
anthraniloyl-O-glucopyranose + des-acyl avenacin A ⟶ D-glucopyranose + des-methyl avenacin A-1
- anthocyanidin 3-malylglucoside biosynthesis (acyl-glucose dependent):
1-O-malyl-β-D-glucose + delphinidin-3-O-β-D-glucoside ⟶ D-glucopyranose + delphinidin 3-O-(6'-O-malyl-β-D-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanin ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- superpathway of avenacin A biosynthesis:
β-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + maniladiol
- acylated cyanidin galactoside biosynthesis:
1-O-feruloyl-β-D-glucose + cyanidin 3-O-(6-O-β-D-glucosyl-2-O-β-D-xylosyl-β-D-galactoside) ⟶ D-glucopyranose + H+ + cyanidin O-O-[6-O-(6-O-feruloyl-β-D-glucosyl)-2-O-β-D-xylosyl-β-D-galactoside]
- avenacin A-1 biosynthesis:
β-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + maniladiol
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- anthocyanidin modification (Arabidopsis):
UDP-α-D-glucose + cyanidin 3-O-β-D-(p-coumaroyl)-sambubioside ⟶ UDP + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-glucoside
- avenacin A-2 biosynthesis:
benzoyl-β-D-glucopyranose + des-acyl avenacin A ⟶ D-glucopyranose + avenacin A-2
- kojibiose degradation:
kojibiose + phosphate ⟶ β-D-glucopyranose 1-phosphate + D-glucopyranose
- laminaribiose degradation:
laminaribiose + phosphate ⟶ α-D-glucopyranose 1-phosphate + D-glucopyranose
- firefly bioluminescence:
O2 + hydroquinone ⟶ 1,4-benzoquinone + H2O
- quercetin glucoside degradation (Allium):
H2O + quercetin 4'-O-glucoside ⟶ D-glucopyranose + quercetin
- rutin degradation (plants):
H2O + rutin ⟶ β-L-rhamnopyranose + H+ + quercetin-3-glucoside
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- indole glucosinolate activation (intact plant cell):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- glucosinolate activation:
H2O + a glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- aromatic glucosinolate activation:
2-benzyl-thiohydroximate-O-sulfate ⟶ benzylisothiocyanate + sulfate
- trehalose biosynthesis VI:
D-glucopyranose + an NDP-α-D-glucose ⟶ α,α-trehalose + H+ + a nucleoside diphosphate
- trehalose biosynthesis VII:
D-glucopyranose + UDP-α-D-glucose ⟶ α,α-trehalose + H+ + UDP
- lactose degradation II:
α-lactose + A ⟶ 3'-ketolactose + A(H2)
- ajmaline and sarpagine biosynthesis:
H2O + polyneuridine aldehyde ⟶ 16-epivellosimine + CO2 + MeOH
- glycogen degradation II:
H2O + a α-limit dextrin with short branches ⟶ D-glucopyranose + a debranched α-limit dextrin
- indole glucosinolate activation (intact plant cell):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- anthocyanidin modification (Arabidopsis):
4-coumaroyl-CoA + H+ + cyanidin 3-O-β-D-sambubioside ⟶ coenzyme A + cyanidin 3-O-β-D-(p-coumaroyl)-sambubioside
- glucosinolate activation:
H2O + a glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- abscisic acid glucose ester metabolism:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- glycogen degradation II:
H2O + a debranched α-limit dextrin ⟶ D-glucopyranose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucose + phosphate
- lactose degradation II:
3'-ketolactose + H2O ⟶ 3-keto-β-D-galactose + D-glucopyranose
- lactose and galactose degradation I:
H2O + lactose 6'-phosphate ⟶ D-galactopyranose 6-phosphate + D-glucopyranose
- lactose degradation III:
H2O + lactose ⟶ D-galactopyranose + D-glucopyranose
- glycogen degradation II:
H2O + a α-limit dextrin with short branches ⟶ D-glucopyranose + a debranched α-limit dextrin
- glycogen degradation II:
H2O + a α-limit dextrin with short branches ⟶ D-glucopyranose + a debranched α-limit dextrin
- lactose degradation III:
H2O + lactose ⟶ D-galactopyranose + D-glucopyranose
- glucose and glucose-1-phosphate degradation:
α-D-glucose 1-phosphate + H2O ⟶ D-glucose + phosphate
- glycogen degradation II:
H2O + a debranched α-limit dextrin ⟶ D-glucopyranose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- glycogen degradation I:
H2O + maltotriose ⟶ D-glucopyranose + maltose
- trehalose catabolism:
H2O + trehalose ⟶ β-D-glucose
- starch degradation:
a short glucan ⟶ β-D-glucose + a long-linear α-D-glucan
- lactose and galactose degradation I:
H2O + lactose 6'-phosphate ⟶ D-galactopyranose 6-phosphate + D-glucopyranose
- lactose and galactose degradation I:
H2O + lactose 6'-phosphate ⟶ D-galactopyranose 6-phosphate + D-glucopyranose
WikiPathways(3)
- Sucrose metabolism:
glucose ⟶ glucose 6-phosphate
- UDP-derived sugars synthesis in fibroblasts:
D-glucopyranose 6-phosphate ⟶ -D-glucose 6-phosphate
- Metabolism overview:
NH3 ⟶ Glutamic acid
Plant Reactome(442)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Fructan biosynthesis:
Suc ⟶ 1-kestose + beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Trehalose degradation II:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Trehalose degradation II:
ATP + beta-D-glucose ⟶ ADP + H+ + beta-D-glucose-6-phosphate
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- IAA conjugation I:
Ins + indole-3-acetyl-beta-1-D-glucose ⟶ beta-D-glucose + indol-3-yl-acetyl-myo-inositol
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Carbohydrate metabolism:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Trehalose degradation II:
H2O + alpha,alpha-trehalose ⟶ beta-D-glucose
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Abscisic acid homeostasis:
H2O + beta-D-glucopyranosyl abscisate ⟶ ABA + beta-D-glucose
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Coumarin biosynthesis (via 2-coumarate):
H2O + coumarinic acid-beta-D-glucoside ⟶ beta-D-glucose + coumarinate
INOH(6)
- Galactose metabolism ( Galactose metabolism ):
D-Glucose + UDP-D-galactose ⟶ Lactose + UDP
- Glycolysis and Gluconeogenesis ( Glycolysis and Gluconeogenesis ):
D-Glucose 6-phosphate + H2O ⟶ D-Glucose + Orthophosphate
- Fructose and Mannose metabolism ( Fructose and Mannose metabolism ):
D-Sorbitol + NADP+ ⟶ D-Glucose + NADPH
- NADP+ + D-Sorbitol = NADPH + D-Glucose ( Fructose and Mannose metabolism ):
D-Sorbitol + NADP+ ⟶ D-Glucose + NADPH
- Pentose phosphate cycle ( Pentose phosphate cycle ):
ATP + D-Ribose 5-phosphate ⟶ AMP + D-5-Phospho-ribosyl 1-diphosphate
- NADP+ + D-Glucose = NADPH + D-Glucono-1,5-lactone ( Pentose phosphate cycle ):
D-Glucose + NADP+ ⟶ D-Glucono-1,5-lactone + NADPH
PlantCyc(204)
- daphnetin modification:
D-glucopyranose + daphnetin ⟶ H2O + daphnetin-8-glucoside
- daphnetin modification:
D-glucopyranose + daphnetin ⟶ H2O + daphnetin-8-glucoside
- fructan biosynthesis:
sucrose ⟶ 1-kestotriose + D-glucopyranose
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- GDP-glucose biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- GDP-glucose biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- GDP-glucose biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- GDP-glucose biosynthesis:
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- sucrose biosynthesis II:
D-glucopyranose + a plant soluble heteroglycan ⟶ a plant soluble heteroglycan + maltose
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- gluconeogenesis III:
D-glucopyranose 6-phosphate + H2O ⟶ D-glucopyranose + phosphate
- superpathway of sucrose and starch metabolism I (non-photosynthetic tissue):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- superpathway of sucrose and starch metabolism I (non-photosynthetic tissue):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- superpathway of sucrose and starch metabolism I (non-photosynthetic tissue):
ATP + D-glucopyranose ⟶ ADP + D-glucopyranose 6-phosphate + H+
- ternatin C3 biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + ternatin C5 ⟶ D-glucopyranose + ternatin C3
- sorbitol biosynthesis II:
keto-D-fructose + D-glucopyranose ⟶ D-glucono-1,5-lactone + D-sorbitol
- sucrose degradation V (sucrose α-glucosidase):
H2O + sucrose ⟶ β-D-fructofuranose + D-glucopyranose
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (intact plant cell):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (intact plant cell):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- abscisic acid degradation by glucosylation:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- anthocyanidin modification (Arabidopsis):
1-O-sinapoyl-β-D-glucose + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside ⟶ D-glucopyranose + cyanidin 3-O-[2'-O-(2''-O-(sinapoyl) xylosyl) 6'-O-(p-coumaroyl) glucoside] 5-O-[6''-O-(malonyl) glucoside
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- indole glucosinolate activation (intact plant cell):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (intact plant cell):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- anthocyanidin modification (Arabidopsis):
1-O-sinapoyl-β-D-glucose + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside ⟶ D-glucopyranose + cyanidin 3-O-[2'-O-(2''-O-(sinapoyl) xylosyl) 6'-O-(p-coumaroyl) glucoside] 5-O-[6''-O-(malonyl) glucoside
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- indole glucosinolate activation (intact plant cell):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- anthocyanidin modification (Arabidopsis):
1-O-sinapoyl-β-D-glucose + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside ⟶ D-glucopyranose + cyanidin 3-O-[2'-O-(2''-O-(sinapoyl) xylosyl) 6'-O-(p-coumaroyl) glucoside] 5-O-[6''-O-(malonyl) glucoside
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- indole glucosinolate activation (intact plant cell):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- abscisic acid degradation by glucosylation:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- anthocyanidin modification (Arabidopsis):
1-O-sinapoyl-β-D-glucose + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside ⟶ D-glucopyranose + cyanidin 3-O-[2'-O-(2''-O-(sinapoyl) xylosyl) 6'-O-(p-coumaroyl) glucoside] 5-O-[6''-O-(malonyl) glucoside
- lotaustralin degradation:
H2O + lotaustralin ⟶ (2R)-2-hydroxy-2-methylbutanenitrile + D-glucopyranose
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- acylated cyanidin galactoside biosynthesis:
1-O-(4-coumaroyl)-β-D-glucose + cyanidin 3-O-(6-O-β-D-glucosyl-2-O-β-D-xylosyl-β-D-galactoside) ⟶ D-glucopyranose + H+ + cyanidin O-O-[6-O-(6-O-4-hydroxycinnamoyl-β-D-glucosyl)-2-O-β-D-xylosyl-β-D-galactoside]
- lotaustralin degradation:
H2O + lotaustralin ⟶ (2R)-2-hydroxy-2-methylbutanenitrile + D-glucopyranose
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- indole glucosinolate activation (intact plant cell):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- lotaustralin degradation:
H2O + lotaustralin ⟶ (2R)-2-hydroxy-2-methylbutanenitrile + D-glucopyranose
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- dhurrin degradation:
H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- anthocyanidin modification (Arabidopsis):
1-O-sinapoyl-β-D-glucose + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside ⟶ D-glucopyranose + cyanidin 3-O-[2'-O-(2''-O-(sinapoyl) xylosyl) 6'-O-(p-coumaroyl) glucoside] 5-O-[6''-O-(malonyl) glucoside
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- anthocyanidin modification (Arabidopsis):
1-O-sinapoyl-β-D-glucose + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside ⟶ D-glucopyranose + cyanidin 3-O-[2'-O-(2''-O-(sinapoyl) xylosyl) 6'-O-(p-coumaroyl) glucoside] 5-O-[6''-O-(malonyl) glucoside
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- indole glucosinolate activation (intact plant cell):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- lotaustralin degradation:
H2O + lotaustralin ⟶ (2R)-2-hydroxy-2-methylbutanenitrile + D-glucopyranose
- starch degradation II:
a glucan + maltotriose ⟶ D-glucopyranose + a glucan
- indole glucosinolate activation (intact plant cell):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- abscisic acid degradation by glucosylation:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- DIMBOA-glucoside activation:
DIMBOA-β-D-glucoside + H2O ⟶ D-glucopyranose + DIMBOA + H+
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- lotaustralin degradation:
H2O + lotaustralin ⟶ (2R)-2-hydroxy-2-methylbutanenitrile + D-glucopyranose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- dhurrin degradation:
H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
- anthocyanidin modification (Arabidopsis):
1-O-sinapoyl-β-D-glucose + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside ⟶ D-glucopyranose + cyanidin 3-O-[2'-O-(2''-O-(sinapoyl) xylosyl) 6'-O-(p-coumaroyl) glucoside] 5-O-[6''-O-(malonyl) glucoside
- lotaustralin degradation:
H2O + lotaustralin ⟶ (2R)-2-hydroxy-2-methylbutanenitrile + D-glucopyranose
- dalcochinin biosynthesis:
H2O + dalcochinin-8'-O-β-glucoside ⟶ D-glucopyranose + dalcochinin
- dhurrin degradation:
H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- dhurrin degradation:
H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
- anthocyanidin modification (Arabidopsis):
1-O-sinapoyl-β-D-glucose + cyanidin 3-O-[2'-O-(xylosyl)-6'-O-(p-coumaroyl) glucoside] 5-O-malonylglucoside ⟶ D-glucopyranose + cyanidin 3-O-[2'-O-(2''-O-(sinapoyl) xylosyl) 6'-O-(p-coumaroyl) glucoside] 5-O-[6''-O-(malonyl) glucoside
- abscisic acid degradation by glucosylation:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- indole glucosinolate activation (intact plant cell):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- coumarin biosynthesis (via 2-coumarate):
cis-coumarinic acid-β-D-glucoside + H2O ⟶ D-glucopyranose + coumarinate
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- starch degradation II:
H2O + an exposed unphosphorylated, unbranched malto-oligosaccharide tail on amylopectin ⟶ amylopectin + maltose
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- dhurrin degradation:
H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
- abscisic acid degradation by glucosylation:
β-D-glucopyranosyl abscisate + H2O ⟶ 2-cis-abscisate + D-glucopyranose + H+
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
COVID-19 Disease Map(0)
PathBank(104)
- Transfer of Acetyl Groups into Mitochondria:
D-Glucose ⟶ Pyruvic acid
- Transfer of Acetyl Groups into Mitochondria:
D-Glucose ⟶ Pyruvic acid
- Transfer of Acetyl Groups into Mitochondria:
L-Malic acid + NAD ⟶ Hydrogen Ion + NADH + Oxalacetic acid
- Transfer of Acetyl Groups into Mitochondria:
L-Malic acid + NAD ⟶ Hydrogen Ion + NADH + Oxalacetic acid
- Transfer of Acetyl Groups into Mitochondria:
L-Malic acid + NAD ⟶ Hydrogen Ion + NADH + Oxalacetic acid
- Transfer of Acetyl Groups into Mitochondria:
L-Malic acid + NAD ⟶ Hydrogen Ion + NADH + Oxalacetic acid
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Degradation:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Lactose Intolerance:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Congenital Disorder of Glycosylation CDG-IId:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- GLUT-1 Deficiency Syndrome:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Lactose Degradation:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Lactose Intolerance:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Congenital Disorder of Glycosylation CDG-IId:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- GLUT-1 Deficiency Syndrome:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Degradation:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Galactose Metabolism:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Degradation:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Lactose Synthesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Galactosemia:
D-Galactose + D-Mannose ⟶ Epimelibiose
- Lactose Intolerance:
-Lactose + Water ⟶ D-Galactose + D-Glucose
- Congenital Disorder of Glycosylation CDG-IId:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- GLUT-1 Deficiency Syndrome:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Starch and Sucrose Metabolism:
D-Glucose + [PTS enzyme I]-N -phospho-L-histidine ⟶ -D-glucose 1-phosphate + [PTS enzyme I]-L-histidine
- Starch and Sucrose Metabolism:
-D-Glucose + Unknown ⟶ -D-Glucose 6-phosphate + Unknown
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycolysis I:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Ethanol Fermentation:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Starch and Sucrose Metabolism:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Chitin Biosynthesis:
Fructose 6-phosphate + L-Glutamine ⟶ Glucosamine 6-phosphate + L-Glutamic acid
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type VII. Tarui Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fructose-1,6-diphosphatase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Triosephosphate Isomerase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fanconi-Bickel Syndrome:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IB:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IC:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IA. Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Abscisic Acid Glucose Ester Metabolism:
Water + abscisic acid glucose ester ⟶ (S)-Abscisic acid + D-glucopyranose + Hydrogen Ion
- Sphingolipid Metabolism:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Gaucher Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Globoid Cell Leukodystrophy:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Metachromatic Leukodystrophy (MLD):
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Fabry Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Krabbe Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
PharmGKB(0)
702 个相关的物种来源信息
- 182998 - Acanthospermum: LTS0013597
- 182999 - Acanthospermum hispidum: 10.1016/0378-8741(90)90067-4
- 182999 - Acanthospermum hispidum: LTS0013597
- 4022 - Acer: LTS0013597
- 4023 - Acer negundo: 10.1007/BF01100201
- 4023 - Acer negundo: LTS0013597
- 42228 - Acoraceae: LTS0013597
- 4464 - Acorus: LTS0013597
- 4465 - Acorus calamus: 10.1002/LIPI.19840860106
- 4465 - Acorus calamus: LTS0013597
- 3624 - Actinidia: LTS0013597
- 64478 - Actinidia arguta: 10.1006/FSTL.1996.0201
- 64478 - Actinidia arguta: LTS0013597
- 3625 - Actinidia chinensis: 10.1006/FSTL.1996.0201
- 3625 - Actinidia chinensis: LTS0013597
- 165707 - Actinidia hemsleyana: 10.1006/FSTL.1996.0201
- 165707 - Actinidia hemsleyana: LTS0013597
- 64480 - Actinidia polygama: 10.1006/FSTL.1996.0201
- 64480 - Actinidia polygama: LTS0013597
- 3623 - Actinidiaceae: LTS0013597
- 164267 - Actiniopteris: LTS0013597
- 170705 - Actiniopteris australis: 10.1007/S10600-013-0733-7
- 170705 - Actiniopteris australis: LTS0013597
- 48136 - Adesmia: LTS0013597
- 279216 - Adesmia bicolor: 10.1016/0305-1978(96)00004-X
- 2590832 - Adesmia incana: 10.1016/0305-1978(96)00004-X
- 2590832 - Adesmia incana: LTS0013597
- 240008 - Aerva: LTS0013597
- 155619 - Agaricomycetes: LTS0013597
- 39509 - Agave: LTS0013597
- 2888 - Alaria: LTS0013597
- 2887 - Alariaceae: LTS0013597
- 4678 - Allium: LTS0013597
- 4679 - Allium cepa: 10.1021/JF60221A032
- 4679 - Allium cepa: LTS0013597
- 138333 - Allium suworowii: 10.1007/BF00630423
- 138333 - Allium suworowii: LTS0013597
- 25641 - Aloe: LTS0013597
- 34199 - Aloe vera: 10.21019/PFDI.ALOEVERA
- 34199 - Aloe vera: LTS0013597
- 56741 - Alstroemeria: LTS0013597
- 198691 - Alstroemeria revoluta: 10.1016/0031-9422(94)00809-8
- 198691 - Alstroemeria revoluta: LTS0013597
- 56740 - Alstroemeriaceae: LTS0013597
- 3563 - Amaranthaceae: LTS0013597
- 4668 - Amaryllidaceae: LTS0013597
- 141529 - Amsonia: LTS0013597
- 4011 - Anacardiaceae: LTS0013597
- 4336 - Anagallis: LTS0013597
- 4337 - Anagallis arvensis: 10.1016/S0031-9422(00)88703-8
- 4337 - Anagallis arvensis: LTS0013597
- 40921 - Anethum: LTS0013597
- 40922 - Anethum graveolens: 10.1248/CPB.50.501
- 40922 - Anethum graveolens: LTS0013597
- 13336 - Annona: LTS0013597
- 301693 - Annona squamosa: 10.1006/JFCA.2000.0968
- 301693 - Annona squamosa: LTS0013597
- 22140 - Annonaceae: LTS0013597
- 173436 - Anoectochilus: LTS0013597
- 173437 - Anoectochilus formosanus: 10.1248/CPB.48.1803
- 173437 - Anoectochilus formosanus: LTS0013597
- 4037 - Apiaceae: LTS0013597
- 4056 - Apocynaceae: LTS0013597
- 4294 - Aquifoliaceae: LTS0013597
- 3701 - Arabidopsis: LTS0013597
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1038/SREP35778
- 3702 - Arabidopsis thaliana: 10.1073/PNAS.1403248111
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-5-1
- 3702 - Arabidopsis thaliana: LTS0013597
- 3817 - Arachis: LTS0013597
- 3818 - Arachis hypogaea:
- 3818 - Arachis hypogaea: 10.1111/J.1365-2621.1983.TB09208.X
- 3818 - Arachis hypogaea: 10.1248/YAKUSHI1947.103.9_997
- 3818 - Arachis hypogaea: LTS0013597
- 4050 - Araliaceae: LTS0013597
- 13342 - Arbutus: LTS0013597
- 84005 - Arbutus unedo:
- 84005 - Arbutus unedo: 10.1006/JFCA.1999.0868
- 84005 - Arbutus unedo: 10.1006/JFCA.2000.0962
- 84005 - Arbutus unedo: LTS0013597
- 12947 - Aristolochia: LTS0013597
- 16727 - Aristolochiaceae: LTS0013597
- 193297 - Aronia: LTS0013597
- 661339 - Aronia melanocarpa: 10.1111/J.1365-2621.1988.TB13577.X
- 661339 - Aronia melanocarpa: LTS0013597
- 6656 - Arthropoda: LTS0013597
- 4890 - Ascomycota: LTS0013597
- 76829 - Ascoseira: LTS0013597
- 76830 - Ascoseira mirabilis: 10.1016/S0031-9422(00)85498-9
- 76830 - Ascoseira mirabilis: LTS0013597
- 40552 - Asparagaceae: LTS0013597
- 51383 - Asphodelaceae: LTS0013597
- 4210 - Asteraceae: LTS0013597
- 20400 - Astragalus: LTS0013597
- 20414 - Astragalus hamosus: 10.1021/NP50075A009
- 20414 - Astragalus hamosus: LTS0013597
- 91061 - Bacilli: LTS0013597
- 2 - Bacteria: LTS0013597
- 5204 - Basidiomycota: LTS0013597
- 3554 - Beta: LTS0013597
- 161934 - Beta vulgaris: 10.1007/BF00575717
- 161934 - Beta vulgaris: LTS0013597
- 24079 - Bignoniaceae: LTS0013597
- 45324 - Bombax: LTS0013597
- 45325 - Bombax ceiba: 10.1055/S-0028-1097643
- 45325 - Bombax ceiba: LTS0013597
- 6658 - Branchiopoda: LTS0013597
- 3700 - Brassicaceae: LTS0013597
- 4613 - Bromeliaceae: LTS0013597
- 3651 - Bryonia: LTS0013597
- 243967 - Bryonia alba: 10.1056/NEJM186707250762502
- 243967 - Bryonia alba: LTS0013597
- 26473 - Buddleja: LTS0013597
- 168492 - Buddleja cordata: 10.1016/S0378-8741(98)00186-X
- 168492 - Buddleja cordata: LTS0013597
- 168501 - Buddleja parviflora: 10.1016/S0305-1978(97)84855-7
- 168501 - Buddleja parviflora: LTS0013597
- 3820 - Cajanus: LTS0013597
- 3821 - Cajanus cajan: 10.1002/JSFA.2740500106
- 3821 - Cajanus cajan: LTS0013597
- 4381 - Campanulaceae: LTS0013597
- 5475 - Candida: LTS0013597
- 5476 - Candida albicans: 10.1007/S11306-016-1134-2
- 5476 - Candida albicans: LTS0013597
- 4200 - Caprifoliaceae: LTS0013597
- 3648 - Carica: LTS0013597
- 3649 - Carica papaya: 10.1007/BF01100201
- 3649 - Carica papaya: LTS0013597
- 3647 - Caricaceae: LTS0013597
- 459115 - Castela: LTS0013597
- 459117 - Castela erecta: LTS0013597
- 2865634 - Castela texana: LTS0013597
- 459119 - Castela tortuosa: 10.1016/0031-9422(92)80139-6
- 459119 - Castela tortuosa: LTS0013597
- 13406 - Catalpa: LTS0013597
- 85179 - Catalpa bignonioides: 10.1007/BF01100201
- 85179 - Catalpa bignonioides: LTS0013597
- 4057 - Catharanthus: LTS0013597
- 4058 - Catharanthus roseus: 10.1055/S-2006-961605
- 4058 - Catharanthus roseus: LTS0013597
- 4305 - Celastraceae: LTS0013597
- 50750 - Centaurium: LTS0013597
- 2498443 - Centaurium quadrifolium: LTS0013597
- 2498445 - Centaurium quadrifolium subsp. linariifolium: 10.1021/NP50042A027
- 2498445 - Centaurium quadrifolium subsp. linariifolium: LTS0013597
- 183558 - Cephalaria: LTS0013597
- 20339 - Ceratonia: LTS0013597
- 20340 - Ceratonia siliqua: 10.1021/JF00071A015
- 20340 - Ceratonia siliqua: LTS0013597
- 1804623 - Chenopodiaceae: LTS0013597
- 3051 - Chlamydomonadaceae: LTS0013597
- 3052 - Chlamydomonas: LTS0013597
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0013597
- 3166 - Chlorophyceae: LTS0013597
- 3041 - Chlorophyta: LTS0013597
- 45033 - Chorda: LTS0013597
- 64905 - Chorda filum: 10.1007/BF00697055
- 64905 - Chorda filum: LTS0013597
- 3024 - Chordaceae: LTS0013597
- 7711 - Chordata: LTS0013597
- 1890464 - Chroococcaceae: LTS0013597
- 30102 - Cicadellidae: LTS0013597
- 13426 - Cichorium: LTS0013597
- 13427 - Cichorium intybus: 10.1016/S0031-9422(00)81036-5
- 13427 - Cichorium intybus: LTS0013597
- 87753 - Cistanche: LTS0013597
- 161396 - Cistanche salsa: 10.1007/S10600-014-1132-4
- 161396 - Cistanche salsa: LTS0013597
- 48110 - Cnidium: LTS0013597
- 54711 - Cnidium officinale: 10.1248/YAKUSHI1947.110.10_746
- 54711 - Cnidium officinale: LTS0013597
- 138557 - Codiaeum: LTS0013597
- 138558 - Codiaeum variegatum: 10.1007/BF01100201
- 138558 - Codiaeum variegatum: LTS0013597
- 16399 - Codonopsis: LTS0013597
- 86864 - Codonopsis pilosula: 10.1248/BPB.31.1860
- 86864 - Codonopsis pilosula: LTS0013597
- 41218 - Colchicaceae: LTS0013597
- 13444 - Colchicum: LTS0013597
- 1094115 - Colchicum schimperi: 10.1135/CCCC19622111
- 1094115 - Colchicum schimperi: LTS0013597
- 4046 - Coriandrum: LTS0013597
- 4047 - Coriandrum sativum: 10.1248/CPB.51.32
- 4047 - Coriandrum sativum: LTS0013597
- 3655 - Cucumis: LTS0013597
- 3659 - Cucumis sativus: 10.1007/BF00567726
- 3659 - Cucumis sativus: LTS0013597
- 3660 - Cucurbita: LTS0013597
- 184136 - Cucurbita foetidissima: 10.1021/JF60216A022
- 184136 - Cucurbita foetidissima: LTS0013597
- 3650 - Cucurbitaceae: LTS0013597
- 3367 - Cupressaceae: LTS0013597
- 13468 - Cupressus: LTS0013597
- 13469 - Cupressus sempervirens: 10.1007/BF01100201
- 13469 - Cupressus sempervirens: LTS0013597
- 1117 - Cyanobacteria: 10.3389/FMICB.2014.00109
- 3028117 - Cyanophyceae: LTS0013597
- 74094 - Cystoseira: LTS0013597
- 590725 - Cystoseira barbata: 10.1007/BF00697055
- 590725 - Cystoseira barbata: LTS0013597
- 6668 - Daphnia: LTS0013597
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 6669 - Daphnia pulex: LTS0013597
- 77658 - Daphniidae: LTS0013597
- 4038 - Daucus: LTS0013597
- 4039 - Daucus carota: 10.1016/0008-6215(84)85339-2
- 4039 - Daucus carota: LTS0013597
- 766764 - Debaryomycetaceae: LTS0013597
- 13492 - Diospyros: LTS0013597
- 35925 - Diospyros kaki: 10.1007/BF01100201
- 35925 - Diospyros kaki: LTS0013597
- 17514 - Diplopanax: LTS0013597
- 17515 - Diplopanax stachyanthus: 10.1016/0031-9422(90)89044-A
- 17515 - Diplopanax stachyanthus: LTS0013597
- 72452 - Dovyalis: LTS0013597
- 77055 - Dovyalis caffra: 10.1007/BF01100201
- 77055 - Dovyalis caffra: LTS0013597
- 167916 - Duranta: LTS0013597
- 167917 - Duranta erecta: 10.1248/CPB.44.429
- 167917 - Duranta erecta: LTS0013597
- 19955 - Ebenaceae: LTS0013597
- 13505 - Elliottia: LTS0013597
- 75585 - Elliottia paniculata: 10.1248/YAKUSHI1947.94.12_1634
- 75585 - Elliottia paniculata: LTS0013597
- 543 - Enterobacteriaceae: LTS0013597
- 4345 - Ericaceae: LTS0013597
- 561 - Escherichia: LTS0013597
- 562 - Escherichia coli: LTS0013597
- 33682 - Euglenozoa: LTS0013597
- 2759 - Eukaryota: LTS0013597
- 3990 - Euphorbia: LTS0013597
- 154990 - Euphorbia helioscopia: 10.1007/978-1-4614-0535-1_23
- 154990 - Euphorbia helioscopia: LTS0013597
- 1333925 - Euphorbia macroclada: 10.4268/CJCMM20142015
- 1333925 - Euphorbia macroclada: LTS0013597
- 3977 - Euphorbiaceae: LTS0013597
- 87256 - Evernia: LTS0013597
- 87257 - Evernia prunastri: 10.1016/S0021-9673(01)88498-3
- 87257 - Evernia prunastri: LTS0013597
- 3803 - Fabaceae: LTS0013597
- 112818 - Flacourtia: LTS0013597
- 210376 - Flacourtia indica: 10.1007/BF01100201
- 210376 - Flacourtia indica: LTS0013597
- 48037 - Foeniculum: LTS0013597
- 48038 - Foeniculum vulgare: 10.1248/CPB.47.988
- 3746 - Fragaria: LTS0013597
- 3747 - Fragaria × ananassa: 10.1111/J.1365-2621.1983.TB09168.X
- 4751 - Fungi: LTS0013597
- 1236 - Gammaproteobacteria: LTS0013597
- 91200 - Gastrodia: LTS0013597
- 91201 - Gastrodia elata:
- 91201 - Gastrodia elata: 10.1039/B103653J
- 91201 - Gastrodia elata: 10.1093/CHROMSCI/39.6.251
- 91201 - Gastrodia elata: LTS0013597
- 21496 - Gentiana: LTS0013597
- 49939 - Gentiana brachyphylla: LTS0013597
- 442718 - Gentiana brachyphylla subsp. favratii: 10.1016/0305-1978(82)90006-0
- 442718 - Gentiana brachyphylla subsp. favratii: LTS0013597
- 38851 - Gentiana lutea: 10.1016/0305-1978(82)90006-0
- 38851 - Gentiana lutea: LTS0013597
- 1085736 - Gentiana orbicularis: 10.1016/0305-1978(82)90006-0
- 1085736 - Gentiana orbicularis: LTS0013597
- 21472 - Gentianaceae: LTS0013597
- 49959 - Gentianella: LTS0013597
- 49940 - Gentianella campestris: 10.1016/0305-1978(82)90006-0
- 49940 - Gentianella campestris: LTS0013597
- 208027 - Gentianella serotina: 10.1016/0305-1978(82)90006-0
- 208027 - Gentianella serotina: LTS0013597
- 50798 - Gentianopsis: LTS0013597
- 156522 - Gentianopsis barbata: 10.1016/0305-1978(82)90006-0
- 156522 - Gentianopsis barbata: LTS0013597
- 49941 - Gentianopsis ciliata: 10.1016/0305-1978(82)90006-0
- 49941 - Gentianopsis ciliata: LTS0013597
- 84894 - Gentianopsis crinita: 10.1016/0305-1978(82)90006-0
- 84894 - Gentianopsis crinita: LTS0013597
- 669700 - Gentianopsis detonsa: 10.1016/0305-1978(82)90006-0
- 669700 - Gentianopsis detonsa: LTS0013597
- 50801 - Gentianopsis grandis: 10.1016/0305-1978(82)90006-0
- 50801 - Gentianopsis grandis: LTS0013597
- 866904 - Gentianopsis lanceolata: 10.1016/0305-1978(82)90006-0
- 866904 - Gentianopsis lanceolata: LTS0013597
- 50802 - Gentianopsis paludosa: 10.1016/0305-1978(82)90006-0
- 50802 - Gentianopsis paludosa: LTS0013597
- 866906 - Gentianopsis thermalis: 10.1016/0305-1978(82)90006-0
- 866906 - Gentianopsis thermalis: LTS0013597
- 2065894 - Gentianopsis virgata: 10.1016/0305-1978(82)90006-0
- 2065894 - Gentianopsis virgata: LTS0013597
- 3846 - Glycine: LTS0013597
- 3847 - Glycine max: 10.1111/J.1365-2621.1983.TB09208.X
- 3847 - Glycine max: LTS0013597
- 46347 - Glycyrrhiza: LTS0013597
- 49827 - Glycyrrhiza glabra: 10.1093/JAOAC/67.4.764
- 49827 - Glycyrrhiza glabra: LTS0013597
- 3633 - Gossypium: LTS0013597
- 3635 - Gossypium hirsutum: 10.1021/JF00071A036
- 3635 - Gossypium hirsutum: LTS0013597
- 59634 - Gynochthodes: LTS0013597
- 266091 - Gynochthodes officinalis: 10.1055/S-0028-1097264
- 266091 - Gynochthodes officinalis: LTS0013597
- 289711 - Harpephyllum: LTS0013597
- 289712 - Harpephyllum caffrum: 10.1007/BF01100201
- 289712 - Harpephyllum caffrum: LTS0013597
- 2725949 - Hedophyllum bongardianum: 10.1007/BF00697055
- 4231 - Helianthus: LTS0013597
- 4232 - Helianthus annuus: 10.1021/JF60197A017
- 4232 - Helianthus annuus: LTS0013597
- 235503 - Himantormia: LTS0013597
- 235504 - Himantormia lugubris: 10.1016/S0021-9673(01)88498-3
- 235504 - Himantormia lugubris: LTS0013597
- 141568 - Himatanthus: LTS0013597
- 1937595 - Himatanthus articulatus: 10.1590/1809-4392200331110
- 9604 - Hominidae: LTS0013597
- 9605 - Homo: LTS0013597
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1038/NBT.2488
- 9606 - Homo sapiens: LTS0013597
- 99291 - Hovenia: LTS0013597
- 99292 - Hovenia dulcis: 10.1016/0378-8741(90)90067-4
- 99292 - Hovenia dulcis: LTS0013597
- 52831 - Hoya: LTS0013597
- 206227 - Hoya carnosa: 10.1248/CPB.47.1128
- 206227 - Hoya carnosa: LTS0013597
- 629714 - Hypericaceae: LTS0013597
- 55962 - Hypericum: LTS0013597
- 65561 - Hypericum perforatum: 10.1002/PCA.638
- 65561 - Hypericum perforatum: LTS0013597
- 4321 - Icacinaceae: LTS0013597
- 4295 - Ilex: LTS0013597
- 185542 - Ilex paraguariensis: 10.1007/978-3-540-71095-0_5152
- 185542 - Ilex paraguariensis: LTS0013597
- 162809 - Inga: LTS0013597
- 486084 - Inga spectabilis: 10.1016/0378-8741(90)90067-4
- 486084 - Inga spectabilis: LTS0013597
- 50557 - Insecta: LTS0013597
- 83946 - Jacaranda: LTS0013597
- 2687262 - Jacaranda acutifolia: 10.1007/BF01100201
- 2687262 - Jacaranda acutifolia: LTS0013597
- 185774 - Jacaranda mimosifolia: 10.1007/BF01100201
- 185774 - Jacaranda mimosifolia: LTS0013597
- 14101 - Juncaceae: LTS0013597
- 13578 - Juncus: LTS0013597
- 13579 - Juncus effusus: 10.1007/BF00567064
- 13579 - Juncus effusus: LTS0013597
- 206141 - Kali: LTS0013597
- 2116407 - Kali collina: 10.1007/BF00630328
- 2116407 - Kali collinum: 10.1007/BF00630328
- 5653 - Kinetoplastea: LTS0013597
- 137679 - Koenigia: LTS0013597
- 457182 - Koenigia coriaria: 10.1007/BF02254802
- 457182 - Koenigia coriaria: LTS0013597
- 4136 - Lamiaceae: LTS0013597
- 188316 - Lancea: LTS0013597
- 188317 - Lancea tibetica: 10.5564/BICCT.V0I6.1105
- 188317 - Lancea tibetica: LTS0013597
- 87005 - Lantana: LTS0013597
- 126435 - Lantana camara: 10.1055/S-0028-1099554
- 126435 - Lantana camara: LTS0013597
- 147547 - Lecanoromycetes: LTS0013597
- 48041 - Levisticum: LTS0013597
- 48042 - Levisticum officinale: 10.1248/YAKUSHI1947.110.10_746
- 48042 - Levisticum officinale: LTS0013597
- 4447 - Liliopsida: LTS0013597
- 3867 - Lotus: LTS0013597
- 645164 - Lotus burttii: 10.1111/J.1365-3040.2010.02266.X
- 645164 - Lotus burttii: LTS0013597
- 47247 - Lotus corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 47247 - Lotus corniculatus: LTS0013597
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2010.02266.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0013597
- 181267 - Lotus creticus: 10.1111/J.1365-3040.2010.02266.X
- 181267 - Lotus creticus: LTS0013597
- 264956 - Lotus filicaulis: 10.1111/J.1365-3040.2010.02266.X
- 34305 - Lotus japonicus:
- 347996 - Lotus tenuis: 10.1111/J.1365-3040.2010.02266.X
- 347996 - Lotus tenuis: LTS0013597
- 181288 - Lotus uliginosus: 10.1111/J.1365-3040.2010.02266.X
- 181288 - Lotus uliginosus: LTS0013597
- 49149 - Lyonia: LTS0013597
- 49153 - Lyonia ovalifolia: 10.1248/YAKUSHI1947.94.10_1349
- 49153 - Lyonia ovalifolia: LTS0013597
- 59977 - Lysimachia: LTS0013597
- 3495 - Maclura: LTS0013597
- 3496 - Maclura pomifera: 10.1016/S0031-9422(00)90379-0
- 3496 - Maclura pomifera: LTS0013597
- 3398 - Magnoliopsida: LTS0013597
- 3629 - Malvaceae: LTS0013597
- 40674 - Mammalia: LTS0013597
- 3982 - Manihot: LTS0013597
- 3983 - Manihot esculenta: 10.1016/0021-9673(93)80301-N
- 3983 - Manihot esculenta: LTS0013597
- 1538027 - Mazaceae: LTS0013597
- 3877 - Medicago: LTS0013597
- 47085 - Medicago lupulina: 10.5586/ASBP.1984.048
- 47085 - Medicago lupulina: LTS0013597
- 43707 - Meliaceae: LTS0013597
- 1890428 - Merismopediaceae: LTS0013597
- 33208 - Metazoa: LTS0013597
- 418793 - Metteniusaceae: LTS0013597
- 102786 - Mikania: LTS0013597
- 233713 - Mimusops: LTS0013597
- 233715 - Mimusops elengi: 10.1016/S0031-9422(00)90897-5
- 233715 - Mimusops elengi: LTS0013597
- 2501719 - Mischocarpus sundaicus: 10.1002/LIPI.19680701207
- 31969 - Mollicutes: LTS0013597
- 3671 - Momordica: LTS0013597
- 3674 - Momordica cochinchinensis: 10.1248/CPB.33.1
- 3674 - Momordica cochinchinensis: LTS0013597
- 3487 - Moraceae: LTS0013597
- 43521 - Morinda: LTS0013597
- 43522 - Morinda citrifolia: 10.1021/NP0495985
- 43522 - Morinda citrifolia: LTS0013597
- 10066 - Muridae: LTS0013597
- 10088 - Mus: LTS0013597
- 10090 - Mus musculus: LTS0013597
- 10090 - Mus musculus: NA
- 2093 - Mycoplasma: LTS0013597
- 28903 - Mycoplasma bovis: 10.1128/MSYSTEMS.00055-17
- 2096 - Mycoplasma gallisepticum: 10.1128/MSYSTEMS.00055-17
- 2092 - Mycoplasmataceae: LTS0013597
- 2767358 - Mycoplasmopsis: LTS0013597
- 16614 - Myrsinaceae: LTS0013597
- 3931 - Myrtaceae: LTS0013597
- 4085 - Nicotiana: LTS0013597
- 4097 - Nicotiana tabacum: 10.1007/BF02660305
- 4097 - Nicotiana tabacum: LTS0013597
- 4289 - Nyssaceae: LTS0013597
- 2696291 - Ochrophyta: LTS0013597
- 4145 - Olea: LTS0013597
- 4146 - Olea europaea: 10.1016/S0308-8146(00)00268-5
- 4146 - Olea europaea: LTS0013597
- 4144 - Oleaceae: LTS0013597
- 4747 - Orchidaceae: LTS0013597
- 91896 - Orobanchaceae: LTS0013597
- 4527 - Oryza: LTS0013597
- 4530 - Oryza sativa: 10.1271/BBB.64.443
- 4530 - Oryza sativa: LTS0013597
- 93976 - Osmanthus: LTS0013597
- 126555 - Osmanthus heterophyllus: 10.1248/YAKUSHI1947.105.5_442
- 126555 - Osmanthus heterophyllus: LTS0013597
- 426076 - Osmanthus × fortunei: 10.1248/YAKUSHI1947.105.6_542
- 13625 - Paeonia: LTS0013597
- 40717 - Paeonia peregrina: 10.1016/S0031-9422(97)01088-1
- 40717 - Paeonia peregrina: LTS0013597
- 24943 - Paeoniaceae: LTS0013597
- 4053 - Panax: LTS0013597
- 4054 - Panax ginseng: 10.1021/JF00093A051
- 4054 - Panax ginseng: LTS0013597
- 44588 - Panax quinquefolius:
- 44588 - Panax quinquefolius: 10.1300/J044V06N02_02
- 44588 - Panax quinquefolius: 10.1300/J044V06N02_08
- 44588 - Panax quinquefolius: LTS0013597
- 78060 - Parmeliaceae: LTS0013597
- 3684 - Passiflora: LTS0013597
- 159421 - Passiflora foetida: 10.1021/NP50019A012
- 159421 - Passiflora foetida: LTS0013597
- 196582 - Passiflora oerstedii: 10.1021/NP50015A025
- 196582 - Passiflora oerstedii: LTS0013597
- 3683 - Passifloraceae: LTS0013597
- 2870 - Phaeophyceae: LTS0013597
- 3883 - Phaseolus: LTS0013597
- 3886 - Phaseolus coccineus: 10.1021/JF00068A034
- 3886 - Phaseolus coccineus: LTS0013597
- 3884 - Phaseolus lunatus: 10.1021/JF00068A034
- 3884 - Phaseolus lunatus: LTS0013597
- 3885 - Phaseolus vulgaris: 10.1021/JF00068A034
- 3885 - Phaseolus vulgaris: LTS0013597
- 41399 - Phrymaceae: LTS0013597
- 233880 - Phyllanthaceae: LTS0013597
- 58880 - Phyllanthus: LTS0013597
- 319611 - Phyllanthus sellowianus: 10.1021/NP50054A027
- 319611 - Phyllanthus sellowianus: LTS0013597
- 15747 - Phyllostachys: LTS0013597
- 38705 - Phyllostachys edulis: 10.1111/J.1365-2621.1983.TB14934.X
- 38705 - Phyllostachys edulis: LTS0013597
- 3526 - Phytolacca: LTS0013597
- 3527 - Phytolacca americana: 10.1007/978-1-4614-0541-2_1005
- 3527 - Phytolacca americana: LTS0013597
- 3525 - Phytolaccaceae: LTS0013597
- 58019 - Pinopsida: LTS0013597
- 3887 - Pisum: LTS0013597
- 3888 - Pisum sativum: 10.1080/10826079608006294
- 3888 - Pisum sativum: LTS0013597
- 85165 - Planchonella: LTS0013597
- 346594 - Planchonella vitiensis: 10.1016/S0305-1978(97)00063-X
- 346594 - Planchonella vitiensis: LTS0013597
- 289742 - Pleiogynium: LTS0013597
- 289743 - Pleiogynium timoriense: 10.1007/BF01100201
- 289743 - Pleiogynium timoriense: LTS0013597
- 104366 - Pleurotaceae: LTS0013597
- 5320 - Pleurotus: LTS0013597
- 5322 - Pleurotus ostreatus: 10.3136/NSKKK1962.32.338
- 5322 - Pleurotus ostreatus: LTS0013597
- 420628 - Plinia: LTS0013597
- 375264 - Plinia cauliflora: 10.1111/J.1365-2621.1972.TB03677.X
- 375264 - Plinia cauliflora: LTS0013597
- 52847 - Plumeria: 10.1201/9780203022320.CH4
- 52847 - Plumeria: LTS0013597
- 4544 - Poa: LTS0013597
- 1504338 - Poa huecu: 10.1021/NP50052A040
- 1504338 - Poa huecu: LTS0013597
- 4479 - Poaceae: LTS0013597
- 3615 - Polygonaceae: LTS0013597
- 16195 - Polygonatum: LTS0013597
- 241806 - Polypodiopsida: LTS0013597
- 3689 - Populus: LTS0013597
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0013597
- 597259 - Poraqueiba: LTS0013597
- 597260 - Poraqueiba guianensis: 10.1016/0031-9422(94)00950-X
- 597260 - Poraqueiba guianensis: LTS0013597
- 4335 - Primulaceae: LTS0013597
- 1214 - Prochloron: LTS0013597
- 3754 - Prunus: LTS0013597
- 42229 - Prunus avium: 10.1016/S0031-9422(00)97746-X
- 42229 - Prunus avium: LTS0013597
- 32242 - Prunus laurocerasus: 10.1006/JFCA.1997.0519
- 32242 - Prunus laurocerasus: LTS0013597
- 3760 - Prunus persica:
- 3760 - Prunus persica: 10.1016/S0031-9422(00)85491-6
- 3760 - Prunus persica: LTS0013597
- 323852 - Prunus persica var. persica: 10.1007/BF00713343
- 323852 - Prunus persica var. persica: LTS0013597
- 135621 - Pseudomonadaceae: LTS0013597
- 286 - Pseudomonas: LTS0013597
- 287 - Pseudomonas aeruginosa: LTS0013597
- 120289 - Psidium: LTS0013597
- 120290 - Psidium guajava: 10.1016/S0308-8146(96)00271-3
- 120290 - Psidium guajava: LTS0013597
- 13819 - Pteridaceae: LTS0013597
- 3766 - Pyrus: LTS0013597
- 23211 - Pyrus communis: 10.1016/S0140-6736(49)91289-1
- 23211 - Pyrus communis: LTS0013597
- 56479 - Ramalina: LTS0013597
- 157169 - Ramalina fraxinea: 10.5586/ASBP.1979.002
- 157169 - Ramalina fraxinea: LTS0013597
- 56478 - Ramalinaceae: LTS0013597
- 3440 - Ranunculaceae: LTS0013597
- 99299 - Rehmannia: LTS0013597
- 99300 - Rehmannia glutinosa:
- 99300 - Rehmannia glutinosa: 10.1248/YAKUSHI1947.115.12_992
- 99300 - Rehmannia glutinosa: 10.1248/YAKUSHI1947.116.2_158
- 99300 - Rehmannia glutinosa: LTS0013597
- 3608 - Rhamnaceae: LTS0013597
- 4346 - Rhododendron: LTS0013597
- 49169 - Rhododendron ovatum: 10.4268/CJCMM20130315
- 49169 - Rhododendron ovatum: LTS0013597
- 4012 - Rhus: LTS0013597
- 289753 - Rhus chinensis: 10.1248/CPB.14.877
- 289753 - Rhus chinensis: LTS0013597
- 3764 - Rosa: LTS0013597
- 3745 - Rosaceae: LTS0013597
- 24966 - Rubiaceae: LTS0013597
- 23513 - Rutaceae: LTS0013597
- 416834 - Saccharina cichorioides: 10.1007/BF00697055
- 4891 - Saccharomycetes: LTS0013597
- 4546 - Saccharum: LTS0013597
- 4547 - Saccharum officinarum: 10.1016/S0021-9673(01)88498-3
- 4547 - Saccharum officinarum: LTS0013597
- 4319 - Salacia: LTS0013597
- 1225088 - Salacia oblonga: 10.1248/CPB.47.1725
- 1225088 - Salacia oblonga: LTS0013597
- 1565083 - Salacia reticulata: 10.1016/S0968-0896(01)00422-9
- 1565083 - Salacia reticulata: LTS0013597
- 3688 - Salicaceae: LTS0013597
- 151233 - Salsola: LTS0013597
- 525237 - Salsola collina: 10.1007/BF00630328
- 525237 - Salsola collina: LTS0013597
- 21880 - Salvia: LTS0013597
- 38868 - Salvia officinalis: 10.1021/NP50003A002
- 1132405 - Salvia tomentosa: 10.1021/NP50003A002
- 1132405 - Salvia tomentosa: LTS0013597
- 342065 - Salvia trijuga: 10.1076/PHBI.41.5.375.15938
- 342065 - Salvia trijuga: LTS0013597
- 23672 - Sapindaceae: LTS0013597
- 139771 - Sapium: LTS0013597
- 316851 - Sapium glandulosum: 10.1007/BF01100201
- 316851 - Sapium glandulosum: LTS0013597
- 1487833 - Sapium laurifolium: 10.1007/BF01100201
- 1487833 - Sapium laurifolium: LTS0013597
- 3737 - Sapotaceae: LTS0013597
- 3014 - Sargassaceae: LTS0013597
- 43850 - Schinus: LTS0013597
- 43851 - Schinus molle: 10.1007/BF01100201
- 43851 - Schinus molle: LTS0013597
- 290995 - Schleichera: LTS0013597
- 290996 - Schleichera oleosa: 10.1002/LIPI.19680701207
- 290996 - Schleichera oleosa: LTS0013597
- 2871444 - Schleichera trijuga: 10.1002/LIPI.19680701207
- 2871444 - Schleichera trijuga: LTS0013597
- 39249 - Scrophularia: LTS0013597
- 90363 - Scrophularia nodosa: 10.1016/0308-8146(93)90137-5
- 90363 - Scrophularia nodosa: LTS0013597
- 4149 - Scrophulariaceae: LTS0013597
- 23808 - Simaroubaceae: LTS0013597
- 190522 - Siraitia: LTS0013597
- 190515 - Siraitia grosvenorii: 10.1016/0378-8741(90)90067-4
- 190515 - Siraitia grosvenorii: LTS0013597
- 4070 - Solanaceae: LTS0013597
- 211925 - Spathodea: LTS0013597
- 211926 - Spathodea campanulata: 10.1007/BF01100201
- 211926 - Spathodea campanulata: LTS0013597
- 90964 - Staphylococcaceae: LTS0013597
- 1279 - Staphylococcus: LTS0013597
- 1280 - Staphylococcus aureus: LTS0013597
- 1883 - Streptomyces: 10.3390/MOLECULES22091396
- 1883 - Streptomyces: LTS0013597
- 1912 - Streptomyces hygroscopicus: 10.3390/MOLECULES22091396
- 1912 - Streptomyces hygroscopicus: LTS0013597
- 2062 - Streptomycetaceae: LTS0013597
- 35493 - Streptophyta: LTS0013597
- 46108 - Suaeda: LTS0013597
- 224153 - Suaeda aegyptiaca: 10.4197/SCI.16-1.4
- 224153 - Suaeda aegyptiaca: LTS0013597
- 126913 - Suaeda maritima: 10.1002/JPS.3030350906
- 1735025 - Suaeda nudiflora: 10.1002/JPS.3030350906
- 1735025 - Suaeda nudiflora: LTS0013597
- 39241 - Swertia: LTS0013597
- 166611 - Swertia angustifolia: LTS0013597
- 1460260 - Swertia angustifolia var. pulchella: 10.1055/S-0028-1097323
- 1460260 - Swertia angustifolia var. pulchella: LTS0013597
- 166623 - Swertia pubescens: 10.4268/CJCMM20151921
- 166623 - Swertia pubescens: LTS0013597
- 20019 - Symplocaceae: LTS0013597
- 55372 - Symplocos: LTS0013597
- 98319 - Symplocos tinctoria: 10.1016/0378-8741(90)90067-4
- 98319 - Symplocos tinctoria: LTS0013597
- 1142 - Synechocystis: 10.1104/PP.108.129403
- 1142 - Synechocystis: LTS0013597
- 63083 - Tamaricaceae: LTS0013597
- 63084 - Tamarix: LTS0013597
- 189786 - Tamarix aphylla: 10.1055/S-0028-1099548
- 189786 - Tamarix aphylla: LTS0013597
- 69903 - Tecoma: LTS0013597
- 69904 - Tecoma stans:
- 69904 - Tecoma stans: 10.1007/BF01100201
- 69904 - Tecoma stans: 10.5586/ASBP.1977.015
- 69904 - Tecoma stans: LTS0013597
- 56538 - Telekia: LTS0013597
- 56539 - Telekia speciosa: 10.1007/BF00633415
- 56539 - Telekia speciosa: LTS0013597
- 148727 - Tetrapleura: LTS0013597
- 148728 - Tetrapleura tetraptera: 10.1016/S0031-9422(00)80622-6
- 148728 - Tetrapleura tetraptera: LTS0013597
- 21896 - Teucrium: LTS0013597
- 1117157 - Teucrium polium: 10.14300/MNNC.2016.11094
- 1117157 - Teucrium polium: LTS0013597
- 46968 - Thalictrum: LTS0013597
- 619227 - Thalictrum aquilegiifolium: 10.1248/CPB.34.726
- 619227 - Thalictrum aquilegiifolium: LTS0013597
- 3640 - Theobroma: LTS0013597
- 3641 - Theobroma cacao: 10.1515/ZNC-1998-9-1002
- 3641 - Theobroma cacao: LTS0013597
- 49990 - Thymus: LTS0013597
- 2019959 - Thymus transcaucasicus: 10.1007/BF00575075
- 2019959 - Thymus transcaucasicus: LTS0013597
- 15170 - Tillandsia: LTS0013597
- 49541 - Tillandsia usneoides: 10.1021/NP50122A023
- 49541 - Tillandsia usneoides: LTS0013597
- 58023 - Tracheophyta: LTS0013597
- 13730 - Tragopogon: LTS0013597
- 261649 - Tragopogon orientalis: 10.5586/ASBP.1988.009
- 261649 - Tragopogon orientalis: LTS0013597
- 41653 - Tragopogon pratensis: 10.5586/ASBP.1988.009
- 41653 - Tragopogon pratensis: LTS0013597
- 3676 - Trichosanthes: LTS0013597
- 3677 - Trichosanthes kirilowii: 10.1248/YAKUSHI1947.109.4_250
- 3677 - Trichosanthes kirilowii: LTS0013597
- 5690 - Trypanosoma: LTS0013597
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0013597
- 5654 - Trypanosomatidae: LTS0013597
- 21910 - Verbenaceae: LTS0013597
- 3913 - Vigna: LTS0013597
- 157791 - Vigna radiata: 10.1021/JF00068A034
- 157791 - Vigna radiata: LTS0013597
- 115715 - Vigna subterranea: 10.1016/S0308-8146(99)00186-7
- 115715 - Vigna subterranea: LTS0013597
- 3917 - Vigna unguiculata: 10.1021/JF00068A034
- 3917 - Vigna unguiculata: LTS0013597
- 33090 - Viridiplantae: LTS0013597
- 3602 - Vitaceae: LTS0013597
- 3603 - Vitis: LTS0013597
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.1021/JF960251K
- 29760 - Vitis vinifera: 10.1021/JF9709156
- 29760 - Vitis vinifera: LTS0013597
- 241840 - Xylocarpus: LTS0013597
- 241841 - Xylocarpus granatum: 10.1016/S0044-328X(84)80097-5
- 241841 - Xylocarpus granatum: LTS0013597
- 67937 - Zanthoxylum: LTS0013597
- 354529 - Zanthoxylum piperitum: 10.1248/YAKUSHI1947.116.12_911
- 354529 - Zanthoxylum piperitum: LTS0013597
- 72171 - Ziziphus: LTS0013597
- 264981 - Ziziphus spina-christi: 10.1016/0031-9422(94)00574-D
- 264981 - Ziziphus spina-christi: LTS0013597
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Sanjay Singh Rawat, Shital Sandhya, Ashverya Laxmi. Complex genetic interaction between glucose sensor HXK1 and E3 SUMO ligase SIZ1 in regulating plant morphogenesis.
Plant signaling & behavior.
2024 Dec; 19(1):2341506. doi:
10.1080/15592324.2024.2341506
. [PMID: 38607960] - Zhilan Hu, Ya Long, Xiangyue Li, Zhiqin Jia, Mingyan Wang, Xuemei Huang, Xiaolan Yu. Effects of asiaticoside on the model of gestational diabetes mellitus in HTR-8/svneo cells via PI3K/AKT pathway.
Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology.
2024 Dec; 44(1):2350761. doi:
10.1080/01443615.2024.2350761
. [PMID: 38785148] - Shiya Huang, Xueqian Huang, Xiaohui Wen, Xuehong Liu, Hongxia Ma, Linling Xie, Yishu Wang, Shanjia Liu, Yongge Guan, Kunyin Li. Enhanced glycolysis in the myometrium with ectopic endometrium of patients with adenomyosis: a preliminary study.
Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology.
2024 Dec; 40(1):2332411. doi:
10.1080/09513590.2024.2332411
. [PMID: 38537663] - Carlo Barnaba, David G Broadbent, Emily G Kaminsky, Gloria I Perez, Jens C Schmidt. AMPK regulates phagophore-to-autophagosome maturation.
The Journal of cell biology.
2024 Aug; 223(8):. doi:
10.1083/jcb.202309145
. [PMID: 38775785] - C Gasser, J M Faurie, F Rul. Regulation of lactose, glucose and sucrose metabolisms in S. thermophilus.
Food microbiology.
2024 Aug; 121(?):104487. doi:
10.1016/j.fm.2024.104487
. [PMID: 38637064] - Martí Wilson-Verdugo, Brandon Bustos-García, Olga Adame-Guerrero, Jaqueline Hersch-González, Nallely Cano-Domínguez, Maribel Soto-Nava, Carlos A Acosta, Teresa Tusie-Luna, Santiago Avila-Rios, Lilia G Noriega, Victor J Valdes. Reversal of high-glucose-induced transcriptional and epigenetic memories through NRF2 pathway activation.
Life science alliance.
2024 Aug; 7(8):. doi:
10.26508/lsa.202302382
. [PMID: 38755006] - Román Cardona-Herrera, Tannia Alexandra Quiñones-Muñoz, Elena Franco-Robles, César Ozuna. Development of a tamarind-based functional beverage with partially-hydrolyzed agave syrup and the health effects of its consumption in C57BL/6 mice.
Food chemistry.
2024 Jul; 447(?):138935. doi:
10.1016/j.foodchem.2024.138935
. [PMID: 38461724] - Ping Li, Ruo-Lin Fang, Wen Wang, Xi-Xi Zeng, Tian Lan, Shi-Yu Liu, Yan-Jun Hu, Qing Shen, Si-Wei Wang, Yu-Hua Tong, Zhu-Jun Mao. Apigenin suppresses epithelial-mesenchymal transition in high glucose-induced retinal pigment epithelial cell by inhibiting CBP/p300-mediated histone acetylation.
Biochemical and biophysical research communications.
2024 Jul; 717(?):150061. doi:
10.1016/j.bbrc.2024.150061
. [PMID: 38718570] - Xi Mei, Yao Li, Jinlin Wu, Lumiu Liao, Di Lu, Ping Qiu, Hui-Lan Yang, Ming-Wei Tang, Xin-Ying Liang, Dongfang Liu. Dulaglutide restores endothelial progenitor cell levels in diabetic mice and mitigates high glucose-induced endothelial injury through SIRT1-mediated mitochondrial fission.
Biochemical and biophysical research communications.
2024 Jul; 716(?):150002. doi:
10.1016/j.bbrc.2024.150002
. [PMID: 38697011] - Dou Zu-Man, Zhang Yu-Long, Tang Chun-Yang, Liu Chuang, Fang Jia-Qin, Huang Qiang, Chen Chun, You Li-Jun, Tan Chin-Ping, Niu Hui, Fu Xiong. Construction of blackberry polysaccharide nano-selenium particles: Structure features and regulation effects of glucose/lipid metabolism in HepG2 cells.
Food research international (Ottawa, Ont.).
2024 Jul; 187(?):114428. doi:
10.1016/j.foodres.2024.114428
. [PMID: 38763678] - Kexin Sun, Yanyi Chen, Shijie Zheng, Wenjuan Wan, Ke Hu. Genipin ameliorates diabetic retinopathy via the HIF-1α and AGEs-RAGE pathways.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jul; 129(?):155596. doi:
10.1016/j.phymed.2024.155596
. [PMID: 38626646] - Fuwei Wang, Yue Gao, Xin Li, Mengdi Luan, Xiaoyi Wang, Yanwen Zhao, Xianhui Zhou, Guozhen Du, Peng Wang, Chenglong Ye, Hui Guo. Changes in microbial composition explain the contrasting responses of glucose and lignin decomposition to soil acidification in an alpine grassland.
The Science of the total environment.
2024 Jun; 930(?):172671. doi:
10.1016/j.scitotenv.2024.172671
. [PMID: 38653407] - Guoqi Yu, Tingyu Luo, Yongjie Liu, Xiaona Huo, Chunbao Mo, Bo Huang, You Li, Liping Feng, Yan Sun, Jun Zhang, Zhiyong Zhang. Multi-omics reveal disturbance of glucose homeostasis in pregnant rats exposed to short-chain perfluorobutanesulfonic acid.
Ecotoxicology and environmental safety.
2024 Jun; 278(?):116402. doi:
10.1016/j.ecoenv.2024.116402
. [PMID: 38728940] - Jie Lv, Meng Su, Yansong Wang, Juan Yang, Yanni Liang, Lin Chen, Liyan Lei. Yunvjian decoction mitigates hyperglycemia in rats induced by a high-fat diet and streptozotocin via reducing oxidative stress in pancreatic beta cells.
Journal of ethnopharmacology.
2024 Jun; 327(?):118045. doi:
10.1016/j.jep.2024.118045
. [PMID: 38479546] - Shunxiao Zhang, Sheng Zhang, Yan Zhang, Hua Wang, Yue Chen, Hao Lu. Activation of NRF2 by epiberberine improves oxidative stress and insulin resistance in T2DM mice and IR-HepG2 cells in an AMPK dependent manner.
Journal of ethnopharmacology.
2024 Jun; 327(?):117931. doi:
10.1016/j.jep.2024.117931
. [PMID: 38382657] - Ayako Wada-Katsumata, Coby Schal. Glucose aversion: a behavioral resistance mechanism in the German cockroach.
Current opinion in insect science.
2024 Jun; 63(?):101182. doi:
10.1016/j.cois.2024.101182
. [PMID: 38403065] - M Ángeles Martínez-García, Alejandra Quintero-Tobar, Sara de Lope Quiñones, María Insenser, Elena Fernández-Durán, Héctor Francisco Escobar-Morreale, Manuel Luque-Ramírez. Obesity and polycystic ovary syndrome influence on intestinal permeability at fasting, and modify the effect of diverse macronutrients on the gut barrier.
Food research international (Ottawa, Ont.).
2024 Jun; 186(?):114338. doi:
10.1016/j.foodres.2024.114338
. [PMID: 38729719] - Shijun Wei, Yu Song, Zhengbin Li, Ai Liu, Yunfang Xie, Shang Gao, Hongbiao Shi, Ping Sun, Zekun Wang, Yecheng Jin, Wenjie Sun, Xi Li, Jiangxia Li, Qiji Liu. SMEK1 ablation promotes glucose uptake and improves obesity-related metabolic dysfunction via AMPK signaling pathway.
American journal of physiology. Endocrinology and metabolism.
2024 Jun; 326(6):E776-E790. doi:
10.1152/ajpendo.00387.2023
. [PMID: 38568153] - Alexandra N Schoen, Alyssa M Weinrauch, Ian A Bouyoucos, Jason R Treberg, W Gary Anderson. Hormonal effects on glucose and ketone metabolism in a perfused liver of an elasmobranch, the North Pacific spiny dogfish, Squalus suckleyi.
General and comparative endocrinology.
2024 Jun; 352(?):114514. doi:
10.1016/j.ygcen.2024.114514
. [PMID: 38582175] - Xuemin Zhang, Zhi Li, Mingqing Qian, Bingya Zhang, Hongxia Zhang, Li Wang, Hui Liu. Transcriptome and Metabolome analysis reveal HFPO-TA induced disorders of hepatic glucose and lipid metabolism in rat by interfering with PPAR signaling pathway.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2024 Jun; 188(?):114632. doi:
10.1016/j.fct.2024.114632
. [PMID: 38583503] - Bei-Bei Hu, Wen-Ting Yin, Heng-Bo Zhang, Zhuo-Qing Zhai, Hua-Min Liu, Xue-de Wang. The interaction between lipid oxidation and the Maillard reaction model of lysine-glucose on aroma formation in fragrant sesame oil.
Food research international (Ottawa, Ont.).
2024 Jun; 186(?):114397. doi:
10.1016/j.foodres.2024.114397
. [PMID: 38729739] - Kristian Buch-Larsen, Linn Gillberg, Haboon Ismail Ahmed, Simone Diedrichsen Marstrand, Michael Andersson, Gerrit van Hall, Charlotte Brøns, Peter Schwarz. Postabsorptive and postprandial glucose and fat metabolism in postmenopausal women with breast cancer-Preliminary data after chemotherapy compared to healthy controls.
Nutrition (Burbank, Los Angeles County, Calif.).
2024 Jun; 122(?):112394. doi:
10.1016/j.nut.2024.112394
. [PMID: 38458062] - Kenchi Miyasaka, Ryuya Takada, Jianbo Wu, Shogo Takeda, Yoshiaki Manse, Toshio Morikawa, Hiroshi Shimoda. Hypoglycemic effects of mountain caviar extract and inhibitory mechanism of saponins, including momordin Ic, on glucose absorption.
Journal of natural medicines.
2024 Jun; 78(3):693-701. doi:
10.1007/s11418-024-01791-5
. [PMID: 38587581] - Arina V Martyshina, Anna G Sirotkina, Irina V Gosteva. Temporal multiscale modeling of biochemical regulatory networks: Calcium-regulated hepatocyte lipid and glucose metabolism.
Bio Systems.
2024 Jun; 240(?):105227. doi:
10.1016/j.biosystems.2024.105227
. [PMID: 38718915] - Marcel A Vieira-Lara, Barbara M Bakker. The paradox of fatty-acid β-oxidation in muscle insulin resistance: Metabolic control and muscle heterogeneity.
Biochimica et biophysica acta. Molecular basis of disease.
2024 Jun; 1870(5):167172. doi:
10.1016/j.bbadis.2024.167172
. [PMID: 38631409] - Xiaocheng Tian, Yuxing Li, Shaoteng Wang, Hui Zou, Qian Xiao, Baiquan Ma, Fengwang Ma, Mingjun Li. Glucose uptake from the rhizosphere mediated by MdDOF3-MdHT1.2 regulates drought resistance in apple.
Plant biotechnology journal.
2024 Jun; 22(6):1566-1581. doi:
10.1111/pbi.14287
. [PMID: 38205680] - Samrin Kagdi, Sulayman A Lyons, Jacqueline L Beaudry. The interplay of glucose-dependent insulinotropic polypeptide in adipose tissue.
The Journal of endocrinology.
2024 Jun; 261(3):. doi:
10.1530/joe-23-0361
. [PMID: 38579777] - João Paulo Lima de Oliveira, William Franco Carneiro, Kiara Cândido Duarte da Silva, Moises Silvestre de Azevedo Martins, Stefania Priscilla de Souza, Bárbara do Carmo Rodrigues Virote, Isaac Filipe Moreira Konig, Eduardo Valério de Barros Vilas Boas, Luis David Solis Murgas, Elisângela Elena Nunes Carvalho. Diet with different concentrations of lychee peel flour modulates oxidative stress parameters and antioxidant activity in zebrafish.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2024 Jun; 272(?):110964. doi:
10.1016/j.cbpb.2024.110964
. [PMID: 38431089] - Shanshan Zheng, Na Zhao, Chuwen Feng, Jian Ma. Cell division cycle 42 attenuates high glucose-treated renal tubular epithelial cell apoptosis, fibrosis, and inflammation, but activates the PAK1/AKT pathway.
Clinical and experimental nephrology.
2024 Jun; 28(6):513-521. doi:
10.1007/s10157-024-02468-9
. [PMID: 38416339] - Qian Wang, Yingxin Zhao, Jinxin Song, Jiaojiao Niu, Yinuo Liu, Chunfang Chao. How halogenated aromatic compounds affect the electron supply and consumption in glucose supported denitrification?.
Water research.
2024 Jun; 256(?):121569. doi:
10.1016/j.watres.2024.121569
. [PMID: 38615604] - Prateek Jain. Climate-ready crops: Unveiling the molecular dynamics of CO2 and glucose in plant thermotolerance.
Plant physiology.
2024 May; 195(2):906-907. doi:
10.1093/plphys/kiae131
. [PMID: 38445755] - Jiao Wang, Qian Luo, Xiao Liang, Hua Liu, Changqi Wu, Hanmo Fang, Xuanbo Zhang, Shuting Ding, Jingquan Yu, Kai Shi. Glucose-G protein signaling plays a crucial role in tomato resilience to high temperature and elevated CO2.
Plant physiology.
2024 May; 195(2):1025-1037. doi:
10.1093/plphys/kiae136
. [PMID: 38447060] - Alka Singh, Kandahalli Venkataranganayaka Abhilasha, Kathya R Acharya, Haibo Liu, Niraj K Nirala, Velayoudame Parthibane, Govind Kunduri, Thiruvaimozhi Abimannan, Jacob Tantalla, Lihua Julie Zhu, Jairaj K Acharya, Usha R Acharya. A nutrient responsive lipase mediates gut-brain communication to regulate insulin secretion in Drosophila.
Nature communications.
2024 May; 15(1):4410. doi:
10.1038/s41467-024-48851-8
. [PMID: 38782979] - Lu Sun, Hao Yin, Yu-Ting Li, Yun-Xiao Qiao, Jie Wang, Qing-Yi He, Zhen-Wei Xiao, Le Kuai, Yan-Wei Xiang. Shengjihuayu formula ameliorates the oxidative injury in human keratinocytes via blocking JNK/c-Jun/MMPs signaling pathway.
Journal of ethnopharmacology.
2024 May; 326(?):117938. doi:
10.1016/j.jep.2024.117938
. [PMID: 38395178] - Yuan Liang, Chao Luo, Lijun Sun, Tiange Feng, Wenzhen Yin, Yunhua Zhang, Michael W Mulholland, Weizhen Zhang, Yue Yin. Reduction of specific enterocytes from loss of intestinal LGR4 improves lipid metabolism in mice.
Nature communications.
2024 May; 15(1):4393. doi:
10.1038/s41467-024-48622-5
. [PMID: 38782937] - Xu Yang, Junqi Zhang, Yanghao Li, Huiting Hu, Xiang Li, Tonghui Ma, Bo Zhang. Si-Ni-San promotes liver regeneration by maintaining hepatic oxidative equilibrium and glucose/lipid metabolism homeostasis.
Journal of ethnopharmacology.
2024 May; 326(?):117918. doi:
10.1016/j.jep.2024.117918
. [PMID: 38382654] - Pauline de Zeeuw, Lucas Treps, Melissa García-Caballero, Ulrike Harjes, Joanna Kalucka, Carla De Legher, Katleen Brepoels, Kristel Peeters, Stefan Vinckier, Joris Souffreau, Ann Bouché, Federico Taverna, Jonas Dehairs, Ali Talebi, Bart Ghesquière, Johan Swinnen, Luc Schoonjans, Guy Eelen, Mieke Dewerchin, Peter Carmeliet. The gluconeogenesis enzyme PCK2 has a non-enzymatic role in proteostasis in endothelial cells.
Communications biology.
2024 May; 7(1):618. doi:
10.1038/s42003-024-06186-6
. [PMID: 38783087] - Annika Wahlström, Ariel Brumbaugh, Wilhelm Sjöland, Lisa Olsson, Hao Wu, Marcus Henricsson, Annika Lundqvist, Kassem Makki, Stanley L Hazen, Göran Bergström, Hanns-Ulrich Marschall, Michael A Fischbach, Fredrik Bäckhed. Production of deoxycholic acid by low-abundant microbial species is associated with impaired glucose metabolism.
Nature communications.
2024 May; 15(1):4276. doi:
10.1038/s41467-024-48543-3
. [PMID: 38769296] - Yong-He Han, Yi-Xi Li, Xian Chen, Hong Zhang, Yong Zhang, Wei Li, Chen-Jing Liu, Yanshan Chen, Lena Q Ma. Arsenic-enhanced plant growth in As-hyperaccumulator Pteris vittata: Metabolomic investigations and molecular mechanisms.
The Science of the total environment.
2024 May; 926(?):171922. doi:
10.1016/j.scitotenv.2024.171922
. [PMID: 38522532] - Zhaoshuo Li, Mi Zhang, Lixia Yang, Ding Fan, Peng Zhang, Li Zhang, Jianqing Zhang, Zhigang Lu. Sophoricoside ameliorates cerebral ischemia-reperfusion injury dependent on activating AMPK.
European journal of pharmacology.
2024 May; 971(?):176439. doi:
10.1016/j.ejphar.2024.176439
. [PMID: 38401605] - Taigh Anderson, Hao Jiang, Aisling Ní Cheallaigh, Dennis Bengtsson, Stefan Oscarson, Chantelle Cairns, Frank St Michael, Andrew Cox, Michelle M Kuttel. Formation and immunological evaluation of Moraxella catarrhalis glycoconjugates based on synthetic oligosaccharides.
Carbohydrate polymers.
2024 May; 332(?):121928. doi:
10.1016/j.carbpol.2024.121928
. [PMID: 38431400] - Sankar Maity, Somdev Pahari, Santanu Santra, Madhurima Jana. Interfacial Glucose to Regulate Hydrated Lipid Bilayer Properties: Influence of Concentrations.
Journal of chemical information and modeling.
2024 May; 64(9):3841-3854. doi:
10.1021/acs.jcim.3c01991
. [PMID: 38635679] - Fani Sereti, Maria Alexandri, Aikaterini Papadaki, Harris Papapostolou, Nikolaos Kopsahelis. Carotenoids production by Rhodosporidium paludigenum yeasts: Characterization of chemical composition, antioxidant and antimicrobial properties.
Journal of biotechnology.
2024 May; 386(?):52-63. doi:
10.1016/j.jbiotec.2024.03.011
. [PMID: 38548021] - Sourav Kundu, Sitara Ghosh, Bidya Dhar Sahu. Scopoletin alleviates high glucose-induced toxicity in human renal proximal tubular cells via inhibition of oxidative damage, epithelial-mesenchymal transition, and fibrogenesis.
Molecular biology reports.
2024 May; 51(1):620. doi:
10.1007/s11033-024-09579-2
. [PMID: 38709349] - I Stafeev, M Agareva, S Michurina, A Tomilova, E Shestakova, E Zubkova, M Sineokaya, E Ratner, M Menshikov, Ye Parfyonova, M Shestakova. Semaglutide 6-months therapy of type 2 diabetes mellitus restores adipose progenitors potential to develop metabolically active adipocytes.
European journal of pharmacology.
2024 May; 970(?):176476. doi:
10.1016/j.ejphar.2024.176476
. [PMID: 38493915] - Yujeong Roh, Jieun Kim, Heejin Song, Ayun Seol, Taeryeol Kim, Eunseo Park, Kiho Park, Sujeong Lim, Suha Wang, Youngsuk Jung, Hyesung Kim, Yong Lim, Daeyoun Hwang. Impact of the Oral Administration of Polystyrene Microplastics on Hepatic Lipid, Glucose, and Amino Acid Metabolism in C57BL/6Korl and C57BL/6-Lepem1hwl/Korl Mice.
International journal of molecular sciences.
2024 May; 25(9):. doi:
10.3390/ijms25094964
. [PMID: 38732183] - Zilu Cheng, Yixiong Chen, Bernd Schnabl, Huikuan Chu, Ling Yang. Bile acid and nonalcoholic steatohepatitis: Molecular insights and therapeutic targets.
Journal of advanced research.
2024 May; 59(?):173-187. doi:
10.1016/j.jare.2023.06.009
. [PMID: 37356804] - P Kavya, M Gayathri. Phytochemical Profiling and Assessment of Antidiabetic Activity of Curcuma Angustifolia Rhizome Methanolic Extract: An In Vitro and In Silico Analysis.
Chemistry & biodiversity.
2024 May; 21(5):e202301788. doi:
10.1002/cbdv.202301788
. [PMID: 38484132] - J Michael Conlon, Bosede O Owolabi, Peter R Flatt, Yasser H A Abdel-Wahab. Amphibian host-defense peptides with potential for Type 2 diabetes therapy - an updated review.
Peptides.
2024 May; 175(?):171180. doi:
10.1016/j.peptides.2024.171180
. [PMID: 38401671] - Oliyad Jeilu, Erik Alexandersson, Eva Johansson, Addis Simachew, Amare Gessesse. A novel GH3-β-glucosidase from soda lake metagenomic libraries with desirable properties for biomass degradation.
Scientific reports.
2024 05; 14(1):10012. doi:
10.1038/s41598-024-60645-y
. [PMID: 38693138] - Gül Kaplan, Merih Beler, Ismail Ünal, Atakan Karagöz, Gizem Eğilmezer, Ünsal Veli Üstündağ, Derya Cansız, A Ata Alturfan, Ebru Emekli-Alturfan. Diethylhexyl phthalate exposure amplifies oxidant and inflammatory response in fetal hyperglycemia model predisposing insulin resistance in zebrafish embryos.
Toxicology and industrial health.
2024 May; 40(5):232-243. doi:
10.1177/07482337241238475
. [PMID: 38467557] - Pengkui Xia, Ying Zheng, Li Sun, Wenxin Chen, Longchen Shang, Jing Li, Tao Hou, Bin Li. Regulation of glycose and lipid metabolism and application based on the colloidal nutrition science properties of konjac glucomannan: A comprehensive review.
Carbohydrate polymers.
2024 May; 331(?):121849. doi:
10.1016/j.carbpol.2024.121849
. [PMID: 38388033] - Chintha Lankatillake, Tien Huynh, Daniel A Dias. Abrus precatorius Leaf Extract Stimulates Insulin-mediated Muscle Glucose Uptake: In vitro Studies and Phytochemical Analysis.
Planta medica.
2024 May; 90(5):388-396. doi:
10.1055/a-2281-0988
. [PMID: 38490239] - Piotr Pawlak, Paulina Lipinska, Ewa Sell-Kubiak, Arkadiusz Kajdasz, Natalia Derebecka, Ewelina Warzych. Energy metabolism disorders during in vitro maturation of bovine cumulus-oocyte complexes interfere with blastocyst quality and metabolism.
Developmental biology.
2024 May; 509(?):51-58. doi:
10.1016/j.ydbio.2024.02.004
. [PMID: 38342400] - Na Kang, Zhenglin Ji, Yuxin Li, Ji Gao, Xinfeng Wu, Xiaoyang Zhang, Qinghui Duan, Can Zhu, Yue Xu, Luyao Wen, Xiaofei Shi, Wanli Liu. Metabolite-derived damage-associated molecular patterns in immunological diseases.
The FEBS journal.
2024 May; 291(10):2051-2067. doi:
10.1111/febs.16902
. [PMID: 37432883] - Margot Visse-Mansiaux, Leonard Shumbe, Yves Brostaux, Theodor Ballmer, Inga Smit, Brice Dupuis, Hervé Vanderschuren. Identification of potato varieties suitable for cold storage and reconditioning: A safer alternative to anti-sprouting chemicals for potato sprouting control.
Food research international (Ottawa, Ont.).
2024 May; 184(?):114249. doi:
10.1016/j.foodres.2024.114249
. [PMID: 38609227] - Thomas Rydal, Jesper Frandsen, Gisela Nadal-Rey, Mads Orla Albæk, Pedram Ramin. Bringing a scalable adaptive hybrid modeling framework closer to industrial use: Application on a multiscale fungal fermentation.
Biotechnology and bioengineering.
2024 May; 121(5):1609-1625. doi:
10.1002/bit.28670
. [PMID: 38454575] - Jia Ying, Peipei Wang, Xiao Jin, Li Luo, Keshuang Lai, Jun Li. TGF-β1 Mediates the EndoMt in High Glucose-Treated Human Retinal Microvascular Endothelial Cells.
Seminars in ophthalmology.
2024 May; 39(4):312-319. doi:
10.1080/08820538.2023.2300806
. [PMID: 38192082] - Simon Okomo Aloo, SeonJu Park, Timilehin Martins Oyinloye, Deog-Hwan Oh. Rheological properties, biochemical changes, and potential health benefits of dehulled and defatted industrial hempseeds after fermentation.
Food chemistry.
2024 May; 439(?):138086. doi:
10.1016/j.foodchem.2023.138086
. [PMID: 38043281] - Katarzyna Skrypnik, Marcin Schmidt, Agnieszka Olejnik-Schmidt, Iskandar Azmy Harahap, Joanna Suliburska. Influence of supplementation with iron and probiotic bacteria Lactobacillus plantarum and Lactobacillus curvatus on selected parameters of inflammatory state in rats on a high-fat iron-deficient diet.
Journal of the science of food and agriculture.
2024 May; 104(7):4411-4424. doi:
10.1002/jsfa.13329
. [PMID: 38339838] - Sajad Malik, Shrirang Inamdar, Jhankar Acharya, Pranay Goel, Saroj Ghaskadbi. Characterization of palmitic acid toxicity induced insulin resistance in HepG2 cells.
Toxicology in vitro : an international journal published in association with BIBRA.
2024 May; 97(?):105802. doi:
10.1016/j.tiv.2024.105802
. [PMID: 38431059] - Xiaxia Cai, Zhuo Hu, Mingyuan Zhang, Qinyu Dang, Qian Yang, Xiaoyan Zhao, Yandi Zhu, Yadi Zhang, Yuchen Wei, Haiqin Fang, Huanling Yu. Dosage-effect of selenium supplementation on blood glucose and oxidative stress in type 2 diabetes mellitus and normal mice.
Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS).
2024 May; 83(?):127410. doi:
10.1016/j.jtemb.2024.127410
. [PMID: 38377660] - Xiaoya Li, Yingying Su, Yiting Xu, Tingting Hu, Xuhong Lu, Jingjing Sun, Wenfei Li, Jian Zhou, Xiaojing Ma, Ying Yang, Yuqian Bao. Adipocyte-Specific Hnrnpa1 Knockout Aggravates Obesity-Induced Metabolic Dysfunction via Upregulation of CCL2.
Diabetes.
2024 May; 73(5):713-727. doi:
10.2337/db23-0609
. [PMID: 38320300] - Huizhen Wei, Mengru Sun, Ruixuan Wang, Hairong Zeng, Bei Zhao, Shenyi Jin. Puerarin mitigated LPS-ATP or HG-primed endothelial cells damage and diabetes-associated cardiovascular disease via ROS-NLRP3 signalling.
Journal of cellular and molecular medicine.
2024 May; 28(10):e18239. doi:
10.1111/jcmm.18239
. [PMID: 38774996] - Lucio Della Guardia, Livio Luzi, Roberto Codella. Muscle-UCP3 in the regulation of energy metabolism.
Mitochondrion.
2024 May; 76(?):101872. doi:
10.1016/j.mito.2024.101872
. [PMID: 38499130] - Xin-Yu Cao, Xinge Li, Feng Wang, Yichen Duan, Xingmei Wu, Guo-Qiang Lin, Meiyu Geng, Min Huang, Ping Tian, Shuai Tang, Dingding Gao. Identification of benzo[b]thiophene-1,1-dioxide derivatives as novel PHGDH covalent inhibitors.
Bioorganic chemistry.
2024 May; 146(?):107330. doi:
10.1016/j.bioorg.2024.107330
. [PMID: 38579615] - Dong-Gui Guo, Jun Zhu, Hui-Juan Wang, Bo-Wen Pan. Investigating the Effects and Mechanisms of Cyclomorusin on Osteoclasts in a High Glucose Environment.
Chemistry & biodiversity.
2024 May; 21(5):e202301741. doi:
10.1002/cbdv.202301741
. [PMID: 38477870] - Farimah Mohammadsadeghi, Mohsen Afsharmanesh, Mohammad Salarmoini, Mohammad Khajeh Bami. Effects of replacing Na selenite in laying hen feed with selenized glucose on production performance, egg quality, egg selenium content, microbial population, immunological response, antioxidant enzymes, and fatty acid composition.
Poultry science.
2024 May; 103(5):103615. doi:
10.1016/j.psj.2024.103615
. [PMID: 38503137] - Anna Nakamura, Takamasa Kido, Yoshiko Seki, Machi Suka. Zinc deficiency affects insulin secretion and alters insulin-regulated metabolic signaling in rats.
Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS).
2024 May; 83(?):127375. doi:
10.1016/j.jtemb.2023.127375
. [PMID: 38184923] - Yuchao Guo, Houlin Mao, Danni Gong, Nuo Zhang, Dandan Gu, Emmanuel Sunday Okeke, Weiwei Feng, Yao Chen, Guanghua Mao, Ting Zhao, Liuqing Yang. Differential susceptibility of BRL cells with/without insulin resistance and the role of endoplasmic reticulum stress signaling pathway in response to acrylamide-exposure toxicity effects in vitro.
Toxicology.
2024 May; 504(?):153800. doi:
10.1016/j.tox.2024.153800
. [PMID: 38604440] - Mariló Olivares-Vicente, Noelia Sánchez-Marzo, María Herranz-López, Vicente Micol. Analysis of Lemon Verbena Polyphenol Metabolome and Its Correlation with Oxidative Stress under Glucotoxic Conditions in Adipocyte.
Journal of agricultural and food chemistry.
2024 May; 72(17):9768-9781. doi:
10.1021/acs.jafc.3c06309
. [PMID: 38629896] - A Berenice Aguilar-Guadarrama, Mónica Aideé Díaz-Román, Maribel Osorio-García, Myrna Déciga-Campos, María Yolanda Rios. Chemical Constituents from Agave applanata and Its Antihyperglycemic, Anti-inflammatory, and Antimicrobial Activities Associated with Its Tissue Repair Capability.
Planta medica.
2024 May; 90(5):397-410. doi:
10.1055/a-2270-5527
. [PMID: 38365219] - Melika Golmohamadi, Somayeh Hosseinpour-Niazi, Parto Hadaegh, Parvin Mirmiran, Fereidoun Azizi, Farzad Hadaegh. Association between dietary antioxidants intake and the risk of type 2 diabetes mellitus in a prospective cohort study: Tehran Lipid and Glucose Study.
The British journal of nutrition.
2024 Apr; 131(8):1452-1460. doi:
10.1017/s0007114523002854
. [PMID: 38116651] - Victoria C Kennedy, Cameron S Lynch, Amelia R Tanner, Quinton A Winger, Ahmed Gad, Paul J Rozance, Russell V Anthony. Fetal Hypoglycemia Induced by Placental SLC2A3-RNA Interference Alters Fetal Pancreas Development and Transcriptome at Mid-Gestation.
International journal of molecular sciences.
2024 Apr; 25(9):. doi:
10.3390/ijms25094780
. [PMID: 38731997] - Zheng Li, Alexandra N Kravchenko, Alison Cupples, Andrey K Guber, Yakov Kuzyakov, G Philip Robertson, Evgenia Blagodatskaya. Composition and metabolism of microbial communities in soil pores.
Nature communications.
2024 Apr; 15(1):3578. doi:
10.1038/s41467-024-47755-x
. [PMID: 38678028] - André Nguyen Dietzsch, Hadi Al-Hasani, Joachim Altschmied, Katharina Bottermann, Jana Brendler, Judith Haendeler, Susanne Horn, Isabell Kaczmarek, Antje Körner, Kerstin Krause, Kathrin Landgraf, Diana Le Duc, Laura Lehmann, Stefan Lehr, Stephanie Pick, Albert Ricken, Rene Schnorr, Angela Schulz, Martina Strnadová, Akhil Velluva, Heba Zabri, Torsten Schöneberg, Doreen Thor, Simone Prömel. Dysfunction of the adhesion G protein-coupled receptor latrophilin 1 (ADGRL1/LPHN1) increases the risk of obesity.
Signal transduction and targeted therapy.
2024 Apr; 9(1):103. doi:
10.1038/s41392-024-01810-7
. [PMID: 38664368] - Abdur Rauf, Umer Rashid, Zafar Ali Shah, Anees Ahmed Khalil, Muhammad Shah, Tabussam Tufail, Gauhar Rehman, Abdur Rahman, Saima Naz, Abdulrahman Alsahammari, Metab Alharbi, Abdulmajeed Al-Shahrani, Dorota Formanowicz. Anti-inflammatory and anti-diabetic properties of indanone derivative isolated from Fernandoa adenophylla in vitro and in silico studies.
Scientific reports.
2024 04; 14(1):9624. doi:
10.1038/s41598-024-59703-2
. [PMID: 38671030] - Elena Serino, Daniela Rigano, Maurizio Bruno, Arianna Pastore, Mariano Stornaiuolo, Carmen Formisano, Orazio Taglialatela-Scafati. Glucose Uptake-Stimulating Metabolites from Aerial Parts of Centaurea sicula.
Journal of natural products.
2024 Apr; 87(4):1179-1186. doi:
10.1021/acs.jnatprod.4c00134
. [PMID: 38528772] - Yueheng Tang, Yang Gao, Kexin Nie, Hongzhan Wang, Shen Chen, Hao Su, Wenya Huang, Hui Dong. Jiao-tai-wan and its effective component-berberine improve diabetes and depressive disorder through the cAMP/PKA/CREB signaling pathway.
Journal of ethnopharmacology.
2024 Apr; 324(?):117829. doi:
10.1016/j.jep.2024.117829
. [PMID: 38296172] - Jiahong Chen, Lei Yang, Hehua Zhang, Junbin Ruan, Yuan Wang. Role of sugars in the apical hook development of Arabidopsis etiolated seedlings.
Plant cell reports.
2024 Apr; 43(5):131. doi:
10.1007/s00299-024-03217-8
. [PMID: 38656568] - Styliani Panagiotou, Kia Wee Tan, Phuoc My Nguyen, Andreas Müller, Affiong Ika Oqua, Alejandra Tomas, Anna Wendt, Lena Eliasson, Anders Tengholm, Michele Solimena, Olof Idevall-Hagren. OSBP-mediated PI(4)P-cholesterol exchange at endoplasmic reticulum-secretory granule contact sites controls insulin secretion.
Cell reports.
2024 Apr; 43(4):113992. doi:
10.1016/j.celrep.2024.113992
. [PMID: 38536815] - Linda Engström Ruud, Ferran Font-Gironès, Joanna Zajdel, Lara Kern, Júlia Teixidor-Deulofeu, Louise Mannerås-Holm, Alba Carreras, Barbara Becattini, Andreas Björefeldt, Eric Hanse, Henning Fenselau, Giovanni Solinas, Jens C Brüning, Thomas F Wunderlich, Fredrik Bäckhed, Johan Ruud. Activation of GFRAL+ neurons induces hypothermia and glucoregulatory responses associated with nausea and torpor.
Cell reports.
2024 Apr; 43(4):113960. doi:
10.1016/j.celrep.2024.113960
. [PMID: 38507407] - Yetong Xu, Chengyu Zhou, Minyue Zong, Junwei Zhu, Xutong Guo, Zhihong Sun. High-protein high-konjac glucomannan diets changed glucose and lipid metabolism by modulating colonic microflora and bile acid profiles in healthy mouse models.
Food & function.
2024 Apr; 15(8):4446-4461. doi:
10.1039/d4fo00159a
. [PMID: 38563504] - Wanbao Yang, Wen Jiang, Wang Liao, Hui Yan, Weiqi Ai, Quan Pan, Wesley A Brashear, Yong Xu, Ling He, Shaodong Guo. An estrogen receptor α-derived peptide improves glucose homeostasis during obesity.
Nature communications.
2024 Apr; 15(1):3410. doi:
10.1038/s41467-024-47687-6
. [PMID: 38649684] - Vipawee Pichetkun, Hnin Ei Ei Khine, Suchada Srifa, Sasiwimon Nukulkit, Nitra Nuengchamnong, Supakarn Hansapaiboon, Rattaporn Saenmuangchin, Chatchai Chaotham, Chaisak Chansriniyom. Diverse effects of a Cyperus rotundus extract on glucose uptake in myotubes and adipocytes and its suppression on adipocyte maturation.
Scientific reports.
2024 04; 14(1):9018. doi:
10.1038/s41598-024-59357-0
. [PMID: 38641685] - Stanislav Jabinski, Wesley D M Rangel, Marek Kopáček, Veronika Jílková, Jan Jansa, Travis B Meador. Constraining activity and growth substrate of fungal decomposers via assimilation patterns of inorganic carbon and water into lipid biomarkers.
Applied and environmental microbiology.
2024 Apr; 90(4):e0206523. doi:
10.1128/aem.02065-23
. [PMID: 38527003] - Zhengzhong Luo, Zhenlong Du, Yixin Huang, Tao Zhou, Dan Wu, Xueping Yao, Liuhong Shen, Shumin Yu, Kang Yong, Baoning Wang, Suizhong Cao. Alterations in the gut microbiota and its metabolites contribute to metabolic maladaptation in dairy cows during the development of hyperketonemia.
mSystems.
2024 Apr; 9(4):e0002324. doi:
10.1128/msystems.00023-24
. [PMID: 38501812] - Parvaneh Darabi, Safoora Gharibzadeh, Davood Khalili, Mehrdad Bagherpour-Kalo, Leila Janani. Optimizing cardiovascular disease mortality prediction: a super learner approach in the tehran lipid and glucose study.
BMC medical informatics and decision making.
2024 Apr; 24(1):97. doi:
10.1186/s12911-024-02489-0
. [PMID: 38627734] - Woo-Jin Song, Deok-Hyeon Cheon, HeeIn Song, Daeun Jung, Hae Chan Park, Ju Yeong Hwang, Hyung-Jin Choi, Cherl NamKoong. Activation of ChAT+ neuron in dorsal motor vagus (DMV) increases blood glucose through the regulation of hepatic gene expression in mice.
Brain research.
2024 Apr; 1829(?):148770. doi:
10.1016/j.brainres.2024.148770
. [PMID: 38266888] - Hekmat B Al-Hmadi, Elena Serino, Arianna Pastore, Giuseppina Chianese, Saoussen Hammami, Mariano Stornaiuolo, Orazio Taglialatela-Scafati. Metabolites from Aerial Parts of Glycyrrhiza foetida as Modulators of Targets Related to Metabolic Syndrome.
Biomolecules.
2024 Apr; 14(4):. doi:
10.3390/biom14040467
. [PMID: 38672484] - Li Wang, Mengjun Luo, Xiaoyu Yu, Rong Li, Fei Ye, Dongsheng Xiong, Yan Gong, Mingyue Zheng, Weixin Liu, Jiuzhi Zeng. Assessing the clinical diagnostic value of anti-Müllerian hormone in polycystic ovarian syndrome and its correlation with clinical and metabolism indicators.
Journal of ovarian research.
2024 Apr; 17(1):78. doi:
10.1186/s13048-024-01405-4
. [PMID: 38600539] - Cheng Chen, Liping Xie, Mingliang Zhang, Shama, Kenneth King Yip Cheng, Weiping Jia. The interplay between the muscle and liver in the regulation of glucolipid metabolism.
Journal of molecular cell biology.
2024 04; 15(12):. doi:
10.1093/jmcb/mjad073
. [PMID: 38095440] - Ruimin Tian, Xianfeng Liu, Yang Xiao, Lijia Jing, Honglin Tao, Lu Yang, Xianli Meng. Huang-Lian-Jie-Du decoction drug-containing serum inhibits IL-1β secretion from D-glucose and PA induced BV2 cells via autophagy/NLRP3 signaling.
Journal of ethnopharmacology.
2024 Apr; 323(?):117686. doi:
10.1016/j.jep.2023.117686
. [PMID: 38160864] - Wenjuan Ma, Jianglan Long, Linjie Dong, Jian Zhang, Aiting Wang, Yu Zhang, Dan Yan. Uncovering the key pharmacodynamic material basis and possible molecular mechanism of Xiaoke formulation improve insulin resistant through a comprehensive investigation.
Journal of ethnopharmacology.
2024 Apr; 323(?):117752. doi:
10.1016/j.jep.2024.117752
. [PMID: 38216099] - Yingqiu Shi, Haoran Li, Yugang Lin, Shufang Wang, Guofang Shen. Effective constituents and protective effect of Mudan granules against Schwann cell injury.
Journal of ethnopharmacology.
2024 Apr; 323(?):117692. doi:
10.1016/j.jep.2023.117692
. [PMID: 38176668] - Maria Sofia Molonia, Federica Lina Salamone, Antonio Speciale, Antonella Saija, Francesco Cimino. D-Allulose Reduces Hypertrophy and Endoplasmic Reticulum Stress Induced by Palmitic Acid in Murine 3T3-L1 Adipocytes.
International journal of molecular sciences.
2024 Apr; 25(7):. doi:
10.3390/ijms25074059
. [PMID: 38612868] - Tiantian Li, Quanhe Lv, Chunhui Liu, Chunfei Li, Xiaomin Xie, Wen Zhang. The Lipophilic Extract from Ginkgo biloba L. Leaves Promotes Glucose Uptake and Alleviates Palmitate-Induced Insulin Resistance in C2C12 Myotubes.
Molecules (Basel, Switzerland).
2024 Apr; 29(7):. doi:
10.3390/molecules29071605
. [PMID: 38611884] - Qing Xiao, Qingrong Huang, Chi-Tang Ho. Asparagine-Glucose Amadori Compounds: Formation, Characterization, and Analysis in Dry Jujube Fruit.
Journal of agricultural and food chemistry.
2024 Apr; 72(13):7344-7353. doi:
10.1021/acs.jafc.4c00526
. [PMID: 38502793] - Karem Fouda, Rasha S Mohamed. Molecular docking and in vivo protective effects of okra (Abelmoschus esculentus) against metabolic dysfunction in high-fat, high-sodium diet-fed rats.
Food & function.
2024 Apr; 15(7):3566-3582. doi:
10.1039/d3fo04407f
. [PMID: 38466075]