NCBI Taxonomy: 28545

Strychnos nux-vomica (ncbi_taxid: 28545)

found 112 associated metabolites at species taxonomy rank level.

Ancestor: Strychnos

Child Taxonomies: none taxonomy data.

Loganin

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid methyl ester

C17H26O10 (390.1526)


Loganin is an iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. It has a role as a plant metabolite, a neuroprotective agent, an EC 3.4.23.46 (memapsin 2) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an anti-inflammatory agent and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. It is a cyclopentapyran, a beta-D-glucoside, an enoate ester, a monosaccharide derivative, an iridoid monoterpenoid, a methyl ester and a secondary alcohol. It is functionally related to a loganetin. Loganin is one of the best-known of the iridoid glycosides. It is named for the Loganiaceae, having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae),[1] a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America. Loganin is a natural product found in Strychnos axillaris, Lonicera japonica, and other organisms with data available. An iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. Loganin, also known as loganoside, is a member of the class of compounds known as iridoid o-glycosides. Iridoid o-glycosides are iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton. Thus, loganin is considered to be an isoprenoid lipid molecule. Loganin is soluble (in water) and a very weakly acidic compound (based on its pKa). Loganin can be found in a number of food items such as groundcherry, annual wild rice, muscadine grape, and broad bean, which makes loganin a potential biomarker for the consumption of these food products. Loganin is one of the best-known of the iridoid glycosides.It is named for the Loganiaceae,having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae), a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America . Loganin is formed from loganic acid by the enzyme loganic acid O-methyltransferase (LAMT). Loganin then becomes a substrate for the enzyme secologanin synthase (SLS) to form secologanin, a secoiridoid monoterpene found as part of ipecac and terpene indole alkaloids. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects.

   

Loganic_acid

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid

C16H24O10 (376.1369)


Loganic acid is a cyclopentapyran that is 1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid substituted at positions 1, 6 and 7 by beta-D-glucosyloxy, hydroxy and methyl groups respectively It has a role as a plant metabolite. It is a cyclopentapyran, an alpha,beta-unsaturated monocarboxylic acid and a glucoside. It is a conjugate acid of a loganate. Loganic acid is a natural product found in Strychnos axillaris, Strychnos cocculoides, and other organisms with data available. A cyclopentapyran that is 1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid substituted at positions 1, 6 and 7 by beta-D-glucosyloxy, hydroxy and methyl groups respectively KEIO_ID L043 Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0951)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Salidroside

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethoxy]tetrahydropyran-3,4,5-triol

C14H20O7 (300.1209)


Salidroside is a glycoside. Salidroside is a natural product found in Plantago australis, Plantago coronopus, and other organisms with data available. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy.

   

Vomicin

2H-6a,4-(Ethaniminomethano)indolo(3,2,1-i)oxepino(2,3,4-de)quinoline-6,12(2H)-dione, 4a,5,13,13a,13b,13c-hedahydro-10-hydroxy-16-methyl-, (4aR-(4aR*,6aS*,13aS*,13bR*,13cS*))-

C22H24N2O4 (380.1736)


Vomicine is a member of carbazoles. Vomicine is a natural product found in Strychnos icaja, Strychnos wallichiana, and Strychnos nux-vomica with data available. Vomicine, an alkaloid, shows antidiabetic activity[1]. Vomicine, an alkaloid, shows antidiabetic activity[1].

   

secologanin

methyl (2S,3R,4S)-3-ethenyl-4-(2-oxoethyl)-2-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2H-pyran-5-carboxylate

C17H24O10 (388.1369)


Secologanin is a member of the class of compounds known as terpene glycosides. Terpene glycosides are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. Thus, secologanin is considered to be an isoprenoid lipid molecule. Secologanin is soluble (in water) and a very weakly acidic compound (based on its pKa). Secologanin can be found in a number of food items such as oyster mushroom, flaxseed, nectarine, and cereals and cereal products, which makes secologanin a potential biomarker for the consumption of these food products. Secologanin is a secoiridoid monoterpene synthesized from geranyl pyrophosphate in the mevalonate pathway. Secologanin then proceeds with dopamine or tryptamine to form ipecac and terpene indole alkaloids, respectively . Secologanin, a secoiridoid glucoside, is a pivotal terpenoid intermediate in the biosynthesis of biologically active monoterpenoid indole alkaloids such as reserpine, ajmaline, and vinblastine. Secologanin synthase (cytochrome P450 isoform CYP72A1) catalyzes the oxidative cleavage of loganin into Secologanin[1][2]. Secologanin, a secoiridoid glucoside, is a pivotal terpenoid intermediate in the biosynthesis of biologically active monoterpenoid indole alkaloids such as reserpine, ajmaline, and vinblastine. Secologanin synthase (cytochrome P450 isoform CYP72A1) catalyzes the oxidative cleavage of loganin into Secologanin[1][2].

   

Strychnine

(4aR,5aS,8aR,13aS,15aS,15bR)-4a,5,5a,7,8,13a,15,15a,15b,16-decahydro-2H-4,6-methanoindolo[3,2,1-ij]oxepino[2,3,4-de]pyrrolo[2,3-h]quinolin-14-one

C21H22N2O2 (334.1681)


Strychnine (/ˈstrɪkniːn, -nɪn/, STRIK-neen, -⁠nin, US chiefly /-naɪn/ -⁠nyne)[6][7] is a highly toxic, colorless, bitter, crystalline alkaloid used as a pesticide, particularly for killing small vertebrates such as birds and rodents. Strychnine, when inhaled, swallowed, or absorbed through the eyes or mouth, causes poisoning which results in muscular convulsions and eventually death through asphyxia.[8] While it is no longer used medicinally, it was used historically in small doses to strengthen muscle contractions, such as a heart and bowel stimulant[9] and performance-enhancing drug. The most common source is from the seeds of the Strychnos nux-vomica tree. Strychnine is a natural product found in Strychnos ignatii, Strychnos wallichiana D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants A monoterpenoid indole alkaloid that is strychnidine bearing a keto substituent at the 10-position. D018377 - Neurotransmitter Agents > D018684 - Glycine Agents D009676 - Noxae > D011042 - Poisons Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.465 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.456 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5745; ORIGINAL_PRECURSOR_SCAN_NO 5743 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5769; ORIGINAL_PRECURSOR_SCAN_NO 5767 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5764; ORIGINAL_PRECURSOR_SCAN_NO 5762 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5713; ORIGINAL_PRECURSOR_SCAN_NO 5712 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5746; ORIGINAL_PRECURSOR_SCAN_NO 5745 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5749; ORIGINAL_PRECURSOR_SCAN_NO 5746 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2322

   

Brucine

(8ξ,12ξ)-2,3-dimethoxystrychnidin-10-one

C23H26N2O4 (394.1892)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D007155 - Immunologic Factors CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2329 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.545 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.540 ORIGINAL_ACQUISITION_NO 5860; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; ORIGINAL_PRECURSOR_SCAN_NO 5859 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5850; ORIGINAL_PRECURSOR_SCAN_NO 5847 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5870; ORIGINAL_PRECURSOR_SCAN_NO 5868 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5860; ORIGINAL_PRECURSOR_SCAN_NO 5859 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5841; ORIGINAL_PRECURSOR_SCAN_NO 5839 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5876; ORIGINAL_PRECURSOR_SCAN_NO 5873 CONFIDENCE standard compound; INTERNAL_ID 971; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5855; ORIGINAL_PRECURSOR_SCAN_NO 5853 [Raw Data] CBA35_Brucine_pos_40eV_1-3_01_1629.txt [Raw Data] CBA35_Brucine_pos_10eV_1-3_01_1618.txt [Raw Data] CBA35_Brucine_pos_30eV_1-3_01_1628.txt [Raw Data] CBA35_Brucine_pos_20eV_1-3_01_1627.txt [Raw Data] CBA35_Brucine_pos_50eV_1-3_01_1630.txt

   

Tombozine

(15α,19E)-Sarpagan-17-ol

C19H22N2O (294.1732)


   

Strictosidine

3-α(S)-Strictosidine

C27H34N2O9 (530.2264)


D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids Annotation level-3 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.677 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.675 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.666

   

Deoxyloganin

Deoxyloganin

C17H26O9 (374.1577)


   

Cantleyine

(6S,7R)-6-hydroxy-7-methyl-6,7-dihydro-5H-cyclopenta[d]pyridine-4-carboxylic acid methyl ester

C11H13NO3 (207.0895)


   

Secologanin

methyl (2S,3R,4S)-3-ethenyl-4-(2-oxoethyl)-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4-dihydro-2H-pyran-5-carboxylate

C17H24O10 (388.1369)


(-)-secologanin is an iridoid monoterpenoid that is acetaldehyde in which on of the hydrogens of the methyl group has been replaced by a 2-(beta-D-glucopyranosyloxy)-3,4-dihydro-2H-pyran-4-yl group which is substituted at positions 3 and 5 by a vinyl and a methoxycarbonyl group, respectively (the 2S,3R,4S stereoisomer). It has a role as a plant metabolite. It is a beta-D-glucoside, a methyl ester, an aldehyde, an enoate ester, a secoiridoid glycoside and a member of pyrans. Secologanin is a natural product found in Lonicera japonica, Symphoricarpos orbiculatus, and other organisms with data available. An iridoid monoterpenoid that is acetaldehyde in which on of the hydrogens of the methyl group has been replaced by a 2-(beta-D-glucopyranosyloxy)-3,4-dihydro-2H-pyran-4-yl group which is substituted at positions 3 and 5 by a vinyl and a methoxycarbonyl group, respectively (the 2S,3R,4S stereoisomer). Secologanin, a secoiridoid glucoside, is a pivotal terpenoid intermediate in the biosynthesis of biologically active monoterpenoid indole alkaloids such as reserpine, ajmaline, and vinblastine. Secologanin synthase (cytochrome P450 isoform CYP72A1) catalyzes the oxidative cleavage of loganin into Secologanin[1][2]. Secologanin, a secoiridoid glucoside, is a pivotal terpenoid intermediate in the biosynthesis of biologically active monoterpenoid indole alkaloids such as reserpine, ajmaline, and vinblastine. Secologanin synthase (cytochrome P450 isoform CYP72A1) catalyzes the oxidative cleavage of loganin into Secologanin[1][2].

   

Cis-5-Caffeoylquinic acid

(1S,3R,4R,5R)-3-{[(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylic acid

C16H18O9 (354.0951)


Cis-5-Caffeoylquinic acid is a polyphenol compound found in foods of plant origin (PMID: 20428313) A polyphenol compound found in foods of plant origin (PhenolExplorer). Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

(1S,3R,4R,5R)-3-[3-(3,4-dihydroxyphenyl)prop-2-enoyloxy]-1,4,5-trihydroxy-cyclohexanecarboxylic acid

(1S,3R,4R,5R)-3-[3-(3,4-dihydroxyphenyl)prop-2-enoyloxy]-1,4,5-trihydroxy-cyclohexanecarboxylic acid

C16H18O9 (354.0951)


   

8-Epiloganic acid

6-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,6H,7H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H24O10 (376.1369)


   

Loganoside

Methyl 6-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,5H,6H,7H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C17H26O10 (390.1526)


Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects.

   

Brucine

4,5-dimethoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2(7),3,5,14-tetraen-9-one

C23H26N2O4 (394.1892)


   

Deoxyloganin

Methyl 7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,5H,6H,7H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C17H26O9 (374.1577)


   

Strychnin

12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C21H22N2O2 (334.1681)


   

Strychnine N-oxide

9-oxo-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-17-ium-17-olate

C21H22N2O3 (350.163)


   

Salidroside

2-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethoxy]oxane-3,4,5-triol

C14H20O7 (300.1209)


Salidroside is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Salidroside is soluble (in water) and a very weakly acidic compound (based on its pKa). Salidroside can be found in olive, which makes salidroside a potential biomarker for the consumption of this food product. Salidroside (Rhodioloside) is a glucoside of tyrosol found in the plant Rhodiola rosea. It is thought to be one of the compounds responsible for the antidepressant and anxiolytic actions of this plant, along with rosavin. Salidroside may be more active than rosavin, even though many commercially marketed Rhodiola rosea extracts are standardised for rosavin content rather than salidroside . Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy.

   

loganate

6-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,5H,6H,7H,7aH-cyclopenta[c]pyran-4-carboxylic acid

C16H23O10 (375.1291)


Loganate is also known as loganic acid. Loganate is soluble (in water) and a weakly acidic compound (based on its pKa). Loganate can be found in a number of food items such as hedge mustard, cinnamon, common sage, and welsh onion, which makes loganate a potential biomarker for the consumption of these food products. Loganic acid is an iridoid. Loganic acid is synthesized from 7-deoxyloganic acid by the enzyme 7-deoxyloganic acid hydroxylase (7-DLH). It is a substrate for the enzyme loganate O-methyltransferase for the production of loganin .

   

Strychnine N-Oxide

Strychnine N-Oxide

C21H22N2O3 (350.163)


A tertiary amine oxide resulting from the oxidation of the non-acylated nitrogen of strychnine. It is a metabolite of strychnine.

   

Ketologanin

Dehydrologanin

C17H24O10 (388.1369)


   

Protostrychnine

Protostrychnine

C21H24N2O3 (352.1787)


A monoterpenoid indole alkaloid with formula C21H24N2O3, isolated from Strychnos icaja and Strychnos nux-vomica.

   

α-Colubrine

alpha-Colubrine

C22H24N2O3 (364.1787)


A monoterpenoid indole alkaloid that is strychnine in which the hydrogen at position 3 has been replaced by a methoxy group. It is a minor alkaloid from Strychnos nux-vomica.

   
   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0951)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Brucin

InChI=1\C23H26N2O4\c1-27-16-8-14-15(9-17(16)28-2)25-20(26)10-18-21-13-7-19-23(14,22(21)25)4-5-24(19)11-12(13)3-6-29-18\h3,8-9,13,18-19,21-22H,4-7,10-11H2,1-2H

C23H26N2O4 (394.1892)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D007155 - Immunologic Factors

   

Isostrychnine

Isostrychnine

C21H22N2O2 (334.1681)


A monoterpenoid indole alkaloid with formula C21H22N2O2, originally isolated from the seeds of Strychnos nux-vomica.

   
   

Loganic acid

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid

C16H24O10 (376.1369)


8-Epiloganic acid is a natural product found in Plantago atrata, Lonicera japonica, and other organisms with data available. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].

   

Novacine

Novacine

C24H28N2O5 (424.1998)


A monoterpenoid indole alkaloid with formula C24H28N2O3, originallly isolated from the seeds of Strychnos nux-vomica.

   

Vomicine

Vomicine

C22H24N2O4 (380.1736)


Vomicine, an alkaloid, shows antidiabetic activity[1]. Vomicine, an alkaloid, shows antidiabetic activity[1].

   

Heriguard

Cyclohexanecarboxylic acid, 3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxy-, [1S-(1.alpha.,3.beta.,4.alpha.,5.alpha.)]-

C16H18O9 (354.0951)


Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

rhodosin

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethoxy]tetrahydropyran-3,4,5-triol

C14H20O7 (300.1209)


Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Salidroside is a prolyl endopeptidase inhibitor. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy.

   

[(1S,12S,13R,14S,15E)-15-ethylidene-3,17-diazapentacyclo[12.3.1.02,10.04,9.012,17]octadeca-2(10),4,6,8-tetraen-13-yl]methanol

[(1S,12S,13R,14S,15E)-15-ethylidene-3,17-diazapentacyclo[12.3.1.02,10.04,9.012,17]octadeca-2(10),4,6,8-tetraen-13-yl]methanol

C19H22N2O (294.1732)


   
   

6-Hydroxy-7-methyl-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid

6-Hydroxy-7-methyl-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid

C16H24O10 (376.1369)


   

methyl 3-ethenyl-4-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-ylmethyl)-2-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4-dihydro-2H-pyran-5-carboxylate

methyl 3-ethenyl-4-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-ylmethyl)-2-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4-dihydro-2H-pyran-5-carboxylate

C27H34N2O9 (530.2264)


   

threo-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[-(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol

threo-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[-(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol

C20H24O7 (376.1522)


A member of the class of propane-1,3-diols that is propane-1,3-diol substituted at position 1 by a 4-hydroxy-3-methoxyphenyl and at position 2 by a 4-[(1E)-3-hydroxyprop-1-en-1-yl]-2-methoxyphenoxy group (the 1R,2R stereoisomer). It is isolated from the whole plant of Lepisorus contortus.

   

6-(hydroxymethyl)-3,4-dimethoxyoxane-2,5-diol

6-(hydroxymethyl)-3,4-dimethoxyoxane-2,5-diol

C8H16O6 (208.0947)


   

(1r,13s,14z,19s,21s)-14-(2-hydroxyethylidene)-4,5-dimethoxy-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2(7),3,5,11-tetraen-9-one

(1r,13s,14z,19s,21s)-14-(2-hydroxyethylidene)-4,5-dimethoxy-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2(7),3,5,11-tetraen-9-one

C23H26N2O4 (394.1892)


   

2-{3-ethenyl-1h,2h,3h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl}ethanol

2-{3-ethenyl-1h,2h,3h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl}ethanol

C19H24N2O (296.1889)


   

3-ethyl-2-[(1r,11s,12r,13r,14e,19s,21s)-11-hydroxy-14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6,9-tetraen-10-yl]-6h,7h,12h,12bh-indolo[2,3-a]quinolizin-12b-yl

3-ethyl-2-[(1r,11s,12r,13r,14e,19s,21s)-11-hydroxy-14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6,9-tetraen-10-yl]-6h,7h,12h,12bh-indolo[2,3-a]quinolizin-12b-yl

C38H39N4O2 (583.3073)


   

17-methoxy-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

17-methoxy-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

C22H24N2O4 (380.1736)


   

(1r,11r,18s,20r,21r,22s)-10-[(2s,3z,12bs)-3-ethylidene-1h,2h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl]-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,9,14-pentaene

(1r,11r,18s,20r,21r,22s)-10-[(2s,3z,12bs)-3-ethylidene-1h,2h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl]-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,9,14-pentaene

C38H40N4O (568.3202)


   

6-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

6-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C21H22N2O3 (350.163)


   

(1r,11r,12r,13r,14e,19s,21s)-11-hydroxy-14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6-trien-9-one

(1r,11r,12r,13r,14e,19s,21s)-11-hydroxy-14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6-trien-9-one

C21H24N2O3 (352.1787)


   

5-methoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

5-methoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C22H24N2O3 (364.1787)


   

(2r,3s,4s,5r,6r)-3,4-dimethoxy-6-(methoxymethyl)oxane-2,5-diol

(2r,3s,4s,5r,6r)-3,4-dimethoxy-6-(methoxymethyl)oxane-2,5-diol

C9H18O6 (222.1103)


   

11-hydroxy-14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6-trien-9-one

11-hydroxy-14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6-trien-9-one

C21H24N2O3 (352.1787)


   

1-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-6-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

1-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-6-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H26O11 (418.1475)


   

6-(acetyloxy)-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

6-(acetyloxy)-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H26O11 (418.1475)


   

(11s,18s,20r,21r,22s)-6-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

(11s,18s,20r,21r,22s)-6-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C21H22N2O3 (350.163)


   

(1r,11s,18s,20r,21r,22s)-4-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

(1r,11s,18s,20r,21r,22s)-4-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C21H22N2O3 (350.163)


   

(1s,11s,18r,20r,21r,22s)-18-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

(1s,11s,18r,20r,21r,22s)-18-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C21H22N2O3 (350.163)


   

{15-ethylidene-3,17-diazapentacyclo[12.3.1.0²,¹⁰.0⁴,⁹.0¹²,¹⁷]octadeca-2(10),4,6,8-tetraen-13-yl}methanol

{15-ethylidene-3,17-diazapentacyclo[12.3.1.0²,¹⁰.0⁴,⁹.0¹²,¹⁷]octadeca-2(10),4,6,8-tetraen-13-yl}methanol

C19H22N2O (294.1732)


   

(1r,11s,18s,20r,21r,22s)-6-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

(1r,11s,18s,20r,21r,22s)-6-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C21H22N2O3 (350.163)


   

1-{[4-(acetyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

1-{[4-(acetyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H26O11 (418.1475)


   

(1s,4as,6s,7r,7ar)-6-hydroxy-7-methyl-1-{[(3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,6s,7r,7ar)-6-hydroxy-7-methyl-1-{[(3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H24O10 (376.1369)


   

3,4-dimethoxy-6-(methoxymethyl)oxane-2,5-diol

3,4-dimethoxy-6-(methoxymethyl)oxane-2,5-diol

C9H18O6 (222.1103)


   

(23s)-4,5-dimethoxy-9-oxo-12-oxa-8,18-diazaheptacyclo[16.5.2.0¹,¹⁹.0²,⁷.0⁸,²³.0¹¹,²².0¹⁵,²¹]pentacosa-2(7),3,5,14-tetraen-18-ium-18-olate

(23s)-4,5-dimethoxy-9-oxo-12-oxa-8,18-diazaheptacyclo[16.5.2.0¹,¹⁹.0²,⁷.0⁸,²³.0¹¹,²².0¹⁵,²¹]pentacosa-2(7),3,5,14-tetraen-18-ium-18-olate

C24H28N2O5 (424.1998)


   

[(1s,12s,13r,14s,15e)-15-ethylidene-3,17-diazapentacyclo[12.3.1.0²,¹⁰.0⁴,⁹.0¹²,¹⁷]octadeca-2(10),4,6,8-tetraen-13-yl]methanol

[(1s,12s,13r,14s,15e)-15-ethylidene-3,17-diazapentacyclo[12.3.1.0²,¹⁰.0⁴,⁹.0¹²,¹⁷]octadeca-2(10),4,6,8-tetraen-13-yl]methanol

C19H22N2O (294.1732)


   

(1s,4as,6s,7r,7as)-1-{[(2s,3r,4s,5r,6r)-4-(acetyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,6s,7r,7as)-1-{[(2s,3r,4s,5r,6r)-4-(acetyloxy)-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H26O11 (418.1475)


   

(1s,10s,11r,12s,22r)-16,17-dimethoxy-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14(19),15,17-tetraene-20,23-dione

(1s,10s,11r,12s,22r)-16,17-dimethoxy-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14(19),15,17-tetraene-20,23-dione

C24H28N2O5 (424.1998)


   

(21s)-11-hydroxy-14-(2-hydroxyethyl)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6-trien-9-one

(21s)-11-hydroxy-14-(2-hydroxyethyl)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6-trien-9-one

C21H26N2O3 (354.1943)


   

2-[(2r,3s,12bs)-3-ethenyl-1h,2h,3h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl]ethanol

2-[(2r,3s,12bs)-3-ethenyl-1h,2h,3h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl]ethanol

C19H24N2O (296.1889)


   
   

6,18-dihydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

6,18-dihydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C21H22N2O4 (366.1579)


   

2-methoxystrychnine

2-methoxystrychnine

C22H24N2O3 (364.1787)


   

(1s,11s,18r,20r,21r,22s)-9-oxo-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-17-ium-17-olate

(1s,11s,18r,20r,21r,22s)-9-oxo-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-17-ium-17-olate

C21H22N2O3 (350.163)


   

18-hydroxy-4,5-dimethoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2(7),3,5,14-tetraen-9-one

18-hydroxy-4,5-dimethoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2(7),3,5,14-tetraen-9-one

C23H26N2O5 (410.1842)


   

(1s,10s,11r,12s,22r)-15-hydroxy-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

(1s,10s,11r,12s,22r)-15-hydroxy-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

C22H24N2O4 (380.1736)


   

(1s,18r,20r,21r,22s)-18-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

(1s,18r,20r,21r,22s)-18-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C21H22N2O3 (350.163)


   

(1s,11s,18r,20r,21r,22s)-6,18-dihydroxy-5-methoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

(1s,11s,18r,20r,21r,22s)-6,18-dihydroxy-5-methoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C22H24N2O5 (396.1685)


   

(2r,3r,4s,5s,6r)-2-[2-(4-hydroxyphenyl)ethoxy]-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-[2-(4-hydroxyphenyl)ethoxy]-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C19H28O11 (432.1632)


   

(1r,11s,12r,13r,14z,19s,21s)-10-{3-ethyl-6h,7h-indolo[2,3-a]quinolizin-2-yl}-14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6,9-tetraen-11-ol

(1r,11s,12r,13r,14z,19s,21s)-10-{3-ethyl-6h,7h-indolo[2,3-a]quinolizin-2-yl}-14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6,9-tetraen-11-ol

C38H38N4O2 (582.2995)


   

(1s,11s,18s,20r,21r,22s)-4,5-dimethoxy-9-oxo-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2(7),3,5,14-tetraen-17-ium-17-olate

(1s,11s,18s,20r,21r,22s)-4,5-dimethoxy-9-oxo-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2(7),3,5,14-tetraen-17-ium-17-olate

C23H26N2O5 (410.1842)


   

(1s,10s,11r,12s,22r)-17-methoxy-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

(1s,10s,11r,12s,22r)-17-methoxy-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

C22H24N2O4 (380.1736)


   

6-hydroxy-5-methoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

6-hydroxy-5-methoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C22H24N2O4 (380.1736)


   

2-[2-(4-hydroxyphenyl)ethoxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol

2-[2-(4-hydroxyphenyl)ethoxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol

C19H28O11 (432.1632)


   

(1s,4as,6s,7r,7as)-1-{[(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-6-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,6s,7r,7as)-1-{[(2s,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-6-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H26O11 (418.1475)


   

(1s,4as,6s,7r,7ar)-6-hydroxy-7-methyl-1-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,6s,7r,7ar)-6-hydroxy-7-methyl-1-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C16H24O10 (376.1369)


   

(1s,11r,12s,13r,14z,19s,21r)-11-hydroxy-14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6-trien-9-one

(1s,11r,12s,13r,14z,19s,21r)-11-hydroxy-14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6-trien-9-one

C21H24N2O3 (352.1787)


   

(1s,12s)-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

(1s,12s)-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

C22H24N2O3 (364.1787)


   

18-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

18-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C21H22N2O3 (350.163)


   

bis(strychnine)

bis(strychnine)

C42H44N4O4 (668.3362)


   

16-methoxy-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

16-methoxy-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

C23H26N2O4 (394.1892)


   

6,18-dihydroxy-5-methoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

6,18-dihydroxy-5-methoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C22H24N2O5 (396.1685)


   

(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethoxy]oxane-3,4,5-triol

(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethoxy]oxane-3,4,5-triol

C14H20O7 (300.1209)


   

(1s,4as,6s,7r,7as)-1-{[(2s,3r,4r,5s,6r)-5-(acetyloxy)-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,6s,7r,7as)-1-{[(2s,3r,4r,5s,6r)-5-(acetyloxy)-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H26O11 (418.1475)


   

10-[(3z)-3-ethylidene-1h,2h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl]-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,9,14-pentaene

10-[(3z)-3-ethylidene-1h,2h,4h,6h,7h,12h,12bh-indolo[2,3-a]quinolizin-2-yl]-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,9,14-pentaene

C38H40N4O (568.3202)


   

(1s,4as,6s,7r,7as)-6-(acetyloxy)-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

(1s,4as,6s,7r,7as)-6-(acetyloxy)-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H26O11 (418.1475)


   

(2r,3s,4s,5r,6r)-6-(hydroxymethyl)-3,4-dimethoxyoxane-2,5-diol

(2r,3s,4s,5r,6r)-6-(hydroxymethyl)-3,4-dimethoxyoxane-2,5-diol

C8H16O6 (208.0947)


   

14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6,11-tetraen-9-one

14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6,11-tetraen-9-one

C21H22N2O2 (334.1681)


   

(1s,12s)-16,17-dimethoxy-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14(19),15,17-tetraene-20,23-dione

(1s,12s)-16,17-dimethoxy-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14(19),15,17-tetraene-20,23-dione

C24H28N2O5 (424.1998)


   

(1r,13s,14s,19s,21s)-14-(2-hydroxyethyl)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6,11-tetraen-9-one

(1r,13s,14s,19s,21s)-14-(2-hydroxyethyl)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6,11-tetraen-9-one

C21H24N2O2 (336.1838)


   

(1s,10s,11r,12s,22r)-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

(1s,10s,11r,12s,22r)-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

C22H24N2O3 (364.1787)


   

(1r,13s,14e,19s,21s)-14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6,11-tetraen-9-one

(1r,13s,14e,19s,21s)-14-(2-hydroxyethylidene)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6,11-tetraen-9-one

C21H22N2O2 (334.1681)


   

4-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

4-hydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C21H22N2O3 (350.163)


   

14-(2-hydroxyethyl)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6,11-tetraen-9-one

14-(2-hydroxyethyl)-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2,4,6,11-tetraen-9-one

C21H24N2O2 (336.1838)


   

(1s,11s,17r,18r,20r,21r,22s)-9-oxo-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-17-ium-17-olate

(1s,11s,17r,18r,20r,21r,22s)-9-oxo-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-17-ium-17-olate

C21H22N2O3 (350.163)


   

(1r,11s,18s,20r,21r,22s)-6-hydroxy-5-methoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

(1r,11s,18s,20r,21r,22s)-6-hydroxy-5-methoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C22H24N2O4 (380.1736)


   

(1s,11s,18r,20r,21r,22s)-18-hydroxy-4,5-dimethoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2(7),3,5,14-tetraen-9-one

(1s,11s,18r,20r,21r,22s)-18-hydroxy-4,5-dimethoxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2(7),3,5,14-tetraen-9-one

C23H26N2O5 (410.1842)


   

(1r,13s,14e,19s,21s)-14-(2-hydroxyethylidene)-4,5-dimethoxy-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2(7),3,5,11-tetraen-9-one

(1r,13s,14e,19s,21s)-14-(2-hydroxyethylidene)-4,5-dimethoxy-8,16-diazahexacyclo[11.5.2.1¹,⁸.0²,⁷.0¹⁶,¹⁹.0¹²,²¹]henicosa-2(7),3,5,11-tetraen-9-one

C23H26N2O4 (394.1892)


   

1-{[5-(acetyloxy)-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

1-{[5-(acetyloxy)-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxy-7-methyl-1h,4ah,5h,6h,7h,7ah-cyclopenta[c]pyran-4-carboxylic acid

C18H26O11 (418.1475)


   

3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-ol

3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-ol

C10H20O6 (236.126)


   

(2r,3r,4s,5s,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-ol

(2r,3r,4s,5s,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-ol

C10H20O6 (236.126)


   

(1s,11s,18r,20r,21r,22s)-6,18-dihydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

(1s,11s,18r,20r,21r,22s)-6,18-dihydroxy-12-oxa-8,17-diazaheptacyclo[15.5.2.0¹,¹⁸.0²,⁷.0⁸,²².0¹¹,²¹.0¹⁵,²⁰]tetracosa-2,4,6,14-tetraen-9-one

C21H22N2O4 (366.1579)


   

(1s,10s,11r,12s,22r)-16-methoxy-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

(1s,10s,11r,12s,22r)-16-methoxy-4-methyl-9-oxa-4,13-diazahexacyclo[9.8.3.2¹⁰,¹³.0¹,¹².0⁶,²².0¹⁴,¹⁹]tetracosa-6,14,16,18-tetraene-20,23-dione

C23H26N2O4 (394.1892)