Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0950778)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Dimethyltryptamine

N-(2-(1H-indol-3-yl)Ethyl)-N,N-dimethylamine (acd/name 4.0)

C12H16N2 (188.13134159999998)


An N-methylated indoleamine derivative, a serotonergic hallucinogen found in several plants, especially Prestonia amazonica (Apocynaceae) and in mammalian brain, blood, and urine. It apparently acts as an agonist at some types of serotonin receptors and an antagonist at others.; DMT is a derivative of tryptamine with two additional methyl groups at the amine nitrogen atom. DMT is often synthesized by the Speeter-Anthony synthesis from indole using oxalyl chloride, dimethylamine, and lithium aluminium hydride as reagents. DMT is usually used in its base form, but it is more stable as a salt, e.g. as a fumarate. In contrast to DMTs base, its salts are water-soluble. DMT in solution degrades relatively fast and should be stored protected from air and light in a freezer. Highly pure DMT crystals, when evaporated out of a solvent and depositing upon glass, often produce small but highly defined white crystalline needles which when viewed under intense light will sparkle, and appear colorless under high magnification. In labs, it has been known to be explosive under a certain degree of heat.; DMT is a powerful psychoactive substance. If DMT is smoked, injected, or orally ingested with an MAOI, it can produce powerful entheogenic experiences including intense visual hallucinations, euphoria, even true hallucinations (perceived extensions of reality). A trip sitter is recommended to assist the drug user in staying physically and mentally healthy, and, in the case of smoked DMT, to catch the pipe if the user loses awareness of it.; DMT is classified in the United States as a Schedule I drug. In December of 2004, the Supreme Court lifted a stay thereby allowing the Brazil-based Uniaeo do Vegetal (UDV) church to use a decoction containing DMT in their Christmas services that year. This decoction is a tea made from boiled leaves and vines, known as hoasca within the UDV, and ayahuasca in different cultures. In Gonzales v. O Centro EspArita Beneficente Uniaeo do Vegetal, the Supreme Court heard arguments on November 1, 2005 and unanimously ruled in February 2006 that the U.S. federal government must allow the UDV to import and consume the tea for religious ceremonies under the 1993 Religious Freedom Restoration Act. There are no drug tests that would show DMT usage. None of the basic NIDA 5 drug tests or any extended drug test will show a result for DMT.; Dimethyltryptamine (DMT), also known as N,N-dimethyltryptamine, is a psychedelic tryptamine. It is not to be confused with 5-MeO-DMT and is similar in chemical structure to the neurotransmitter serotonin. DMT is created in small amounts by the human body during normal metabolism by the enzyme tryptamine-N-methyltransferase. Pure DMT at room temperature is a clear or white crystalline solid. DMT was first chemically synthesized in 1931. It also occurs naturally in many species of plants. DMT-containing plants are used in several South American shamanic practices. It is one of the main active constituents of snuffs like yopo and of the drink ayahuasca.; Oral ingestion: DMT, which is broken down by the digestive enzyme monoamine oxidase, is practically inactive if taken orally, unless combined with a monoamine oxidase inhibitor (MAOI). The traditional South American ayahuasca, or yage, is a tea mixture containing DMT and a MAOI. There are a number of admixtures to this brew, but most commonly it is simply the leaves of Psychotria viridis (containing DMT), and the vine Banisteriopsis caapi (the source of MAOI). Other DMT containing plants, including Diplopterys cabrerana, are sometimes used in ayahuasca in different areas of South America. Two common sources in the western US are Reed canary grass (Phalaris arundinacea) and Harding grass (Phalaris aquatica). These invasive grasses contain low levels of DMT and other alkaloids. Taken orally with an appropriate MAOI, DMT produces a long lasting (over 3 hour), slow, but deep spiritual experience. MAOIs should be used with extreme caution as they... Dimethyltryptamine is an N-methylated indoleamine derivative, a serotonergic hallucinogen found in several plants, especially Prestonia amazonica (Apocynaceae) and in mammalian brain, blood, and urine. It apparently acts as an agonist at some types of serotonin receptors and an antagonist at others. DMT is a derivative of tryptamine with two additional methyl groups at the amine nitrogen atom. DMT is often synthesized by the Speeter-Anthony synthesis from indole using oxalyl chloride, dimethylamine, and lithium aluminium hydride as reagents. DMT is usually used in its base form, but it is more stable as a salt, e.g. as a fumarate. In contrast to DMTs base, its salts are water-soluble. DMT in solution degrades relatively fast and should be stored protected from air and light in a freezer. Highly pure DMT crystals, when evaporated out of a solvent and depositing upon glass, often produce small but highly defined white crystalline needles which when viewed under intense light will sparkle, and appear colorless under high magnification. In labs, it has been known to be explosive under a certain degree of heat. DMT is a powerful psychoactive substance. If DMT is smoked, injected, or orally ingested with an MAOI, it can produce powerful entheogenic experiences including intense visual hallucinations, euphoria, even true hallucinations (perceived extensions of reality). A trip sitter is recommended to assist the drug user in staying physically and mentally healthy, and, in the case of smoked DMT, to catch the pipe if the user loses awareness of it. DMT is classified in the United States as a Schedule I drug. There are no drug tests that would show DMT usage. None of the basic NIDA 5 drug tests or any extended drug test will show a result for DMT. Dimethyltryptamine (DMT), also known as N,N-dimethyltryptamine, is a psychedelic tryptamine. It is not to be confused with 5-MeO-DMT and is similar in chemical structure to the neurotransmitter serotonin. DMT is created in small amounts by the human body during normal metabolism by the enzyme tryptamine-N-methyltransferase. Pure DMT at room temperature is a clear or white crystalline solid. DMT was first chemically synthesized in 1931. It also occurs naturally in many species of plants. DMT-containing plants are used in several South American shamanic practices. It is one of the main active constituents of snuffs like yopo and of the drink ayahuasca. Oral ingestion: DMT, which is broken down by the digestive enzyme monoamine oxidase, is practically inactive if taken orally, unless combined with a monoamine oxidase inhibitor (MAOI). The traditional South American ayahuasca, or yage, is a tea mixture containing DMT and a MAOI. There are a number of admixtures to this brew, but most commonly it is simply the leaves of Psychotria viridis (containing DMT), and the vine Banisteriopsis caapi (the source of MAOI). Other DMT containing plants, including Diplopterys cabrerana, are sometimes used in ayahuasca in different areas of South America. Two common sources in the western US are Reed canary grass (Phalaris arundinacea) and Harding grass (Phalaris aquatica). These invasive grasses contain low levels of DMT and other alkaloids. Taken orally with an appropriate MAOI, DMT produces a long lasting (over 3 hour), slow, but deep spiritual experience. MAOIs should be used with extreme caution as they can have lethal complications with some prescription drugs, such as SSRI antidepressants, and some over-the-counter drugs. Smoked: If DMT is smoked, the maximal effects last for a short period of time (5-30 minutes dose dependent). The onset after inhalation is very fast (less than 45 seconds) and maximal effects are reached within about a minute. The Business Mans lunch trip is a common name due to the relatively short duration of vaporized, insufflated, or injected DMT. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens

   

3,4-Di-O-caffeoylquinic acid

(1S,3R,4R,5R)-3,4-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1267703999999)


Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].

   

Strictosidine

3-α(S)-Strictosidine

C27H34N2O9 (530.2264194)


D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids Annotation level-3 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.677 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.675 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.666

   

Isochlorogenic acid b

3,4-bis({[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1267703999999)


   

strictosidine

Methyl 3-ethenyl-4-({1h,2H,3H,4H,9H-pyrido[3,4-b]indol-1-yl}methyl)-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2H-pyran-5-carboxylic acid

C27H34N2O9 (530.2264194)


Strictosidine is a member of the class of compounds known as terpene glycosides. Terpene glycosides are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. Strictosidine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Strictosidine can be found in a number of food items such as okra, japanese persimmon, hedge mustard, and pepper (spice), which makes strictosidine a potential biomarker for the consumption of these food products. Strictosidine is formed by the Pictet‚ÄìSpengler reaction condensation of tryptamine with secologanin by the enzyme strictosidine synthase. Thousands of strictosidine derivatives are sometimes referred to by the broad phrase of monoterpene indole alkaloids. Strictosidine is the base molecule for numerous pharmaceutically valuable metabolites including quinine, camptothecin, ajmalicine, serpentine, vinblastine and vincristine . Strictosidine is a member of the class of compounds known as terpene glycosides. Terpene glycosides are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. Strictosidine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Strictosidine can be found in a number of food items such as okra, japanese persimmon, hedge mustard, and pepper (spice), which makes strictosidine a potential biomarker for the consumption of these food products. Strictosidine is formed by the Pictet–Spengler reaction condensation of tryptamine with secologanin by the enzyme strictosidine synthase. Thousands of strictosidine derivatives are sometimes referred to by the broad phrase of monoterpene indole alkaloids. Strictosidine is the base molecule for numerous pharmaceutically valuable metabolites including quinine, camptothecin, ajmalicine, serpentine, vinblastine and vincristine .

   

4,5-Dicaffeoylquinic acid

(1R,3R,4R,5S)-3,4-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1267703999999)


   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0950778)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

shikimate

Shikimic acid

C7H10O5 (174.052821)


Shikimic acid, also known as shikimate or 3,4,5-trihydroxy-1-cyclohexenecarboxylic acid, is a member of the class of compounds known as shikimic acids and derivatves. Shikimic acids and derivatves are cyclitols containing a cyclohexanecarboxylic acid substituted with three hydroxyl groups at positions 3, 4, and 5. Shikimic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Shikimic acid can be found in a number of food items such as date, rocket salad, redcurrant, and poppy, which makes shikimic acid a potential biomarker for the consumption of these food products. Shikimic acid can be found primarily in blood and urine. Shikimic acid exists in all living species, ranging from bacteria to humans. Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical metabolite in plants and microorganisms. Its name comes from the Japanese flower shikimi (シキミ, the Japanese star anise, Illicium anisatum), from which it was first isolated in 1885 by Johan Fredrik Eykman. The elucidation of its structure was made nearly 50 years later . Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants. Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants.

   

Gramin

InChI=1\C11H14N2\c1-13(2)8-9-7-12-11-6-4-3-5-10(9)11\h3-7,12H,8H2,1-2H

C11H14N2 (174.1156924)


Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1]. Gramine (Donaxine) is a natural alkaloid isolated from giant reed[2], acts as an active adiponectin receptor (AdipoR) agonist, with IC50s of 3.2 and 4.2 μM for AdipoR2 and AdipoR1, respectively[1]. Gramine is also a human and mouse β2-Adrenergic receptor (β2-AR) agonist[2]. Gramine (Donaxine) has anti-tumor, anti-viral and anti-inflammatory properties[1].

   

Dimethyltryptamine

N,N-DIMETHYLTRYPTAMINE

C12H16N2 (188.13134159999998)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens A tryptamine derivative having two N-methyl substituents on the side-chain.

   

shikimate

shikimate

C7H9O5 (173.0449964)


A cyclohexenecarboxylate that is the conjugate base of shikimic acid.

   

Tauro-omega-muricholic acid

Tauro-omega-muricholic acid

C26H45NO7S (515.291658)


   

(3z)-3-{2-[(3s,4z)-3-ethyl-3-hydroxy-1-methylpiperidin-4-ylidene]ethylidene}-7-methoxyindol-2-ol

(3z)-3-{2-[(3s,4z)-3-ethyl-3-hydroxy-1-methylpiperidin-4-ylidene]ethylidene}-7-methoxyindol-2-ol

C19H24N2O3 (328.17868339999995)


   

3-[2-(3-ethyl-1-methylpiperidin-4-ylidene)ethylidene]-7-methoxy-1h-indol-2-one

3-[2-(3-ethyl-1-methylpiperidin-4-ylidene)ethylidene]-7-methoxy-1h-indol-2-one

C19H24N2O2 (312.18376839999996)


   

(3z)-3-{2-[(3s,4z)-3-ethyl-1-methylpiperidin-4-ylidene]ethylidene}-7-methoxyindol-2-ol

(3z)-3-{2-[(3s,4z)-3-ethyl-1-methylpiperidin-4-ylidene]ethylidene}-7-methoxyindol-2-ol

C19H24N2O2 (312.18376839999996)


   

methyl 3-[(1s,4r,5r,8s,9s,11s,12s,13r)-12-ethenyl-5-[(2r,5r)-5-hydroperoxy-6-methylhept-6-en-2-yl]-11-hydroxy-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

methyl 3-[(1s,4r,5r,8s,9s,11s,12s,13r)-12-ethenyl-5-[(2r,5r)-5-hydroperoxy-6-methylhept-6-en-2-yl]-11-hydroxy-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

C30H48O5 (488.3501558)


   

methyl 3-[(1s,4r,5r,8s,9s,11s,12s,13r)-11-(acetyloxy)-5-[(2r,5r)-5-(acetyloxy)-6-methylhept-6-en-2-yl]-12-ethenyl-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

methyl 3-[(1s,4r,5r,8s,9s,11s,12s,13r)-11-(acetyloxy)-5-[(2r,5r)-5-(acetyloxy)-6-methylhept-6-en-2-yl]-12-ethenyl-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

C34H52O6 (556.3763692)


   

(1s,12s,18s,19r,20s)-19-ethenyl-18-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaene-12-carboxylic acid

(1s,12s,18s,19r,20s)-19-ethenyl-18-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaene-12-carboxylic acid

C27H32N2O9 (528.2107702)


   

(1s,3s)-1-{[(2s,3r,4s)-3-ethenyl-5-(methoxycarbonyl)-2-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]methyl}-1h,2h,3h,4h,9h-pyrido[3,4-b]indole-3-carboxylic acid

(1s,3s)-1-{[(2s,3r,4s)-3-ethenyl-5-(methoxycarbonyl)-2-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]methyl}-1h,2h,3h,4h,9h-pyrido[3,4-b]indole-3-carboxylic acid

C28H34N2O11 (574.2162494)


   

methyl 3-(3,4-dihydroxyphenyl)-3-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]propanoate

methyl 3-(3,4-dihydroxyphenyl)-3-[2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]propanoate

C25H24O10 (484.13694039999996)


   

methyl (3r)-3-(3,4-dihydroxyphenyl)-3-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]propanoate

methyl (3r)-3-(3,4-dihydroxyphenyl)-3-[(2r,3r)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2h-1-benzopyran-8-yl]propanoate

C25H24O10 (484.13694039999996)


   

(3z)-3-{2-[(4z)-3-ethyl-3-hydroxy-1-methylpiperidin-4-ylidene]ethylidene}-7-methoxyindol-2-ol

(3z)-3-{2-[(4z)-3-ethyl-3-hydroxy-1-methylpiperidin-4-ylidene]ethylidene}-7-methoxyindol-2-ol

C19H24N2O3 (328.17868339999995)


   

methyl 3-[11-(acetyloxy)-5-[5-(acetyloxy)-6-methylhept-6-en-2-yl]-12-ethenyl-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

methyl 3-[11-(acetyloxy)-5-[5-(acetyloxy)-6-methylhept-6-en-2-yl]-12-ethenyl-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

C34H52O6 (556.3763692)


   

(4s,5r,6s)-5-ethenyl-4-{9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

(4s,5r,6s)-5-ethenyl-4-{9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

C26H28N2O9 (512.1794718)


   

5-ethenyl-4-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

5-ethenyl-4-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

C26H32N2O9 (516.2107702)


   

(3z)-3-{2-[(4z)-3-ethyl-1-methylpiperidin-4-ylidene]ethylidene}-7-methoxyindol-2-ol

(3z)-3-{2-[(4z)-3-ethyl-1-methylpiperidin-4-ylidene]ethylidene}-7-methoxyindol-2-ol

C19H24N2O2 (312.18376839999996)


   

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-6a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-6a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C42H66O14 (794.4452336)


   

methyl 3-[12-ethenyl-5-(5-hydroperoxy-6-methylhept-6-en-2-yl)-11-hydroxy-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

methyl 3-[12-ethenyl-5-(5-hydroperoxy-6-methylhept-6-en-2-yl)-11-hydroxy-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

C30H48O5 (488.3501558)


   

3-[(1s,4r,5r,8s,9s,11s,12s,13r)-12-ethenyl-11-hydroxy-4,8-dimethyl-5-[(2r)-6-methylhept-5-en-2-yl]tetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoic acid

3-[(1s,4r,5r,8s,9s,11s,12s,13r)-12-ethenyl-11-hydroxy-4,8-dimethyl-5-[(2r)-6-methylhept-5-en-2-yl]tetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoic acid

C29H46O3 (442.34467659999996)


   

1,2,6b,9,9,12a-hexamethyl-6a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

1,2,6b,9,9,12a-hexamethyl-6a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C42H66O14 (794.4452336)


   

(1s,12s,18s,19r,20s)-19-ethenyl-18-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaene-12-carboxylic acid

(1s,12s,18s,19r,20s)-19-ethenyl-18-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaene-12-carboxylic acid

C27H32N2O9 (528.2107702)


   

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924126000001)


   

methyl 3-[12-ethenyl-11-hydroxy-4,8-dimethyl-5-(6-methyl-5-oxohept-6-en-2-yl)tetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

methyl 3-[12-ethenyl-11-hydroxy-4,8-dimethyl-5-(6-methyl-5-oxohept-6-en-2-yl)tetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

C30H46O4 (470.3395916)


   

methyl 3-[(1s,4r,5r,8s,9s,11s,12s,13r)-12-ethenyl-11-hydroxy-4,8-dimethyl-5-[(2r)-6-methyl-5-oxohept-6-en-2-yl]tetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

methyl 3-[(1s,4r,5r,8s,9s,11s,12s,13r)-12-ethenyl-11-hydroxy-4,8-dimethyl-5-[(2r)-6-methyl-5-oxohept-6-en-2-yl]tetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

C30H46O4 (470.3395916)


   

(3z)-3-{2-[(4e)-3-ethyl-1-methylpiperidin-4-ylidene]ethylidene}-7-methoxyindol-2-ol

(3z)-3-{2-[(4e)-3-ethyl-1-methylpiperidin-4-ylidene]ethylidene}-7-methoxyindol-2-ol

C19H24N2O2 (312.18376839999996)


   
   

methyl (4s,5r,6s)-5-ethenyl-4-[(1s)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl]-6-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate

methyl (4s,5r,6s)-5-ethenyl-4-[(1s)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl]-6-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate

C27H34N2O9 (530.2264194)


   

(1h-indol-3-ylmethyl)[2-(5-methoxy-1h-indol-3-yl)ethyl]methylamine

(1h-indol-3-ylmethyl)[2-(5-methoxy-1h-indol-3-yl)ethyl]methylamine

C21H23N3O (333.1841028)


   

19-ethenyl-18-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaene-12-carboxylic acid

19-ethenyl-18-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaene-12-carboxylic acid

C27H32N2O9 (528.2107702)


   

5-ethenyl-4-{9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

5-ethenyl-4-{9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

C26H28N2O9 (512.1794718)


   

1-{[3-ethenyl-5-(methoxycarbonyl)-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]methyl}-1h,2h,3h,4h,9h-pyrido[3,4-b]indole-3-carboxylic acid

1-{[3-ethenyl-5-(methoxycarbonyl)-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]methyl}-1h,2h,3h,4h,9h-pyrido[3,4-b]indole-3-carboxylic acid

C28H34N2O11 (574.2162494)


   
   

methyl 3-[(1s,4r,5r,8s,9s,11s,12s,13r)-12-ethenyl-11-hydroxy-5-[(2r,4e)-6-methoxy-6-methylhept-4-en-2-yl]-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

methyl 3-[(1s,4r,5r,8s,9s,11s,12s,13r)-12-ethenyl-11-hydroxy-5-[(2r,4e)-6-methoxy-6-methylhept-4-en-2-yl]-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

C31H50O4 (486.37089000000003)


   

methyl 3-[(1s,4r,5r,8s,9s,11s,12s,13r)-12-ethenyl-11-hydroxy-5-[(2r,4e)-6-hydroxy-6-methylhept-4-en-2-yl]-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

methyl 3-[(1s,4r,5r,8s,9s,11s,12s,13r)-12-ethenyl-11-hydroxy-5-[(2r,4e)-6-hydroxy-6-methylhept-4-en-2-yl]-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

C30H48O4 (472.3552408)


   

(3z)-3-{2-[(3r,4e)-3-ethyl-1-methylpiperidin-4-ylidene]ethylidene}-7-methoxyindol-2-ol

(3z)-3-{2-[(3r,4e)-3-ethyl-1-methylpiperidin-4-ylidene]ethylidene}-7-methoxyindol-2-ol

C19H24N2O2 (312.18376839999996)


   

15-(5,6-dihydroxy-6-methylheptan-2-yl)-6-hydroxy-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

15-(5,6-dihydroxy-6-methylheptan-2-yl)-6-hydroxy-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

C30H50O5 (490.365805)


   

3-[12-ethenyl-11-hydroxy-4,8-dimethyl-5-(6-methylhept-5-en-2-yl)tetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoic acid

3-[12-ethenyl-11-hydroxy-4,8-dimethyl-5-(6-methylhept-5-en-2-yl)tetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoic acid

C29H46O3 (442.34467659999996)


   

1,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

1,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924126000001)


   

methyl 3-[12-ethenyl-11-hydroxy-5-(6-hydroxy-6-methylhept-4-en-2-yl)-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

methyl 3-[12-ethenyl-11-hydroxy-5-(6-hydroxy-6-methylhept-4-en-2-yl)-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

C30H48O4 (472.3552408)


   

(1s,3r,6s,7s,8r,11s,12s,15r,16r)-15-[(2r,5s)-5,6-dihydroxy-6-methylheptan-2-yl]-6-hydroxy-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

(1s,3r,6s,7s,8r,11s,12s,15r,16r)-15-[(2r,5s)-5,6-dihydroxy-6-methylheptan-2-yl]-6-hydroxy-7,12,16-trimethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecane-7-carboxylic acid

C30H50O5 (490.365805)


   

6-methoxy-2-methyl-1h,3h,4h,9h-pyrido[3,4-b]indole

6-methoxy-2-methyl-1h,3h,4h,9h-pyrido[3,4-b]indole

C13H16N2O (216.12625659999998)


   

methyl 3-[12-ethenyl-11-hydroxy-5-(6-methoxy-6-methylhept-4-en-2-yl)-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

methyl 3-[12-ethenyl-11-hydroxy-5-(6-methoxy-6-methylhept-4-en-2-yl)-4,8-dimethyltetracyclo[7.5.0.0¹,¹³.0⁴,⁸]tetradecan-13-yl]propanoate

C31H50O4 (486.37089000000003)


   

(4s,5r,6s)-5-ethenyl-4-{9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

(4s,5r,6s)-5-ethenyl-4-{9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

C26H28N2O9 (512.1794718)