NCBI Taxonomy: 4018

Tropaeolaceae (ncbi_taxid: 4018)

found 109 associated metabolites at family taxonomy rank level.

Ancestor: Brassicales

Child Taxonomies: Tropaeolum, Magallana, Trophaeastrum

Fucoxanthin

(3S,3′S,5R,5′R,6S,6′R)-3′-(Acetyloxy)-6′,7′-didehydro-5,6-epoxy-5,5′,6,6′,7,8-hexahydro-3,5′-dihydroxy-8-oxo-β,β-carotene

C42H58O6 (658.4233168)


Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes. Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available. Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia [HMDB] Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3351-86-8 (retrieved 2024-11-06) (CAS RN: 3351-86-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0950778)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Nervonic acid

(15Z)-tetracos-15-enoic acid

C24H46O2 (366.3497616)


Nervonic acid is a long chain unsaturated fatty acid that is enriched in sphingomyelin. It consists of choline, sphingosine, phosphoric acid, and fatty acid. Nervonic acid may enhance the brain functions and prevent demyelination (Chemical Land21). Research shows that there is negative relationship between nervonic acid and obesity-related risk factors (PMID:16394593). Demyelination in adrenoleukodystrophy (ALD) is associated with an accumulation of very long chain saturated fatty acids stemming from a genetic defect in the peroxisomal beta oxidation system responsible for the chain shortening of these fatty acids. Sphingolipids from post mortem ALD brain have decreased levels of nervonic acid, 24:1(n-9), and increased levels of stearic acid, 18:0. (PMID:8072429). (15Z)-tetracosenoic acid is a tetracosenoic acid having a cis-double bond at position 15. It is a conjugate acid of a (15Z)-tetracosenoate. Nervonic acid is a natural product found in Tropaeolum speciosum, Calophyllum inophyllum, and other organisms with data available. Nervonic Acid is a monounsaturated fatty acid with a 24-carbon backbone and the sole double bond originating from the 9th carbon from the methyl end, with this bond in the cis- configuration. See also: Borage Seed Oil (part of). A tetracosenoic acid having a cis-double bond at position 15. Present in fish and rape seed oils Nervonic acid is a monounsaturated fatty acid important in the biosynthesis of myelin. Nervonic acid is a monounsaturated fatty acid important in the biosynthesis of myelin.

   

Benzyl isothiocyanate

4-12-00-02276 (Beilstein Handbook Reference)

C8H7NS (149.0299182)


Benzyl isothiocyanate, also known as alpha-isothiocyanatotoluene or isothiocyanic acid, benzyl ester, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. Benzyl isothiocyanate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Benzyl isothiocyanate is a mild, dusty, and horseradish tasting compound and can be found in a number of food items such as cabbage, garden onion, garden cress, and papaya, which makes benzyl isothiocyanate a potential biomarker for the consumption of these food products. Benzyl isothiocyanate (BITC) is an isothiocyanate found in plants of the mustard family . Benzyl isothiocyanate is an isothiocyanate and a member of benzenes. It has a role as an antibacterial drug. Benzyl isothiocyanate is a natural product found in Erucaria microcarpa, Simicratea welwitschii, and other organisms with data available. See also: Lepidium meyenii root (part of). Benzyl isothiocyanate is found in brassicas. Benzyl isothiocyanate is isolated from Tropaeolum majus (garden nasturtium) and Lepidium sativum (garden cress), also in other plants especially in the Cruciferae. Potential nutriceutical. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2]. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2].

   

Glucotropaeolin

{[(E)-(2-phenyl-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene)amino]oxy}sulfonic acid

C14H19NO9S2 (409.0501204)


Glucotropeolin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, glucotropaeolin has been detected, but not quantified in, several different foods, such as white mustards, garden cress, horseradish, cabbages, and Brassicas. This could make glucotropaeolin a potential biomarker for the consumption of these foods. Glucotropaeolin is isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress), and other crucifers. Isolated from seeds of Tropaeolum majus (garden nasturtium), Lepidium sativum (garden cress) and other crucifers. Glucotropaeolin is found in many foods, some of which are brassicas, horseradish, papaya, and white mustard. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Desmosterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H44O (384.3391974)


Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is found in many foods, some of which are fig, sago palm, mexican groundcherry, and pepper (c. frutescens). Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1]. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].

   

24-Methylenecholesterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methyl-5-methylideneheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548466)


24-Methylenecholesterol, also known as chalinasterol or ostreasterol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 24-methylenecholesterol is considered to be a sterol lipid molecule. 24-Methylenecholesterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 24-Methylenecholesterol is involved in the biosynthesis of steroids. 24-Methylenecholesterol is converted from 5-dehydroepisterol by 7-dehydrocholesterol reductase (EC 1.3.1.21). 24-Methylenecholesterol is converted into campesterol by delta24-sterol reductase (EC 1.3.1.72). 24-methylenecholesterol is a 3beta-sterol having the structure of cholesterol with a methylene group at C-24. It has a role as a mouse metabolite. It is a 3beta-sterol and a 3beta-hydroxy-Delta(5)-steroid. It is functionally related to a cholesterol. 24-Methylenecholesterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol having the structure of cholesterol with a methylene group at C-24. Constituent of clams and oysters 24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].

   

Pelargonidin 3-O-sophoroside

Pelargonidin 3-O-sophoroside

C27H31O15 (595.1662876)


   

Ximenic acid

(17E)-hexacos-17-enoic acid

C26H50O2 (394.38106)


Ximenic acid is found in fats and oils. Ximenic acid is isolated from seed fat of Ximenia species and fish oil lipids. Isolated from seed fat of Ximenia subspecies and fish oil lipids. Ximenic acid is found in fats and oils and fishes.

   

Alloxanthin

4-[(3E,5E,7E,9E,11E,13E,15E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H52O2 (564.3967092)


Alloxanthin is found in channel catfish. Alloxanthin is a constituent of many shellfish including the giant scallop (Pecten maximus) and edible mussel (Mytilus edulis). Constituent of many shellfish including the giant scallop (Pecten maximus) and edible mussel (Mytilus edulis). Alloxanthin is found in channel catfish and mollusks.

   

Mytiloxanthin

(2Z,4E,6E,8E,10E,12E,14E,16E)-3-hydroxy-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-19-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16-octaen-18-yn-1-one

C40H54O4 (598.4021884)


Mytiloxanthin is found in blue mussel. Mytiloxanthin is isolated from the mussels Mytilus edulis. Isolated from the mussels Mytilus edulis. Mytiloxanthin is found in blue mussel and mollusks.

   

1-(Isothiocyanatomethyl)-4-methoxybenzene

1-(Isothiocyanatomethyl)-4-methoxybenzene, 9ci

C9H9NOS (179.0404824)


1-(Isothiocyanatomethyl)-4-methoxybenzene is found in green vegetables. 1-(Isothiocyanatomethyl)-4-methoxybenzene is a constituent of Tropaeolum tuberosum (anu)

   

17Z-hexacosenoic acid

(17Z)-hexacos-17-enoic acid

C26H50O2 (394.38106)


17Z-hexacosenoic acid is also known as C26:1N-9 or 17cis-Hexacosenoate. 17Z-hexacosenoic acid is considered to be practically insoluble (in water) and acidic. 17Z-hexacosenoic acid is a fatty acid lipid molecule

   

Peridinin

3-Hydroxy-4-(10-{[4-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)-5-oxo-2,5-dihydrofuran-2-ylidene]methyl}-3-methylundeca-1,3,5,7,9-pentaen-1-ylidene)-3,5,5-trimethylcyclohexyl acetic acid

C39H50O7 (630.3556349999999)


   
   

PHENYLACETIC ACID

2-phenylacetic acid

C8H8O2 (136.0524268)


D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

Halocynthiaxanthin

(3S,3R,5R,6S)-7,8-Didehydro-5,6-epoxy-5,6,7,8-tetrahydro-8-oxo-beta,beta-carotene-3,3-diol

C40H54O4 (598.4021884)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids CONE_VOLTAGE is 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.

   

Benzyl isothiocyanate

phenylmethyl isothiocyanate

C8H7NS (149.0299182)


Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2]. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2].

   

Peridinin

Peridinin

C39H50O7 (630.3556349999999)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width to select the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.

   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0950778)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

5-(hydroxymethyl)-2-methoxybenzene-1,3-diol

5-(hydroxymethyl)-2-methoxybenzene-1,3-diol

C8H10O4 (170.057906)


   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Nervonic acid

Nervonic acid

C24H46O2 (366.34976159999997)


Nervonic acid is a monounsaturated fatty acid important in the biosynthesis of myelin. Nervonic acid is a monounsaturated fatty acid important in the biosynthesis of myelin.

   

PHENYLACETIC ACID

2-phenylacetic acid

C8H8O2 (136.0524268)


A monocarboxylic acid that is toluene in which one of the hydrogens of the methyl group has been replaced by a carboxy group. D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

3-indolebutyric acid

Indole-3-butyric acid

C12H13NO2 (203.09462380000002)


Indole-3-butyric acid (3-indolebutyric acid; IBA) is a plant growth auxin and a good rooting agent. It can promote herbs and woody ornamental plant rooting and used for improving fruit rate.

   

Fucoxanthin

InChI=1/C42H58O6/c1-29(18-14-19-31(3)22-23-37-38(6,7)26-35(47-33(5)43)27-40(37,10)46)16-12-13-17-30(2)20-15-21-32(4)36(45)28-42-39(8,9)24-34(44)25-41(42,11)48-42/h12-22,34-35,44,46H,24-28H2,1-11H3/b13-12+,18-14+,20-15+,29-16+,30-17+,31-19+,32-21+/t23?,34-

C42H58O6 (658.4233168000001)


Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes. Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available. An epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width to select the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities.

   

Alloxanthin

4-[(3E,5E,7E,9E,11E,13E,15E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H52O2 (564.3967092)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   
   
   

Ximenic acid

cis-17-hexacosenoic acid

C26H50O2 (394.38106)


   
   

Pectenol A/ (Pectenol)

Pectenol A/ (Pectenol)

C40H54O3 (582.4072734)


   

Pelargonidin 3-O-sophoroside

Pelargonidin 3-O-sophoroside

C27H30O15 (594.158463)


   

{[(E)-(2-phenyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene)amino]oxy}sulfonic acid

{[(E)-(2-phenyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene)amino]oxy}sulfonic acid

C14H19NO9S2 (409.0501204)


   

(2z,4e,6e,8e,10e,12e,14e,16e)-19-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-3-hydroxy-1-[(1r,4s)-4-hydroxy-1,2,2-trimethylcyclopentyl]-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

(2z,4e,6e,8e,10e,12e,14e,16e)-19-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-3-hydroxy-1-[(1r,4s)-4-hydroxy-1,2,2-trimethylcyclopentyl]-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O5 (616.4127526)


   

(2z,4e,6e,8e,10e,12e,14e,16e,18e)-19-[(3r,4s)-3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3-hydroxy-1-[(1r,4s)-4-hydroxy-1,2,2-trimethylcyclopentyl]-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

(2z,4e,6e,8e,10e,12e,14e,16e,18e)-19-[(3r,4s)-3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3-hydroxy-1-[(1r,4s)-4-hydroxy-1,2,2-trimethylcyclopentyl]-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O5 (616.4127526)


   

(4r,6e,10e,12e,14e,16e,18e,20e,22e)-4-hydroxy-25-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-6,7,10,14,19,23-hexamethylpentacosa-6,10,12,14,16,18,20,22-octaen-24-yne-2,9-dione

(4r,6e,10e,12e,14e,16e,18e,20e,22e)-4-hydroxy-25-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-6,7,10,14,19,23-hexamethylpentacosa-6,10,12,14,16,18,20,22-octaen-24-yne-2,9-dione

C40H54O4 (598.4021884)


   

(1r)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl acetate

(1r)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl acetate

C42H54O3 (606.4072734)


   

(1s)-4-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

(1s)-4-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H54O2 (566.4123584)


   

(1r,2r,4s)-1-[(1e,3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-2-ol

(1r,2r,4s)-1-[(1e,3e,5e,7e,9e,11e,13e,15e)-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-2-ol

C40H54O3 (582.4072734)


   

4-(18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyl-17-oxooctadeca-3,5,7,9,11,13,15-heptaen-1-yn-1-yl)-3,5,5-trimethylcyclohex-3-en-1-yl acetate

4-(18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyl-17-oxooctadeca-3,5,7,9,11,13,15-heptaen-1-yn-1-yl)-3,5,5-trimethylcyclohex-3-en-1-yl acetate

C42H56O5 (640.4127526)


   

2-(3,5-dihydroxy-4-oxidophenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

2-(3,5-dihydroxy-4-oxidophenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

C21H20O12 (464.09547200000003)


   

(1r)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-17-oxooctadeca-3,5,7,9,11,13,15-heptaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl acetate

(1r)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-17-oxooctadeca-3,5,7,9,11,13,15-heptaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl acetate

C42H56O5 (640.4127526)


   

1-[2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-18-{2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl}-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

1-[2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-18-{2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl}-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O5 (616.4127526)


   

(2z,4e,6e,8e,10e,12e,14z,16e,18e)-19-[(3r,4s)-3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3-hydroxy-1-[(1r,4s)-4-hydroxy-1,2,2-trimethylcyclopentyl]-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

(2z,4e,6e,8e,10e,12e,14z,16e,18e)-19-[(3r,4s)-3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3-hydroxy-1-[(1r,4s)-4-hydroxy-1,2,2-trimethylcyclopentyl]-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O5 (616.4127526)


   

3-hydroxy-4-{11-[4-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)-5-oxofuran-2-ylidene]-3,10-dimethylundeca-1,3,5,7,9-pentaen-1-ylidene}-3,5,5-trimethylcyclohexyl acetate

3-hydroxy-4-{11-[4-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)-5-oxofuran-2-ylidene]-3,10-dimethylundeca-1,3,5,7,9-pentaen-1-ylidene}-3,5,5-trimethylcyclohexyl acetate

C39H50O7 (630.3556349999999)


   

18-(3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-1-[2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

18-(3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-1-[2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O5 (616.4127526)


   

(2z,4e,6e,8e,10e)-19-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)-3-hydroxy-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

(2z,4e,6e,8e,10e)-19-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)-3-hydroxy-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O5 (616.4127526)


   

(1r,3as,3bs,7s,9ar,9bs,11as)-1-[(2r,5z)-5-isopropylhept-5-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11as)-1-[(2r,5z)-5-isopropylhept-5-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H48O (412.37049579999996)


   

n,n'-bis[(4-methoxyphenyl)methyl]carbamimidothioic acid

n,n'-bis[(4-methoxyphenyl)methyl]carbamimidothioic acid

C17H20N2O2S (316.124542)


   

(1s,3r)-3-hydroxy-4-[(3e,5e,7e,9e)-11-[(2z)-4-[(1e)-2-[(1s)-1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl]ethenyl]-5-oxofuran-2-ylidene]-3,10-dimethylundeca-1,3,5,7,9-pentaen-1-ylidene]-3,5,5-trimethylcyclohexyl acetate

(1s,3r)-3-hydroxy-4-[(3e,5e,7e,9e)-11-[(2z)-4-[(1e)-2-[(1s)-1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl]ethenyl]-5-oxofuran-2-ylidene]-3,10-dimethylundeca-1,3,5,7,9-pentaen-1-ylidene]-3,5,5-trimethylcyclohexyl acetate

C39H48O7 (628.3399858)


   

(5z)-5-[(2e,4e,6e)-11-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)-2,9-dimethylundeca-2,4,6,8,10-pentaen-1-ylidene]-3-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)furan-2-one

(5z)-5-[(2e,4e,6e)-11-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)-2,9-dimethylundeca-2,4,6,8,10-pentaen-1-ylidene]-3-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)furan-2-one

C37H48O6 (588.3450708)


   

4-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

4-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H54O2 (566.4123584)


   

3-hydroxy-4-(11-{4-[2-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)ethenyl]-5-oxofuran-2-ylidene}-3,10-dimethylundeca-1,3,5,7,9-pentaen-1-ylidene)-3,5,5-trimethylcyclohexyl acetate

3-hydroxy-4-(11-{4-[2-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)ethenyl]-5-oxofuran-2-ylidene}-3,10-dimethylundeca-1,3,5,7,9-pentaen-1-ylidene)-3,5,5-trimethylcyclohexyl acetate

C39H48O7 (628.3399858)


   

4-{18-[2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-3,7,12,16-tetramethyl-17-oxooctadeca-3,5,7,9,11,13,15-heptaen-1-yn-1-yl}-3,5,5-trimethylcyclohex-3-en-1-yl acetate

4-{18-[2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-3,7,12,16-tetramethyl-17-oxooctadeca-3,5,7,9,11,13,15-heptaen-1-yn-1-yl}-3,5,5-trimethylcyclohex-3-en-1-yl acetate

C42H56O5 (640.4127526)


   

4-[18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl acetate

4-[18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl acetate

C42H54O3 (606.4072734)


   

1-[2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-17-yn-2-one

1-[2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-17-yn-2-one

C40H54O4 (598.4021884)


   

(5z)-5-[(2e,4e,6e,8e)-11-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-2,9-dimethylundeca-2,4,6,8,10-pentaen-1-ylidene]-3-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]furan-2-one

(5z)-5-[(2e,4e,6e,8e)-11-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-2,9-dimethylundeca-2,4,6,8,10-pentaen-1-ylidene]-3-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]furan-2-one

C37H48O6 (588.3450708)


   

(4s,6e,10e,12e,14e,16e,18e,20e,22e)-4-hydroxy-25-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-6,7,10,14,19,23-hexamethylpentacosa-6,10,12,14,16,18,20,22-octaen-24-yne-2,9-dione

(4s,6e,10e,12e,14e,16e,18e,20e,22e)-4-hydroxy-25-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-6,7,10,14,19,23-hexamethylpentacosa-6,10,12,14,16,18,20,22-octaen-24-yne-2,9-dione

C40H54O4 (598.4021884)


   

4-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

4-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-1,17-diyn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol

C40H52O2 (564.3967092)


   

(2z,4e,6e,8e,10e)-3-hydroxy-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-19-{2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl}-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

(2z,4e,6e,8e,10e)-3-hydroxy-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-19-{2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl}-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O5 (616.4127526)


   

(1r)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(2s,3r,5r)-2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-3,7,12,16-tetramethyl-17-oxooctadeca-3,5,7,9,11,13,15-heptaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl acetate

(1r)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(2s,3r,5r)-2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-3,7,12,16-tetramethyl-17-oxooctadeca-3,5,7,9,11,13,15-heptaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl acetate

C42H56O5 (640.4127526)


   

3-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)-1λ⁴-chromen-1-ylium

3-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)-1λ⁴-chromen-1-ylium

[C27H31O15]+ (595.1662876)


   

(3e,5e,7e,9e,11e,13e,15e)-18-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-1-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

(3e,5e,7e,9e,11e,13e,15e)-18-[(2r,4s)-2,4-dihydroxy-2,6,6-trimethylcyclohexylidene]-1-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O5 (616.4127526)


   

4-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-3,5,5-trimethylcyclohex-3-ene-1,2-diol

4-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-3,5,5-trimethylcyclohex-3-ene-1,2-diol

C40H54O3 (582.4072734)


   

4-hydroxy-25-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-6,7,10,14,19,23-hexamethylpentacosa-6,10,12,14,16,18,20,22-octaen-24-yne-2,9-dione

4-hydroxy-25-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-6,7,10,14,19,23-hexamethylpentacosa-6,10,12,14,16,18,20,22-octaen-24-yne-2,9-dione

C40H54O4 (598.4021884)


   

(3e,5e,7e,9e,11e,13e,15e,17e)-1-[(2s,3r,5r)-2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-18-[(1r,2r,4s)-2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

(3e,5e,7e,9e,11e,13e,15e,17e)-1-[(2s,3r,5r)-2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-18-[(1r,2r,4s)-2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O5 (616.4127526)


   

(5z)-5-[(2e,4e,6e)-11-(3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-2,9-dimethylundeca-2,4,6,8,10-pentaen-1-ylidene]-3-(2-{2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl}ethenyl)furan-2-one

(5z)-5-[(2e,4e,6e)-11-(3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-2,9-dimethylundeca-2,4,6,8,10-pentaen-1-ylidene]-3-(2-{2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl}ethenyl)furan-2-one

C37H48O6 (588.3450708)


   

(5z)-5-[(2e,4e,6e,8e,10e)-11-[(3r,4s)-3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,9-dimethylundeca-2,4,6,8,10-pentaen-1-ylidene]-3-[(1e)-2-[(1r,2r,4s)-2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl]ethenyl]furan-2-one

(5z)-5-[(2e,4e,6e,8e,10e)-11-[(3r,4s)-3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,9-dimethylundeca-2,4,6,8,10-pentaen-1-ylidene]-3-[(1e)-2-[(1r,2r,4s)-2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl]ethenyl]furan-2-one

C37H48O6 (588.3450708)


   

(5z)-3-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]-5-[(2e,4e,6e,8e)-11-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,9-dimethylundeca-2,4,6,8-tetraen-10-yn-1-ylidene]furan-2-one

(5z)-3-[(1e)-2-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]ethenyl]-5-[(2e,4e,6e,8e)-11-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,9-dimethylundeca-2,4,6,8-tetraen-10-yn-1-ylidene]furan-2-one

C37H46O5 (570.3345065999999)


   

(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(3r,4s)-3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-1-[(2s,3r,5r)-2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(3r,4s)-3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-1-[(2s,3r,5r)-2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O5 (616.4127526)


   

[(2-phenyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene)amino]oxysulfonic acid

[(2-phenyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene)amino]oxysulfonic acid

C14H19NO9S2 (409.0501204)


   

(3e,5e,7e,9e)-18-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)-1-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

(3e,5e,7e,9e)-18-(2,4-dihydroxy-2,6,6-trimethylcyclohexylidene)-1-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O5 (616.4127526)


   
   

(4e,6e,8e,10e,12e,14e)-17-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-2,6,11,15-tetramethylheptadeca-2,4,6,8,10,12,14-heptaen-16-ynal

(4e,6e,8e,10e,12e,14e)-17-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-2,6,11,15-tetramethylheptadeca-2,4,6,8,10,12,14-heptaen-16-ynal

C30H38O2 (430.28716479999997)


   

3-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)-5-[(4e,6e,8e)-11-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-2,9-dimethylundeca-2,4,6,8-tetraen-10-yn-1-ylidene]furan-2-one

3-(2-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}ethenyl)-5-[(4e,6e,8e)-11-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-2,9-dimethylundeca-2,4,6,8-tetraen-10-yn-1-ylidene]furan-2-one

C37H46O5 (570.3345065999999)


   

(3e,5e,7e,9e,11e,13e,15e)-1-[(2s,3r,5r)-2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-17-yn-2-one

(3e,5e,7e,9e,11e,13e,15e)-1-[(2s,3r,5r)-2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-18-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-17-yn-2-one

C40H54O4 (598.4021884)


   

(2z,4e,6e,8e,10e)-19-(3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3-hydroxy-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

(2z,4e,6e,8e,10e)-19-(3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3-hydroxy-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O5 (616.4127526)


   

(3e,5e,7e,9e)-1-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-17-yn-2-one

(3e,5e,7e,9e)-1-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-3,5,7,9,11,13,15-heptaen-17-yn-2-one

C40H54O4 (598.4021884)


   

(2e,4e,6e,8e,10e,12e,14e)-17-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,6,11,15-tetramethylheptadeca-2,4,6,8,10,12,14-heptaen-16-ynal

(2e,4e,6e,8e,10e,12e,14e)-17-[(4r)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2,6,11,15-tetramethylheptadeca-2,4,6,8,10,12,14-heptaen-16-ynal

C30H38O2 (430.28716479999997)


   

(2z,4e,6e,8e,10e,12e,14e,16e,18e)-3-hydroxy-1-[(1r,4s)-4-hydroxy-1,2,2-trimethylcyclopentyl]-19-[(1r,2r,4s)-2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl]-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

(2z,4e,6e,8e,10e,12e,14e,16e,18e)-3-hydroxy-1-[(1r,4s)-4-hydroxy-1,2,2-trimethylcyclopentyl]-19-[(1r,2r,4s)-2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl]-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O5 (616.4127526)


   

(2z,4e,6e,8e,10e)-3-hydroxy-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-19-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16-octaen-18-yn-1-one

(2z,4e,6e,8e,10e)-3-hydroxy-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-19-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16-octaen-18-yn-1-one

C40H54O4 (598.4021884)


   

1-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-2-ol

1-[(9e,11e,13e,15e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-2-ol

C40H54O3 (582.4072734)