NCBI Taxonomy: 89640

Ipomoea carnea (ncbi_taxid: 89640)

found 81 associated metabolites at species taxonomy rank level.

Ancestor: Ipomoea

Child Taxonomies: Ipomoea carnea subsp. fistulosa

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0950778)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Palmitone

hentriacontan-16-one

C31H62O (450.48004019999996)


Constituent of Piper nigrum (pepper). Palmitone is found in herbs and spices, pepper (spice), and potato. Palmitone is found in herbs and spices. Palmitone is a constituent of Piper nigrum (pepper)

   

Swainsonine

1,2,8-INDOLIZINETRIOL, OCTAHYDRO-, (1S-(1.ALPHA.,2.ALPHA.,8.BETA.,8A.BETA.))-

C8H15NO3 (173.105188)


Swainsonine is an indolizidine alkaloid isolated from the plant Swainsona canescens with three hydroxy substituents at positions 1, 2 and 8. It has a role as an antineoplastic agent, an immunological adjuvant, an EC 3.2.1.114 (mannosyl-oligosaccharide 1,3-1,6-alpha-mannosidase) inhibitor and a plant metabolite. An indolizidine alkaloid from the plant Swainsona canescens that is a potent alpha-mannosidase inhibitor. Swainsonine also exhibits antimetastatic, antiproliferative, and immunomodulatory activity. Swainsonine is a natural product found in Slafractonia leguminicola, Astragalus whitneyi, and other organisms with data available. Swainsonine is a plant toxin found in locoweed (families Fabaceae, Oxytropis, Astragalus and Swainsona) and some fungi (Metarhizium anisopliae, Rizoctonia leguminicola). It has been known to cause a potentially lethal central nervous system condition in livestock known as locoism and is a significant cause of economic losses in livestock industries. Along with slaframine, the other biologially active compound of R. leguminicola, it may contribute to a condition called "slobbers syndrome" in livestock that has ingested contaminated feed. (L1248, A3092) An indolizidine alkaloid from the plant Swainsona canescens that is a potent alpha-mannosidase inhibitor. Swainsonine also exhibits antimetastatic, antiproliferative, and immunomodulatory activity. An indolizidine alkaloid isolated from the plant Swainsona canescens with three hydroxy substituents at positions 1, 2 and 8. C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent > C2117 - Carbohydrate Processing Inhibitor C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent C471 - Enzyme Inhibitor > C2119 - Golgi Alpha-Mannosidase II Inhibitor C274 - Antineoplastic Agent > C2196 - Antimetastatic Agent D000970 - Antineoplastic Agents D007155 - Immunologic Factors D004791 - Enzyme Inhibitors

   

Calystegine B2

8-azabicyclo[3.2.1]octane-1,2,3,4-tetrol

C7H13NO4 (175.0844538)


Alkaloid from Solanum tuberosum (potato), Solanum melongena (aubergine). Calystegine B2 is found in many foods, some of which are alcoholic beverages, fruits, swamp cabbage, and eggplant. Calystegine B2 is found in alcoholic beverages. Calystegine B2 is an alkaloid from Solanum tuberosum (potato), Solanum melongena (aubergine).

   

Calystegine C1

8-azabicyclo[3.2.1]octane-1,2,3,4,6-pentol

C7H13NO5 (191.0793688)


Alkaloid from Morus alba (white mulberry) and Lycium chinense (Chinese boxthorn). Calystegine C1 is found in many foods, some of which are tea, coffee and coffee products, fruits, and herbs and spices. Calystegine C2 is found in coffee and coffee products. Calystegine C2 is an alkaloid from Lycium chinense (Chinese boxthorn).

   

8,8a-Diepiswainsonine

octahydroindolizine-1,2,8-triol

C8H15NO3 (173.105188)


   

Octahydroindolizine-1,2-diol

Octahydroindolizine-1,2-diol

C8H15NO2 (157.110273)


   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0950778)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Hyperoside

Quercetin 3-beta-D-galactopyranoside

C21H20O12 (464.09547200000003)


[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

hexatetracontanoic acid

hexatetracontanoic acid

C46H92O2 (676.7096932)


   

Jyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Calystegine C1

8-azabicyclo[3.2.1]octane-1,2,3,4,6-pentol

C7H13NO5 (191.0793688)


   

C46:0

hexatetracontanoic acid

C46H92O2 (676.7096932)


   

palmitone

hentriacontan-16-one

C31H62O (450.48004019999996)


   
   

16-Hentriacontanone

hentriacontan-16-one

C31H62O (450.48004019999996)


A dialkyl ketone that is hentriacontane in which the hydrogens at position 16 are replaced by an oxo group.

   

8-azabicyclo[3.2.1]octane-1,2,3,4,6-pentol

8-azabicyclo[3.2.1]octane-1,2,3,4,6-pentol

C7H13NO5 (191.0793688)


   

hexacosan-1-ol

hexacosan-1-ol

C26H54O (382.41744339999997)


A very long-chain primary fatty alcohol that is hexacosane in which a hydrogen attached to one of the terminal carbons is replaced by a hydroxy group.

   

2-epilentiginosine

2-epilentiginosine

C8H15NO2 (157.110273)


   

(1r,2s,3r,4s,5r)-8-azabicyclo[3.2.1]octane-1,2,3,4-tetrol

(1r,2s,3r,4s,5r)-8-azabicyclo[3.2.1]octane-1,2,3,4-tetrol

C7H13NO4 (175.0844538)


   

(1r,2s,3r,5s,6r)-8-azabicyclo[3.2.1]octane-1,2,3,6-tetrol

(1r,2s,3r,5s,6r)-8-azabicyclo[3.2.1]octane-1,2,3,6-tetrol

C7H13NO4 (175.0844538)


   

(1r,2s,3r,4s,5r,6r)-8-azabicyclo[3.2.1]octane-1,2,3,4,6-pentol

(1r,2s,3r,4s,5r,6r)-8-azabicyclo[3.2.1]octane-1,2,3,4,6-pentol

C7H13NO5 (191.0793688)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.09547200000003)


   

4-hydroxy-1-methylpyrrolidine-2-carboxylic acid

4-hydroxy-1-methylpyrrolidine-2-carboxylic acid

C6H11NO3 (145.0738896)


   

3-{[(2s,3r,4r,5s,6s)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-1λ⁴-chromen-1-ylium

3-{[(2s,3r,4r,5s,6s)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2r,3r,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-1λ⁴-chromen-1-ylium

[C27H31O15]+ (595.1662876)


   

(1r,2r,3r,4s,5r)-8-azabicyclo[3.2.1]octane-1,2,3,4-tetrol

(1r,2r,3r,4s,5r)-8-azabicyclo[3.2.1]octane-1,2,3,4-tetrol

C7H13NO4 (175.0844538)


   

8-azabicyclo[3.2.1]octane-1,2,3,6-tetrol

8-azabicyclo[3.2.1]octane-1,2,3,6-tetrol

C7H13NO4 (175.0844538)