NCBI Taxonomy: 336032

Stenostomum acreanum (ncbi_taxid: 336032)

found 66 associated metabolites at species taxonomy rank level.

Ancestor: Stenostomum

Child Taxonomies: none taxonomy data.

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0950778)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Shikimic acid

Shikimic acid [3R-(3alpha,4alpha,5beta)]-3,4,5-Trihydroxy-1-cyclohexene-1-carboxylic acid

C7H10O5 (174.052821)


Shikimic acid is a cyclohexenecarboxylic acid that is cyclohex-1-ene-1-carboxylic acid substituted by hydroxy groups at positions 3, 4 and 5 (the 3R,4S,5R stereoisomer). It is an intermediate metabolite in plants and microorganisms. It has a role as an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite and a plant metabolite. It is a cyclohexenecarboxylic acid, a hydroxy monocarboxylic acid and an alpha,beta-unsaturated monocarboxylic acid. It is a conjugate acid of a shikimate. Shikimic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Shikimic acid is a natural product found in Quercus mongolica, Populus tremula, and other organisms with data available. Shikimic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A tri-hydroxy cyclohexene carboxylic acid important in biosynthesis of so many compounds that the shikimate pathway is named after it. Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical intermediate in plants and microorganisms. Its name comes from the Japanese flower shikimi (the Japanese star anise, Illicium anisatum), from which it was first isolated. Shikimic acid is a precursor for: the aromatic amino acids phenylalanine and tyrosine; indole, indole derivatives and tryptophan; many alkaloids and other aromatic metabolites; tannins; and lignin. In pharmaceutical industry, shikimic acid from chinese star anise is used as a base material for production of Tamiflu (oseltamivir). Although shikimic acid is present in most autotrophic organisms, it is a biosynthetic intermediate and generally found in very low concentrations. A cyclohexenecarboxylic acid that is cyclohex-1-ene-1-carboxylic acid substituted by hydroxy groups at positions 3, 4 and 5 (the 3R,4S,5R stereoisomer). It is an intermediate metabolite in plants and microorganisms. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 175 KEIO_ID S012 Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants. Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants.

   

3,4-Di-O-caffeoylquinic acid

(1S,3R,4R,5R)-3,4-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1267703999999)


Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].

   

Strictosidine

3-α(S)-Strictosidine

C27H34N2O9 (530.2264194)


D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids Annotation level-3 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.677 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.675 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.666

   

Isochlorogenic acid b

3,4-bis({[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1267703999999)


   

strictosidine

Methyl 3-ethenyl-4-({1h,2H,3H,4H,9H-pyrido[3,4-b]indol-1-yl}methyl)-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2H-pyran-5-carboxylic acid

C27H34N2O9 (530.2264194)


Strictosidine is a member of the class of compounds known as terpene glycosides. Terpene glycosides are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. Strictosidine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Strictosidine can be found in a number of food items such as okra, japanese persimmon, hedge mustard, and pepper (spice), which makes strictosidine a potential biomarker for the consumption of these food products. Strictosidine is formed by the Pictet‚ÄìSpengler reaction condensation of tryptamine with secologanin by the enzyme strictosidine synthase. Thousands of strictosidine derivatives are sometimes referred to by the broad phrase of monoterpene indole alkaloids. Strictosidine is the base molecule for numerous pharmaceutically valuable metabolites including quinine, camptothecin, ajmalicine, serpentine, vinblastine and vincristine . Strictosidine is a member of the class of compounds known as terpene glycosides. Terpene glycosides are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. Strictosidine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Strictosidine can be found in a number of food items such as okra, japanese persimmon, hedge mustard, and pepper (spice), which makes strictosidine a potential biomarker for the consumption of these food products. Strictosidine is formed by the Pictet–Spengler reaction condensation of tryptamine with secologanin by the enzyme strictosidine synthase. Thousands of strictosidine derivatives are sometimes referred to by the broad phrase of monoterpene indole alkaloids. Strictosidine is the base molecule for numerous pharmaceutically valuable metabolites including quinine, camptothecin, ajmalicine, serpentine, vinblastine and vincristine .

   

4,5-Dicaffeoylquinic acid

(1R,3R,4R,5S)-3,4-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1267703999999)


   

3,4-Di-O-caffeoylquinic acid

Cyclohexanecarboxylic acid, 3,4-bis(((2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl)oxy)-1,5-dihydroxy-, (1S,3R,4R,5R)-

C25H24O12 (516.1267703999999)


Isochlorogenic acid b is a quinic acid. 3,4-Dicaffeoylquinic acid is a natural product found in Centaurea bracteata, Strychnos axillaris, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (part of). Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].

   

3,4-Di-O-caffeoylquinic acid

Cyclohexanecarboxylic acid, 3,4-bis(((2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propen-1-yl)oxy)-1,5-dihydroxy-, (1S,3R,4R,5R)-

C25H24O12 (516.1267703999999)


Isochlorogenic acid b is a quinic acid. 3,4-Dicaffeoylquinic acid is a natural product found in Centaurea bracteata, Strychnos axillaris, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (part of). Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].

   

Lyalosidic acid

Lyalosidic acid

C26H28N2O9 (512.1794718)


Annotation level-1

   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0950778)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

shikimate

Shikimic acid

C7H10O5 (174.052821)


Shikimic acid, also known as shikimate or 3,4,5-trihydroxy-1-cyclohexenecarboxylic acid, is a member of the class of compounds known as shikimic acids and derivatves. Shikimic acids and derivatves are cyclitols containing a cyclohexanecarboxylic acid substituted with three hydroxyl groups at positions 3, 4, and 5. Shikimic acid is soluble (in water) and a weakly acidic compound (based on its pKa). Shikimic acid can be found in a number of food items such as date, rocket salad, redcurrant, and poppy, which makes shikimic acid a potential biomarker for the consumption of these food products. Shikimic acid can be found primarily in blood and urine. Shikimic acid exists in all living species, ranging from bacteria to humans. Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical metabolite in plants and microorganisms. Its name comes from the Japanese flower shikimi (シキミ, the Japanese star anise, Illicium anisatum), from which it was first isolated in 1885 by Johan Fredrik Eykman. The elucidation of its structure was made nearly 50 years later . Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants. Shikimic acid is a key metabolic intermediate of the aromatic amino acid biosynthesis pathway, found in microbes and plants.

   

Heriguard

Cyclohexanecarboxylic acid, 3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxy-, [1S-(1.alpha.,3.beta.,4.alpha.,5.alpha.)]-

C16H18O9 (354.0950778)


Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

methyl (2S,3R,4S)-3-ethenyl-4-[[(1S)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl]methyl]-2-[(2R,3S,4R,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4-dihydro-2H-pyran-5-carboxylate

methyl (2S,3R,4S)-3-ethenyl-4-[[(1S)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl]methyl]-2-[(2R,3S,4R,5R,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,4-dihydro-2H-pyran-5-carboxylate

C27H34N2O9 (530.2264194)


   

shikimate

shikimate

C7H9O5 (173.0449964)


A cyclohexenecarboxylate that is the conjugate base of shikimic acid.

   

Tauro-omega-muricholic acid

Tauro-omega-muricholic acid

C26H45NO7S (515.291658)


   

(1s,12s,18s,19r,20s)-19-ethenyl-18-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaene-12-carboxylic acid

(1s,12s,18s,19r,20s)-19-ethenyl-18-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaene-12-carboxylic acid

C27H32N2O9 (528.2107702)


   

(1s,3s)-1-{[(2s,3r,4s)-3-ethenyl-5-(methoxycarbonyl)-2-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]methyl}-1h,2h,3h,4h,9h-pyrido[3,4-b]indole-3-carboxylic acid

(1s,3s)-1-{[(2s,3r,4s)-3-ethenyl-5-(methoxycarbonyl)-2-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]methyl}-1h,2h,3h,4h,9h-pyrido[3,4-b]indole-3-carboxylic acid

C28H34N2O11 (574.2162494)


   

(4s,5r,6s)-5-ethenyl-4-{9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

(4s,5r,6s)-5-ethenyl-4-{9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

C26H28N2O9 (512.1794718)


   

5-ethenyl-4-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

5-ethenyl-4-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

C26H32N2O9 (516.2107702)


   

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-6a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-6a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C42H66O14 (794.4452336)


   

1,2,6b,9,9,12a-hexamethyl-6a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

1,2,6b,9,9,12a-hexamethyl-6a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C42H66O14 (794.4452336)


   

(1s,12s,18s,19r,20s)-19-ethenyl-18-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaene-12-carboxylic acid

(1s,12s,18s,19r,20s)-19-ethenyl-18-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaene-12-carboxylic acid

C27H32N2O9 (528.2107702)


   

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924126000001)


   

methyl (4s,5r,6s)-5-ethenyl-4-[(1s)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl]-6-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate

methyl (4s,5r,6s)-5-ethenyl-4-[(1s)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl]-6-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate

C27H34N2O9 (530.2264194)


   

19-ethenyl-18-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaene-12-carboxylic acid

19-ethenyl-18-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaene-12-carboxylic acid

C27H32N2O9 (528.2107702)


   

5-ethenyl-4-{9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

5-ethenyl-4-{9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

C26H28N2O9 (512.1794718)


   

1-{[3-ethenyl-5-(methoxycarbonyl)-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]methyl}-1h,2h,3h,4h,9h-pyrido[3,4-b]indole-3-carboxylic acid

1-{[3-ethenyl-5-(methoxycarbonyl)-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-pyran-4-yl]methyl}-1h,2h,3h,4h,9h-pyrido[3,4-b]indole-3-carboxylic acid

C28H34N2O11 (574.2162494)


   

1,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

1,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid

C36H56O9 (632.3924126000001)


   

(4s,5r,6s)-5-ethenyl-4-{9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

(4s,5r,6s)-5-ethenyl-4-{9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

C26H28N2O9 (512.1794718)