NCBI Taxonomy: 43070

Eryngium (ncbi_taxid: 43070)

found 500 associated metabolites at genus taxonomy rank level.

Ancestor: Saniculeae

Child Taxonomies: Eryngium planum, Eryngium bourgatii, Eryngium tenue, Eryngium grosii, Eryngium bungei, Eryngium vaseyi, Eryngium mexiae, Eryngium humile, Eryngium huteri, Eryngium ovinum, Eryngium vesiculosum, Eryngium elegans, Eryngium palmeri, Eryngium alpinum, Eryngium armatum, Eryngium minimum, Eryngium duriaei, Eryngium gracile, Eryngium junceum, Eryngium pristis, Eryngium rojasii, Eryngium smithii, Eryngium billardierei, Eryngium expansum, Eryngium kotschyi, Eryngium spinalba, Eryngium eburneum, Eryngium lemmonii, Eryngium palmatum, Eryngium scaposum, Eryngium serbicum, Eryngium serratum, Eryngium carlinae, Eryngium parishii, Eryngium balansae, Eryngium jepsonii, Eryngium ciliatum, Eryngium creticum, Eryngium diffusum, Eryngium fluitans, Eryngium foetidum, Eryngium glaciale, Eryngium horridum, Eryngium lacustre, Eryngium madrense, Eryngium montanum, Eryngium purpusii, Eryngium sellowii, Eryngium ternatum, Eryngium venustum, Eryngium baldwinii, Eryngium dilatatum, Eryngium isauricum, Eryngium marocanum, Eryngium mexicanum, Eryngium goyazense, Eryngium viviparum, Eryngium coronatum, Eryngium caeruleum, Eryngium giganteum, Eryngium depressum, Eryngium racemosum, Eryngium castrense, Eryngium echinatum, Eryngium maritimum, Eryngium campestre, Eryngium galioides, Eryngium gramineum, Eryngium nudicaule, Eryngium pohlianum, Eryngium rauhianum, Eryngium regnellii, Eryngium rostratum, Eryngium scirpinum, Eryngium subinerme, Eryngium aquaticum, Eryngium petiolatum, Eryngium aromaticum, Eryngium macrocalyx, Eryngium alternatum, Eryngium spiculosum, Eryngium constancei, Eryngium aloifolium, Eryngium aquifolium, Eryngium bonplandii, Eryngium harknessii, Eryngium buchtienii, Eryngium mathiasiae, Eryngium eriophorum, Eryngium glomeratum, Eryngium cerradense, Eryngium inaccessum, Eryngium incantatum, Eryngium koehneanum, Eryngium prostratum, Eryngium pyramidale, Eryngium triquetrum, Eryngium beecheyanum, Eryngium heldreichii, Eryngium cervantesii, Eryngium coquimbanum, Eryngium ebracteatum, Eryngium sanguisorba, Eryngium thorifolium, Eryngium yuccifolium, Eryngium cuneifolium, Eryngium aristulatum, Eryngium agavifolium, Eryngium articulatum, Eryngium brasiliense, Eryngium chamissonis, Eryngium divaricatum, Eryngium falcifolium, Eryngium floribundum, Eryngium hemsleyanum, Eryngium ilicifolium, Eryngium juncifolium, Eryngium longifolium, Eryngium ombrophilum, Eryngium paniculatum, Eryngium variifolium, Eryngium weberbaueri, Eryngium pinnatifidum, Eryngium plantagineum, Eryngium amethystinum, Eryngium bupleuroides, Eryngium corniculatum, Eryngium proteiflorum, Eryngium spinosepalum, Eryngium guatemalense, Eryngium eurycephalum, unclassified Eryngium, Eryngium monocephalum, Eryngium tricuspidatum, Eryngium caespitiferum, Eryngium ghiesbreghtii, Eryngium leavenworthii, Eryngium pilularioides, Eryngium pinnatisectum, Eryngium canaliculatum, Eryngium oblanceolatum, Eryngium pendletonense, Eryngium sparganioides, Eryngium glossophyllum, Eryngium integrifolium, Eryngium luzulaefolium, Eryngium megapotamicum, Eryngium mesopotamicum, Eryngium pandanifolium, Eryngium pseudojunceum, Eryngium fernandezianum, Eryngium hemisphaericum, Eryngium crassisquamosum, Eryngium nasturtiifolium, Eryngium sparganophyllum, Eryngium cf. paniculatum Greissl 620-99, Eryngium cf. pinnatifidum Lambracht sn 07.12.2001

Scopoletin

7-hydroxy-6-methoxy-2H-chromen-2-one

C10H8O4 (192.0422568)


Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Umbelliferone

7-Hydroxy-2H-1-benzopyran-2-one

C9H6O3 (162.03169259999999)


Umbelliferone is a hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. It has a role as a fluorescent probe, a plant metabolite and a food component. Umbelliferone is a natural product found in Ficus septica, Artemisia ordosica, and other organisms with data available. See also: Chamomile (part of). Occurs widely in plants including Angelica subspecies Phytoalexin of infected sweet potato. Umbelliferone is found in many foods, some of which are macadamia nut, silver linden, quince, and capers. Umbelliferone is found in anise. Umbelliferone occurs widely in plants including Angelica species Phytoalexin of infected sweet potat A hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. [Raw Data] CB220_Umbelliferone_pos_50eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_40eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_30eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_10eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_20eV_CB000077.txt [Raw Data] CB220_Umbelliferone_neg_40eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_10eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_30eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_20eV_000039.txt Umbelliferone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=93-35-6 (retrieved 2024-07-12) (CAS RN: 93-35-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.153378)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0950778)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Caffeic acid

(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0422568)


Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Luteolin 7-glucoside

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Luteolin 7-O-beta-D-glucoside is a glycosyloxyflavone that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant and a plant metabolite. It is a beta-D-glucoside, a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a luteolin. It is a conjugate acid of a luteolin 7-O-beta-D-glucoside(1-). Cynaroside is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. See also: Cynara scolymus leaf (part of); Lonicera japonica flower (part of); Chamaemelum nobile flower (part of). Luteolin 7-glucoside is found in anise. Luteolin 7-glucoside is a constituent of the leaves of Capsicum annuum (red pepper).Cynaroside is a flavone, a flavonoid-like chemical compound. It is a 7-O-glucoside of luteolin and can be found in dandelion coffee, in Ferula varia and F. foetida in Campanula persicifolia and C. rotundifolia and in Cynara scolymus (artichoke) A glycosyloxyflavone that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Constituent of the leaves of Capsicum annuum (red pepper) Cynaroside (Luteolin 7-glucoside) is a flavonoid compound that exhibits anti-oxidative capabilities. Cynaroside is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 32 nM. Cynaroside also is a promising inhibitor for H2O2-induced apoptosis, has cytoprotection against oxidative stress-induced cardiovascular diseases. Cynaroside also has antibacterial, antifungal and anticancer activities, antioxidant and anti-inflammatory activities[1][3][4][5].

   

Kaempferol

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O6 (286.047736)


Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Kaempferitrin

7-((6-deoxy-alpha-L-mannopyranosyl)oxy)-5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-1-benzopyran-3-yl 6-deoxy-alpha-L-mannopyranoside

C27H30O14 (578.163548)


Kaempferol 3,7-di-O-alpha-L-rhamnoside is a glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. It has a role as a bone density conservation agent, a hypoglycemic agent, an immunomodulator, an anti-inflammatory agent, an antineoplastic agent, a plant metabolite, an apoptosis inducer and an antidepressant. It is an alpha-L-rhamnoside, a monosaccharide derivative, a dihydroxyflavone, a glycosyloxyflavone and a polyphenol. It is functionally related to a kaempferol. Kaempferitrin is a natural product found in Ficus septica, Cleome amblyocarpa, and other organisms with data available. See also: Selenicereus grandiflorus stem (part of). A glycosyloxyflavone that is kaempferol attached to alpha-L-rhamnopyranosyl residues at positions 3 and 7 respectively via glycosidic linkages. It has been isolated from the aerial parts of Vicia faba and Lotus edulis. Kaempferitrin is found in linden. Kaempferitrin is a chemical compound. It can be isolated from the leaves of Hedyotis verticillata. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.37049579999996)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

6'-O-p-Coumaroyltrifolin

((2R,3S,4S,5R,6S)-6-((5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl (E)-3-(4-hydroxyphenyl)acrylate

C30H26O13 (594.1373346)


Kaempferol 3-(6-p-coumaroylgalactoside) is a member of the class of compounds known as flavonoid 3-o-p-coumaroyl glycosides. Flavonoid 3-o-p-coumaroyl glycosides are flavonoid 3-O-glycosides where the carbohydrate moiety is esterified with a p-coumaric acid. P-coumaric acid is an organic derivative of cinnamic acid, that carries a hydroxyl group at the 4-position of the benzene ring. Kaempferol 3-(6-p-coumaroylgalactoside) is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Within the cell, kaempferol 3-(6-p-coumaroylgalactoside) is primarily located in the membrane (predicted from logP). Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid. Tiliroside is a natural product found in Phlomoides spectabilis, Anaphalis contorta, and other organisms with data available. 6-O-p-Coumaroyltrifolin is a constituent of Pinus sylvestris (Scotch pine). Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].

   

beta-Myrcene

InChI=1/C10H16/c1-5-10(4)8-6-7-9(2)3/h5,7H,1,4,6,8H2,2-3H

C10H16 (136.1251936)


7-Methyl-3-methylene-1,6-octadiene, also known as beta-Myrcene or myrcene is an acyclic monoterpene. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. beta-Myrcene is a significant component of the essential oil of several plants, including allspice, bay, cannabis, hops, houttuynia, lemon grass, mango, myrcia, verbena, west indian bay tree, and cardamom. It is also the main component of wild thyme, the leaves of which contain up to 40\\\\% by weight of myrcene. Industrially, it is produced mainly semi-synthetically from myrcia, from which it gets its name. Myrcene has been detected as a volatile component in cannabis plant samples (PMID:26657499 ) and its essential oils (PMID:6991645 ). beta-Myrcene is the most abundant monoterpene in Cannabis and it has analgesic, anti-inflammatory, antibiotic, and antimutagenic activities. beta-Myrcene is a flavouring agent and it is used in the perfumery industry. It has a pleasant odor but is rarely used directly. It is a key intermediate in the production of several fragrances such as menthol, citral, citronellol, citronellal, geraniol, nerol, and linalool. Myrcene, [liquid] appears as a yellow oily liquid with a pleasant odor. Flash point below 200 °F. Insoluble in water and less dense than water. Beta-myrcene is a monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, an anabolic agent, a fragrance, a flavouring agent and a volatile oil component. Myrcene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. 7-Methyl-3-methylene-1,6-octadiene is found in allspice. 7-Methyl-3-methylene-1,6-octadiene is found in many essential oils, e.g. hop oil. 7-Methyl-3-methylene-1,6-octadiene is a flavouring agent. Myrcene is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Caraway Oil (part of); Mandarin oil (part of); Juniper Berry Oil (part of) ... View More ... A monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. Found in many essential oils, e.g. hop oil. Flavouring agent Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2]. Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2].

   

Panaxynol

(CIS)-(-)-3-HYDROXY-1,9-HEPTADECADIEN-4,6-DIYNE

C17H24O (244.18270539999997)


Panaxynol is a long-chain fatty alcohol. It has a role as a metabolite. Falcarinol is a natural product found in Chaerophyllum aureum, Cussonia arborea, and other organisms with data available.

   

Isorhamnetin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-methoxy-

C16H12O7 (316.05830019999996)


3,4,5,7-tetrahydroxy-3-methoxyflavone is a tetrahydroxyflavone having the 4-hydroxy groups located at the 3- 4- 5- and 7-positions as well as a methoxy group at the 2-position. It has a role as a metabolite and an antimicrobial agent. It is a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,4,5-trihydroxy-3-methoxyflavon-7-olate. 3-O-Methylquercetin is a natural product found in Lotus ucrainicus, Wollastonia biflora, and other organisms with data available. See also: Tobacco Leaf (part of). 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1]. 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1].

   

Caryophyllene alpha-oxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.18270539999997)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). Caryophyllene alpha-oxide is a minor produced of epoxidn. of KGV69-V. Minor production of epoxidn. of KGV69-V Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

trans-beta-Farnesene

TRANS-.BETA.-FARNESENE (CONSTITUENT OF CHAMOMILE) [DSC]

C15H24 (204.18779039999998)


Trans-beta-farnesene is a beta-farnesene in which the double bond at position 6-7 has E configuration. It is the major or sole alarm pheromone in most species of aphid. It has a role as an alarm pheromone and a metabolite. beta-Farnesene is a natural product found in Nepeta nepetella, Eupatorium capillifolium, and other organisms with data available. trans-beta-Farnesene, also known as (E)-β-Farnesene or (E)-7,11-Dimethyl-3-methylenedodeca-1,6,10-triene, is classified as a member of the Sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. trans-beta-Farnesene is a hydrocarbon lipid molecule. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

Safranal

InChI=1/C10H14O/c1-8-5-4-6-10(2,3)9(8)7-11/h4-5,7H,6H2,1-3H3

C10H14O (150.1044594)


Safranal is found in fig. Safranal is a constituent of saffron (Crocus sativa). Safranal is a flavouring ingredient It is believed that safranal is a degradation product of the carotenoid zeaxanthin via the intermediacy of picrocrocin. Safranal is an effective anticonvulsant shown to act as an agonist at GABAA receptors. Safranal also exhibits high antioxidant and free radical scavenging activity, along with cytotoxicity towards cancer cells in vitro. It has also been shown to have antidepressant properties. Safranal is an organic compound isolated from saffron, the spice consisting of the stigmas of crocus flowers (Crocus sativus). It is the constituent primarily responsible for the aroma of saffron Safranal is a monoterpenoid formally derived from beta-cyclocitral by dehydrogenation. It is functionally related to a beta-cyclocitral. Safranal is a natural product found in Aspalathus linearis, Cistus creticus, and other organisms with data available. Constituent of saffron (Crocus sativa). Flavouring ingredient Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].

   

Lauric aldehyde

InChI=1/C12H24O/c1-2-3-4-5-6-7-8-9-10-11-12-13/h12H,2-11H2,1H

C12H24O (184.18270539999997)


Dodecanal is a long-chain fatty aldehyde that is dodecane in which two hydrogens attached to a terminal carbon are replaced by an oxo group. It has a role as a plant metabolite. It is a 2,3-saturated fatty aldehyde, a medium-chain fatty aldehyde and a long-chain fatty aldehyde. It derives from a hydride of a dodecane. Dodecanal is a natural product found in Mikania cordifolia, Zingiber mioga, and other organisms with data available. Occurs in peel oil from Citrus subspecies and kumquatand is also present in ginger, coriander, chervil and scallop. Flavouring agent. Lauric aldehyde is found in many foods, some of which are mollusks, rocket salad (sspecies), sweet orange, and fruits. Lauric aldehyde is found in citrus. Lauric aldehyde occurs in peel oil from Citrus species and kumquat. Also present in ginger, coriander, chervil and scallop. Lauric aldehyde is a flavouring agent. A long-chain fatty aldehyde that is dodecane in which two hydrogens attached to a terminal carbon are replaced by an oxo group.

   

gamma-Terpinene

1-Isopropyl-4-methyl-1,4-cyclohexadiene, p-Mentha-1,4-diene

C10H16 (136.1251936)


Gamma-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. It has a role as an antioxidant, a plant metabolite, a volatile oil component and a human xenobiotic metabolite. It is a monoterpene and a cyclohexadiene. gamma-Terpinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. The terpinenes are three isomeric hydrocarbons that are classified as terpenes. Gamma-terpinene is one these three isomeric hydrocarbons. It is natural and has been isolated from a variety of plant sources (Wikipedia). It is a major component of essential oils made from Citrus Fruits and has strong antioxidant activity. It has a lemon odor and widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Mandarin oil (part of). Gamma-terpinene is one of four isomeric monoterpenes (the other three being alpha terpinene, beta terpinene and delta terpinene). It is a naturally occurring terpinene and has been isolated from a variety of plant sources. It has the highest boiling point of the four known terpinene isomers. It is a major component of essential oils made from citrus fruits and has a strong antioxidant activity. It has a lemon-like or lime-like odor and is widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). The other isomers of gamma-terpinene, such as alpha-terpinene and delta-terpinene, have been isolated from cardamom and marjoram oils while beta terpinene appears to have no natural source. One of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. Constituent of many essential oils e.g. Citrus, Eucalyptus, Mentha, Pinus subspecies Ajowan seed oil (Carum copticum) is a major source γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].

   

(+)-alpha-Pinene

(R)-(+)--Pinene;(+)--Pinene; (1R)-(+)--Pinene; (1R)--Pinene; (1R,5R)-(+)--Pinene

C10H16 (136.1251936)


alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (+)-alpha-pinene is the (+)-enantiomer of alpha-pinene. It has a role as a plant metabolite and a human metabolite. It is an enantiomer of a (-)-alpha-pinene. (+)-alpha-Pinene is a natural product found in Juniperus drupacea, Eucalyptus deglupta, and other organisms with data available. The (+)-enantiomer of alpha-pinene. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].

   

Isorhamnetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-

C16H12O7 (316.05830019999996)


Isorhamnetin is the methylated metabolite of quercetin. Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. Isorhamnetin prevents endothelial cell injuries from oxidized LDL via inhibition of lectin-like ox-LDL receptor-1 upregulation, interference of ox-LDL-mediated intracellular signaling pathway (p38MAPK activation, NF-kappaB nuclear translocation, eNOS expression) and the antioxidant activity of isorhamnetin. Isorhamnetin prevents endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II. Isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit proliferation but also induce apoptosis of Eca-109 cells. (PMID: 15493462, 17368593, 17374653, 16963021). Isorhamnetin is a monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, an anticoagulant and a metabolite. It is a 7-hydroxyflavonol, a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of an isorhamnetin(1-). Isorhamnetin is a natural product found in Lotus ucrainicus, Strychnos pseudoquina, and other organisms with data available. Isorhamnetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Peumus boldus leaf (part of). Widespread flavonol found especially in bee pollen, chives, corn poppy leaves, garden cress, fennel, hartwort, red onions, pears, dillweed, parsley and tarragon. Isorhamnetin is found in many foods, some of which are italian sweet red pepper, carrot, yellow wax bean, and lemon balm. A monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. Acquisition and generation of the data is financially supported in part by CREST/JST. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.

   

Anethole

1-(methyloxy)-4-[(1E)-prop-1-en-1-yl]benzene

C10H12O (148.08881019999998)


Present in anise, fennel and other plant oils. Extensively used in flavour industry. Anethole is found in many foods, some of which are white mustard, fennel, allspice, and sweet basil. cis-Anethole is found in anise. Only a low level is permitted in flavours Anethole is a type of aromatic compound used as a flavoring. It is a derivative of Phenylpropene and widely exists in nature. Anethole is a type of aromatic compound used as a flavoring. It is a derivative of Phenylpropene and widely exists in nature. Trans-Anethole ((E)-Anethole), a phenylpropene derivative isolated from Foeniculum vulgare, shows estrogenic activity at lower concentrations and cytotoxic at higher concentrations in cancer cell lines[1][2]. Trans-Anethole ((E)-Anethole) contributes a large component of the odor and flavor of anise and fennel, anise myrtle, liquorice, camphor, magnolia blossoms, and star anise[3]. Trans-Anethole ((E)-Anethole), a phenylpropene derivative isolated from Foeniculum vulgare, shows estrogenic activity at lower concentrations and cytotoxic at higher concentrations in cancer cell lines[1][2]. Trans-Anethole ((E)-Anethole) contributes a large component of the odor and flavor of anise and fennel, anise myrtle, liquorice, camphor, magnolia blossoms, and star anise[3].

   

Undecanoic acid

1-Decanecarboxylic acid

C11H22O2 (186.1619712)


Undecanoic acid, also known as N-undecylic acid or N-undecanoate, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Undecanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Undecanoic acid is a potentially toxic compound. Undecylic acid (systematically named undecanoic acid) is a flavouring ingredient. It is a naturally-occurring carboxylic acid with chemical formula CH3(CH2)9COOH (Wikipedia). Undecanoic acid is found in many foods, some of which are coconut, fruits, fats and oils, and rice. C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Caprate (10:0)

decanoic acid

C10H20O2 (172.14632200000003)


Capric acid, also known as decanoic acid is a C10 saturated fatty acid. It is a member of the series of fatty acids found in oils and animal fats. The names of caproic, caprylic, and capric acids are all derived from the word caper (Latin for goat). These fatty acids are light yellowish transparent oily liquids with a sweaty, unpleasant aroma that is reminiscent of goats. Capric acid is used in the manufacture of esters for artificial fruit flavors and perfumes. It is also used as an intermediate in chemical syntheses. Capric acid is used in organic synthesis and industrially in the manufacture of perfumes, lubricants, greases, rubber, dyes, plastics, food additives and pharmaceuticals. Capric acid occurs naturally in coconut oil (about 10\\\\\\%) and palm kernel oil (about 4\\\\\\%), otherwise it is uncommon in typical seed oils. It is found in the milk of various mammals and to a lesser extent in other animal fats. Capric acid, caproic acid (a C6:0 fatty acid) and caprylic acid (a C8:0 fatty acid) account for about 15\\\\\\% of the fatty acids in goat milk fat (PMID 16747831). Capric acid may be responsible for the mitochondrial proliferation associated with the ketogenic diet, which may occur via PPARgamma receptor agonism and the targeting of genes involved in mitochondrial biogenesis (PMIDL 24383952). Widespread in plant oils and as glycerides in seed oilsand is also present in apple, apricot, banana, morello cherry, citrus fruits, cheese, butter, white wine, Japanese whiskey, peated malt, wort and scallops. It is used as a defoamer, lubricant and citrus fruit coating. Salts (Na, K, Mg, Ca, Al) used as binders, emulsifiers and anticaking agents in food manuf. Decanoic acid is found in many foods, some of which are radish (variety), meatball, phyllo dough, and american shad. Decanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=334-48-5 (retrieved 2024-06-29) (CAS RN: 334-48-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

Dodecanoic acid

dodecanoic acid

C12H24O2 (200.1776204)


Dodecanoic acid, also known as dodecanoate or lauric acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Dodecanoic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Dodecanoic acid is the main fatty acid in coconut oil and in palm kernel oil, and is believed to have antimicrobial properties. It is a white, powdery solid with a faint odour of bay oil. Dodecanoic acid, although slightly irritating to mucous membranes, has a very low toxicity and so is used in many soaps and shampoos. Defoamer, lubricant. It is used in fruit coatings. Occurs as glyceride in coconut oil and palm kernel oil. Simple esters are flavour ingredients Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

Decanal

N-Decanal (capric aldehyde)

C10H20O (156.151407)


Decanal, also known as 1-decyl aldehyde or capraldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, decanal is considered to be a fatty aldehyde lipid molecule. Decanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Decanal exists in all eukaryotes, ranging from yeast to humans. Decanal is a sweet, aldehydic, and citrus tasting compound. Decanal is found, on average, in the highest concentration within a few different foods, such as corianders, dills, and gingers and in a lower concentration in limes, sweet oranges, and safflowers. Decanal has also been detected, but not quantified, in several different foods, such as fishes, cauliflowers, citrus, fats and oils, and lemon grass. This could make decanal a potential biomarker for the consumption of these foods. Decanal is a potentially toxic compound. Decanal, with regard to humans, has been found to be associated with several diseases such as uremia, asthma, and perillyl alcohol administration for cancer treatment; decanal has also been linked to the inborn metabolic disorder celiac disease. Decanal occurs naturally and is used in fragrances and flavoring. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Uremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. Constituent of Cassia, Neroli and other oils especies citrus peel oilsand is also present in coriander leaf or seed, caviar, roast turkey, roast filbert, green tea, fish oil, hop oil and beer. Flavouring agent Decyl aldehyde is a simple ten-carbon aldehyde. Decyl aldehyde is a bacterial luciferase substrate. Decyl aldehyde is a simple ten-carbon aldehyde. Decyl aldehyde is a bacterial luciferase substrate.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Deltoin

(4S,5Z,6S)-4-(2-methoxy-2-oxoethyl)-5-[2-[(E)-3-phenylprop-2-enoyl]oxyethylidene]-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4H-pyran-3-carboxylic acid

C19H20O5 (328.13106700000003)


D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins

   

Brassicasterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H46O (398.3548466)


Brassicasterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, brassicasterol is considered to be a sterol lipid molecule. Brassicasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Brassicasterol is a potential CSF biomarker for Alzheimer’s disease (PMID: 21585343). C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Constituent of Brassica rapa oil Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Falcarinone

(9E)-heptadeca-1,9-dien-4,6-diyn-3-one

C17H22O (242.1670562)


Isolated from Sium sisarum (skirret). Falcarinone is found in many foods, some of which are parsley, green vegetables, caraway, and coffee and coffee products. Falcarinone is found in caraway. Falcarinone is isolated from Sium sisarum (skirret).

   

Carotol

6,8a-dimethyl-3-(propan-2-yl)-1,2,3,3a,4,5,8,8a-octahydroazulen-3a-ol

C15H26O (222.1983546)


Carotol is found in carrot. Carotol is a constituent of Daucus carota (carrot) Carotol was first isolated by scientists Asahina and Tsukamoto in 1925. It is one of the primary components found in carrot seed oil comprising approximately 40\\% of this essential oil. This sesquiterpene alcohol is thought to be formed in carrot seeds (Daucus carota L., Umbelliferae) during the vegetation period. Additionally, studies have shown that carotol may be involved in allelopathic interactions expressing activity as a antifungal, herbicidal and insecticidal agent. It has been proposed that there is a direct cyclisation of farnesyl pyrophosphate (FPP) to the carotol (carotane backbone). This type of cyclisation is unconventional for the typical chemistry of sesquiterpenes. The only other proposed mechanism requires a complex ten-membered ring with a methyl migration. This later reaction, regardless of how plausible it may appear to be on paper, is energetically undesired and through the diligent work of M. Soucek and coworkers it was shown that the cyclization from FPP to carotol is the most probable biosynthesis route. Constituent of Daucus carota (carrot)

   

alpha-Cedrene

(-)-alpha-cedrene;(1S,2R,5S,7S)-2,6,6,8-tetramethyltricyclo[5.3.1.0(1,5)]undec-8-ene;[3R-(3alpha,3abeta,7beta,8aalpha)]-2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulene

C15H24 (204.18779039999998)


Alpha-cedrene, also known as (-)-α-cedrene or beta-cedrene, is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Thus, alpha-cedrene is considered to be an isoprenoid lipid molecule. Alpha-cedrene is a sweet, cedar, and fresh tasting compound and can be found in a number of food items such as tarragon, peppermint, wild celery, and common sage, which makes alpha-cedrene a potential biomarker for the consumption of these food products. Alpha-cedrene can be found primarily in urine. alpha-Cedrene alpha-Cedrene is one of the two isomers of cedrene. Cedrene is a sesquiterpene found in the essential oil of cedar. There are two isomers of cedrene, (-)-alpha-cedrene and (+)-beta-cedrene, which differ in the position of a double bond (Wikipedia) (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1].

   

beta-Bisabolene

(-)-beta-bisabolene;(S)-(-)-6-methyl-2-(4-methyl-3-cyclohexen-1-yl)-1,5-heptadiene;(S)-1-methyl-4-(5-methyl-1-methylene-4-hexenyl)cyclohexene

C15H24 (204.18779039999998)


S-beta-Bisabolene is found in anise. S-beta-Bisabolene is a constituent of the essential oils of bergamot, lemon and wild carrot Flavouring ingredient used singly or as mixed isomers. Component of FEMA 3331. See also 2,7,10-Bisabolatriene JHG85-W β-Bisabolene is a?sesquiterpene isolated from?opoponax (Commiphora guidotti). β-Bisabolene, an anti-cancer agent, can be used for the study of breast cancer[1]. β-Bisabolene is a?sesquiterpene isolated from?opoponax (Commiphora guidotti). β-Bisabolene, an anti-cancer agent, can be used for the study of breast cancer[1].

   

trans-Dodec-2-enoic acid

trans-Dodec-2-enoic acid

C12H22O2 (198.1619712)


In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation. trans-Dodec-2-enoic acid is an intermediate in fatty acid biosynthesis. Specifically, trans-Dodec-2-enoic acid is converted from (R)-3-Hydroxydodecanoic acid via two enzymes; fatty-acid Synthase and 3-Hydroxypalmitoyl- [acyl-carrier-protein] dehydratase (EC: 2.3.1.85 and EC: 4.2.1.61) [HMDB] In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation. trans-Dodec-2-enoic acid is an intermediate in fatty acid biosynthesis. Specifically, trans-Dodec-2-enoic acid is converted from (R)-3-Hydroxydodecanoic acid via two enzymes; fatty-acid Synthase and 3-Hydroxypalmitoyl- [acyl-carrier-protein] dehydratase (EC: 2.3.1.85 and EC: 4.2.1.61).

   

delta7-Avenasterol

(3S,5S,9R,10S,13R,14R,17R)-17-((R,Z)-5-Isopropylhept-5-en-2-yl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


delta7-Avenasterol, also known as 7-dehydroavenasterol or 24Z-ethylidenelathosterol, belongs to the class of organic compounds known as stigmastanes and derivatives. These are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, delta7-avenasterol is considered to be a sterol lipid molecule. delta7-Avenasterol has been detected, but not quantified in, several different foods, such as garden onions, fenugreeks, vaccinium (blueberry, cranberry, huckleberry), grapefruit/pummelo hybrids, and pulses. This could make delta7-avenasterol a potential biomarker for the consumption of these foods. delta7-Avenasterol is an intermediate in the biosynthesis of steroids. It is the fourth to last step in the synthesis of stigmasterol and is converted from 24-ethylidenelophenol. It is then converted into 5-dehydroavenasterol via the enzyme lathosterol oxidase (EC 1.14.21.6). Avenasterol, also known as (24z)-5alpha-stigmasta-7,24(28)-dien-3beta-ol or 7-dehydroavenasterol, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, avenasterol is considered to be a sterol lipid molecule. Avenasterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Avenasterol can be found in a number of food items such as rice, black chokeberry, dandelion, and common mushroom, which makes avenasterol a potential biomarker for the consumption of these food products. Avenasterol is a natural, non-cholesterol sterol . delta7-Avenasterol is a natural product found in Staphisagria macrosperma, Amaranthus cruentus, and other organisms with data available.

   

5-Dehydroavenasterol

(1S,2R,5S,11R,14R,15R)-2,15-dimethyl-14-[(2R,5Z)-5-(propan-2-yl)hept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C29H46O (410.3548466)


5-Dehydroavenasterol belongs to the class of organic compounds known as stigmastanes and derivatives. These are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, 5-dehydroavenasterol is considered to be a sterol lipid molecule. 5-Dehydroavenasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 5-Dehydroavenasterol is an intermediate in the biosynthesis of steroids. It is the third to last step in the synthesis of stigmasterol and is converted from delta 7-avenasterol via the enzyme lathosterol oxidase (EC 1.14.21.6). It is then converted into Isofucosterol via the enzyme 7-dehydrocholesterol reductase (EC 1.3.1.21). 5-Dehydroavenasterol is an intermediate in the biosynthesis of steroids (KEGG ID C15783). It is the third to last step in the synthesis of Stigmasterol and is converted from delta 7-Avenasterol via the enzyme lathosterol oxidase [EC:1.14.21.6]. It is then converted to Isofucosterol via the enzyme 7-dehydrocholesterol reductase [EC:1.3.1.21]. [HMDB]. 5-Dehydroavenasterol is found in many foods, some of which are daikon radish, nance, skunk currant, and jujube.

   

Panaxynol

(Z)-(-)-1,9-heptadecadiene-4,6-diyne-3-ol

C17H24O (244.18270539999997)


Panaxynol is found in carrot. Panaxynol is isolated from ginsen Carrotatoxin, also known as falcarinol, (Z)-isomer or panaxynol, is a member of the class of compounds known as long-chain fatty alcohols. Long-chain fatty alcohols are fatty alcohols that have an aliphatic tail of 13 to 21 carbon atoms. Carrotatoxin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Carrotatoxin can be found in carrot and wild carrot, which makes carrotatoxin a potential biomarker for the consumption of these food products.

   

Pinene

(1R,5R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene

C10H16 (136.1251936)


Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.

   

beta-Farnesene

(6Z)-7,11-dimethyl-3-methylidenedodeca-1,6,10-triene

C15H24 (204.18779039999998)


A mixture with 1,3,6,10-Farnesatetraene JXF60-O has been isolated from many plant sources and is used as a food flavourant (woodgreen flavour). beta-Farnesene is found in sweet basil. (E)-beta-Farnesene is found in anise. (E)-beta-Farnesene is a constituent of hop, camomile and other essential oils (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

Falcarinolone

(9Z)-8-hydroxyheptadeca-1,9-dien-4,6-diyn-3-one

C17H22O2 (258.1619712)


Isolated from carrot (Daucus carota) and caraway seed (Carum carvi). Falcarinolone is found in many foods, some of which are root vegetables, caraway, fats and oils, and herbs and spices. Falcarinolone is found in caraway. Falcarinolone is isolated from carrot (Daucus carota) and caraway seed (Carum carvi).

   

2-Dodecenal

beta-Octyl acrolein

C12H22O (182.1670562)


Cilantro is a delightful spice added to make tacos and guacamole delicious and enliven the taste and aroma of many Spanish/Mexican foods. However for some people cilantro tastes and smells like soap. A number of famous chefs abhor(ed) cilantro, including Julia Child, Ina Garten (aka Barefoot Contessa) and Top Chef Fabio Viviani. It turns out that the compound that gives Cilantro the pleasant citrus taste/smell is 2-dodecenal. If you have a mutation in an olafactory receptor, it cant distinguish between 2-dodecenal and 1-dodecenal. 1-dodecenal tastes and smells soapy. So for people who hate cilantro, 2-dodecenal looks and tastes like 1-dodecenal. [DW]. 2-Dodecenal is found in lemon. (E)-2-Dodecenal is found in animal foods. (E)-2-Dodecenal is present in many foods including citrus peel, ginger, carrots, milk, roast peanuts, roast beef and cured pork. (E)-2-Dodecenal is a flavouring agent

   

cis-Caffeic acid

(2Z)-3-(3,4-Dihydroxyphenyl)-2-propenoic acid

C9H8O4 (180.0422568)


Caffeic acid, also known as caffeate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Caffeic acid exists in all living species, ranging from bacteria to humans. It is the precursor to ferulic acid, coniferyl alcohol, and sinapyl alcohol, all of which are significant building blocks in lignin. Outside of the human body, caffeic acid has been detected, but not quantified in fats and oils and nuts. Caffeic acid is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Caffeic acid has a variety of potential pharmacological effects in in vitro studies and in animal models, and the inhibitory effect of caffeic acid on cancer cell proliferation by an oxidative mechanism in the human HT-1080 fibrosarcoma cell line has recently been established. It occurs at high levels in black chokeberry (141 mg per 100 g) and in fairly high level in lingonberry (6 mg per 100 g). D020011 - Protective Agents > D000975 - Antioxidants Found in olive oil, peanuts and other plant sources Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Kaempferol 3-O-beta-glucopyranoside-7-O-alpha-rhamnopyranoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4H-chromen-4-one

C27H30O15 (594.158463)


   

C10:0

Decanoic acid

C10H20O2 (172.14632200000003)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

C11:0

Hendecanoic acid

C11H22O2 (186.1619712)


C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Tiliroside

(E)-3-(4-hydroxyphenyl)prop-2-enoic acid [(2R,3S,4S,5R,6S)-6-[[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-3-chromenyl]oxy]-3,4,5-trihydroxy-2-tetrahydropyranyl]methyl ester

C30H26O13 (594.1373346)


Acquisition and generation of the data is financially supported in part by CREST/JST. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].

   

Swartziol

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-5,7,4-Trihydroxyflavonol

C15H10O6 (286.047736)


Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Isorhamnetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3-hydroxy-4-methoxyphenyl)- (9CI)

C16H12O7 (316.05830019999996)


Glucoside present in the leaves of Peumus boldus (boldo). Isorhamnetin 3-dirhamnoside is found in fruits. Annotation level-1 Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.

   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0950778)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Kaempferol

Kaempferol

C15H10O6 (286.047736)


Annotation level-3 Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.010 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.011 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2141; CONFIDENCE confident structure IPB_RECORD: 3341; CONFIDENCE confident structure IPB_RECORD: 3321; CONFIDENCE confident structure CONFIDENCE confident structure; IPB_RECORD: 3321 IPB_RECORD: 141; CONFIDENCE confident structure Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

METHETOIN

METHETOIN

C12H14N2O2 (218.1055224)


C78272 - Agent Affecting Nervous System > C264 - Anticonvulsant Agent

   

2,7,7-Trimethylbicyclo[3.1.1]hept-2-en-6-yl acetate

2,7,7-Trimethylbicyclo[3.1.1]hept-2-en-6-yl acetate

C12H18O2 (194.1306728)


   

5-Dehydroavenasterol

(1S,2R,5S,11R,14R,15R)-2,15-dimethyl-14-[(2R,5Z)-5-(propan-2-yl)hept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C29H46O (410.3548466)


5-Dehydroavenasterol belongs to the class of organic compounds known as stigmastanes and derivatives. These are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, 5-dehydroavenasterol is considered to be a sterol lipid molecule. 5-Dehydroavenasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 5-Dehydroavenasterol is an intermediate in the biosynthesis of steroids. It is the third to last step in the synthesis of stigmasterol and is converted from delta 7-avenasterol via the enzyme lathosterol oxidase (EC 1.14.21.6). It is then converted into Isofucosterol via the enzyme 7-dehydrocholesterol reductase (EC 1.3.1.21). 5-Dehydroavenasterol is an intermediate in the biosynthesis of steroids (KEGG ID C15783). It is the third to last step in the synthesis of Stigmasterol and is converted from delta 7-Avenasterol via the enzyme lathosterol oxidase [EC:1.14.21.6]. It is then converted to Isofucosterol via the enzyme 7-dehydrocholesterol reductase [EC:1.3.1.21]. [HMDB]. 5-Dehydroavenasterol is found in many foods, some of which are daikon radish, nance, skunk currant, and jujube.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromenone

C27H30O16 (610.153378)


C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2352 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.724 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1921; CONFIDENCE confident structure Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   
   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   
   

Luteolin 7-O-glucoside

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one mono-beta-D-glucopyranoside

C21H20O11 (448.100557)


   

alpha-Cedrene

(-)-alpha-cedrene;(1S,2R,5S,7S)-2,6,6,8-tetramethyltricyclo[5.3.1.0(1,5)]undec-8-ene;[3R-(3alpha,3abeta,7beta,8aalpha)]-2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulene

C15H24 (204.18779039999998)


Alpha-cedrene, also known as (-)-α-cedrene or beta-cedrene, is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Thus, alpha-cedrene is considered to be an isoprenoid lipid molecule. Alpha-cedrene is a sweet, cedar, and fresh tasting compound and can be found in a number of food items such as tarragon, peppermint, wild celery, and common sage, which makes alpha-cedrene a potential biomarker for the consumption of these food products. Alpha-cedrene can be found primarily in urine. Cedr-8-ene is a sesquiterpene that is cedrane which has a double bond between positions 8 and 9. It has a role as a human urinary metabolite and a volatile oil component. It is a sesquiterpene, a bridged compound, a polycyclic olefin and a carbotricyclic compound. It derives from a hydride of a cedrane. alpha-Cedrene is a natural product found in Aloysia gratissima, Widdringtonia whytei, and other organisms with data available. alpha-Cedrene alpha-Cedrene is one of the two isomers of cedrene. Cedrene is a sesquiterpene found in the essential oil of cedar. There are two isomers of cedrene, (-)-alpha-cedrene and (+)-beta-cedrene, which differ in the position of a double bond (Wikipedia) A sesquiterpene that is cedrane which has a double bond between positions 8 and 9. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1].

   

β-Bisabolene

(-)-beta-bisabolene;(S)-(-)-6-methyl-2-(4-methyl-3-cyclohexen-1-yl)-1,5-heptadiene;(S)-1-methyl-4-(5-methyl-1-methylene-4-hexenyl)cyclohexene

C15H24 (204.18779039999998)


(S)-beta-bisabolene is a beta-bisabolene which has (1S)-configuration. It is an enantiomer of a (R)-beta-bisabolene. beta-Bisabolene is a natural product found in Rattus rattus, Eupatorium cannabinum, and other organisms with data available. A beta-bisabolene which has (1S)-configuration. β-Bisabolene is a?sesquiterpene isolated from?opoponax (Commiphora guidotti). β-Bisabolene, an anti-cancer agent, can be used for the study of breast cancer[1]. β-Bisabolene is a?sesquiterpene isolated from?opoponax (Commiphora guidotti). β-Bisabolene, an anti-cancer agent, can be used for the study of breast cancer[1].

   

Anethole

trans-Anethole, Pharmaceutical Secondary Standard; Certified Reference Material

C10H12O (148.08881019999998)


Anethole appears as white crystals or a liquid. Odor of anise oil and a sweet taste. (NTP, 1992) Anethole is a monomethoxybenzene that is methoxybenzene substituted by a prop-1-en-1-yl group at position 4. It has a role as a plant metabolite. Anethole is a natural product found in Erucaria microcarpa, Anemopsis californica, and other organisms with data available. Anethole is a metabolite found in or produced by Saccharomyces cerevisiae. A monomethoxybenzene that is methoxybenzene substituted by a prop-1-en-1-yl group at position 4. D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Anethole is a type of aromatic compound used as a flavoring. It is a derivative of Phenylpropene and widely exists in nature. Anethole is a type of aromatic compound used as a flavoring. It is a derivative of Phenylpropene and widely exists in nature. Trans-Anethole ((E)-Anethole), a phenylpropene derivative isolated from Foeniculum vulgare, shows estrogenic activity at lower concentrations and cytotoxic at higher concentrations in cancer cell lines[1][2]. Trans-Anethole ((E)-Anethole) contributes a large component of the odor and flavor of anise and fennel, anise myrtle, liquorice, camphor, magnolia blossoms, and star anise[3]. Trans-Anethole ((E)-Anethole), a phenylpropene derivative isolated from Foeniculum vulgare, shows estrogenic activity at lower concentrations and cytotoxic at higher concentrations in cancer cell lines[1][2]. Trans-Anethole ((E)-Anethole) contributes a large component of the odor and flavor of anise and fennel, anise myrtle, liquorice, camphor, magnolia blossoms, and star anise[3].

   

Kaempferol-3-O-[2″,6″-di-O-E-p-coumaroyl]-β-D-glucopyranoside

[(2R,3S,4S,5R,6S)-6-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy-3,4-dihydroxy-5-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]oxyoxan-2-yl]methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate

C39H32O15 (740.1741122)


Kaempferol-3-O-(2,6-di-O-trans-p-coumaroyl)-beta-D-glucopyranoside is a natural product found in Quercus dentata, Melastoma malabathricum, and other organisms with data available.

   

Scopoletin

Scopoletin

C10H8O4 (192.0422568)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.637 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.629 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.631 IPB_RECORD: 1582; CONFIDENCE confident structure Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Caffeate

(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0422568)


D020011 - Protective Agents > D000975 - Antioxidants KEIO_ID C107 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Undecanoate

UNDECANOIC ACID

C11H22O2 (186.1619712)


KEIO_ID U012 Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Brassicasterol

ergosta-5,22E-dien-3beta-ol

C28H46O (398.3548466)


An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Campesterol

Campesterol

C28H48O (400.37049579999996)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Caffeic Acid

3,4-dihydroxy cinnamic acid

C9H8O4 (180.0422568)


A hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. 3,4-dihydroxycinnamic acid, also known as caffeic acid or trans-caffeate, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 3,4-dihydroxycinnamic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxycinnamic acid can be found in fats and oils and nuts, which makes 3,4-dihydroxycinnamic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxycinnamic acid exists in all eukaryotes, ranging from yeast to humans. Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is a key intermediate in the biosynthesis of lignin, one of the principal components of plant biomass and its residues . Caffeic acid is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food. (PMID:16870009) [HMDB]. Caffeic acid is found in many foods, some of which are cardoon, coriander, common persimmon, and irish moss. D020011 - Protective Agents > D000975 - Antioxidants Annotation level-2 CONFIDENCE standard compound; INTERNAL_ID 167 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.412 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.403 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Kaempferitrin

Kaempferol-3,7-O-bis-alpha-L-rhamnoside

C27H30O14 (578.163548)


Kaempferitrin is a chemical compound. It can be isolated from the leaves of Hedyotis verticillata. Kaempferitrin is found in tea and linden. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2351 Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway. Kaempferitrin is a natural flavonoid, possesses antinociceptive, anti-inflammatory, anti-diabetic, antitumoral and chemopreventive effects, and activates insulin signaling pathway.

   

Umbelliferone

7-hydroxycoumarine

C9H6O3 (162.03169259999999)


Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.

   

Decanoic acid

Decanoic acid

C10H20O2 (172.14632200000003)


Decanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=334-48-5 (retrieved 2024-06-29) (CAS RN: 334-48-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

UNDECANOIC ACID

UNDECANOIC ACID

C11H22O2 (186.1619712)


A straight-chain, eleven-carbon saturated medium-chain fatty acid found in body fluids; the most fungitoxic of the C7:0 - C18:0 fatty acid series. C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Capric acid

Decanoic acid

C10H20O2 (172.14632200000003)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents A C10, straight-chain saturated fatty acid. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

Lauric acid

Dodecanoic acid

C12H24O2 (200.1776204)


Lauric acid, systematically dodecanoic acid, is a saturated fatty acid with a 12-carbon atom chain, thus having many properties of medium-chain fatty acids.[6] It is a bright white, powdery solid with a faint odor of bay oil or soap. The salts and esters of lauric acid are known as laurates. Lauric acid, as a component of triglycerides, comprises about half of the fatty-acid content in coconut milk, coconut oil, laurel oil, and palm kernel oil (not to be confused with palm oil),[10][11] Otherwise, it is relatively uncommon. It is also found in human breast milk (6.2\\\\% of total fat), cow's milk (2.9\\\\%), and goat's milk (3.1\\\\%). Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

Decanal

4-01-00-03366 (Beilstein Handbook Reference)

C10H20O (156.151407)


A saturated fatty aldehyde formally arising from reduction of the carboxy group of capric acid (decanoic acid). Decyl aldehyde is a simple ten-carbon aldehyde. Decyl aldehyde is a bacterial luciferase substrate. Decyl aldehyde is a simple ten-carbon aldehyde. Decyl aldehyde is a bacterial luciferase substrate.

   

Dodecanoic acid

Dodecanoic acid

C12H24O2 (200.1776204)


A straight-chain, twelve-carbon medium-chain saturated fatty acid with strong bactericidal properties; the main fatty acid in coconut oil and palm kernel oil.

   

Kaempferol 3-(2,6-di-(E)-p-coumarylglucoside)

Kaempferol 3-(2,6-di-(E)-p-coumarylglucoside)

C39H32O15 (740.1741122)


   

b-farnesene

(6Z)-7,11-dimethyl-3-methylidenedodeca-1,6,10-triene

C15H24 (204.18779039999998)


   

Falcarinolone

(9Z)-8-hydroxyheptadeca-1,9-dien-4,6-diyn-3-one

C17H22O2 (258.1619712)


   

Falcarinol

(CIS)-(-)-3-HYDROXY-1,9-HEPTADECADIEN-4,6-DIYNE

C17H24O (244.18270539999997)


Panaxynol is a long-chain fatty alcohol. It has a role as a metabolite. Falcarinol is a natural product found in Chaerophyllum aureum, Cussonia arborea, and other organisms with data available. A natural product found in Panax ginseng and Angelica japonica.

   

C12:0

Laurostearic acid

C12H24O2 (200.1776204)


Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

FA 12:1

(1S,2S)-2-octylcyclopropane-1-carboxylic acid

C12H22O2 (198.1619712)


   

panaxynol

(3R,9Z)-heptadeca-1,9-dien-4,6-diyn-3-ol

C17H24O (244.18270539999997)


   

Falcarinone

(Z)-heptadeca-1,9Z-dien-4,6-diyn-3-one

C17H22O (242.1670562)


   

2-dodecenoic acid

TRANS-2-DODECENOIC ACID

C11H21COOH (198.1619712)


   

cinaroside

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Cynaroside (Luteolin 7-glucoside) is a flavonoid compound that exhibits anti-oxidative capabilities. Cynaroside is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 32 nM. Cynaroside also is a promising inhibitor for H2O2-induced apoptosis, has cytoprotection against oxidative stress-induced cardiovascular diseases. Cynaroside also has antibacterial, antifungal and anticancer activities, antioxidant and anti-inflammatory activities[1][3][4][5].

   

Scopoletol

2H-1-Benzopyran-2-one, 7-hydroxy-6-methoxy- (9CI)

C10H8O4 (192.0422568)


Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.042651)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

α-Pinene

InChI=1\C10H16\c1-7-4-5-8-6-9(7)10(8,2)3\h4,8-9H,5-6H2,1-3H

C10H16 (136.1251936)


A pinene that is bicyclo[3.1.1]hept-2-ene substituted by methyl groups at positions 2, 6 and 6 respectively. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].

   

Myrcene

InChI=1\C10H16\c1-5-10(4)8-6-7-9(2)3\h5,7H,1,4,6,8H2,2-3H

C10H16 (136.1251936)


Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2]. Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2].

   

Moslene

InChI=1\C10H16\c1-8(2)10-6-4-9(3)5-7-10\h4,7-8H,5-6H2,1-3H

C10H16 (136.1251936)


γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].

   

AI3-63211

InChI=1\C9H8O4\c10-7-3-1-6(5-8(7)11)2-4-9(12)13\h1-5,10-11H,(H,12,13)\b4-2

C9H8O4 (180.0422568)


D020011 - Protective Agents > D000975 - Antioxidants Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Caryophyllin

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

AI3-02280

4-02-00-01068 (Beilstein Handbook Reference)

C11H22O2 (186.1619712)


C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

C-1297

[2-((1-OXODODECANOXY-(2-HYDROXY-3-PROPANYL))-PHOSPHONATE-OXY)-ETHYL]-TRIMETHYLAMMONIUM

C12H24O2 (200.1776204)


Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Farnesene

1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene-, (6E)-

C15H24 (204.18779039999998)


Isol. (without stereochemical distinction) from oil of Cymbopogon nardus (citronella), Cananga odorata (ylang ylang) and others (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

Safranal

InChI=1\C10H14O\c1-8-5-4-6-10(2,3)9(8)7-11\h4-5,7H,6H2,1-3H

C10H14O (150.1044594)


Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].

   

Lanol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H46O (386.3548466)


Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Dodecanal

InChI=1\C12H24O\c1-2-3-4-5-6-7-8-9-10-11-12-13\h12H,2-11H2,1H

C12H24O (184.18270539999997)


   

Heriguard

Cyclohexanecarboxylic acid, 3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxy-, [1S-(1.alpha.,3.beta.,4.alpha.,5.alpha.)]-

C16H18O9 (354.0950778)


Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Skimmetin

InChI=1\C9H6O3\c10-7-3-1-6-2-4-9(11)12-8(6)5-7\h1-5,10

C9H6O3 (162.03169259999999)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.

   

474-67-9

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548466)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Kaempferol-7-rhamnoside

Kaempferol-7-O-\u03b1-L-rhamnoside

C21H20O10 (432.105642)


Kaempferol-7-O-rhamnoside, isolated from Chimonanthus nitens Oliv. Leaves, is a potent α-glucosidase activity inhibitor. Kaempferol-7-O-rhamnoside has the potential for diabetes[1]. Kaempferol-7-O-rhamnoside, isolated from Chimonanthus nitens Oliv. Leaves, is a potent α-glucosidase activity inhibitor. Kaempferol-7-O-rhamnoside has the potential for diabetes[1].

   

Caryophyllene oxide

Caryophyllene alpha-oxide

C15H24O (220.18270539999997)


Constituent of oil of cloves (Eugenia caryophyllata)and is) also in oils of Betula alba, Mentha piperita (peppermint) and others. Caryophyllene alpha-oxide is found in many foods, some of which are spearmint, cloves, ceylon cinnamon, and herbs and spices. Caryophyllene beta-oxide is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Caryophyllene beta-oxide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, caryophyllene beta-oxide is primarily located in the membrane (predicted from logP). It can also be found in the extracellular space. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   
   

delta7-Avenasterol

(3S,5S,10S,13R,14R,17R)-10,13-dimethyl-17-[(Z,2R)-5-propan-2-ylhept-5-en-2-yl]-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


   

Tiliroside

((2R,3S,4S,5R,6S)-6-((5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)methyl (E)-3-(4-hydroxyphenyl)acrylate

C30H26O13 (594.1373346)


Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid. Tiliroside is a natural product found in Phlomoides spectabilis, Anaphalis contorta, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].

   

epoxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.18270539999997)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). A natural product found in Cupania cinerea. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

cedrene

Cedarwood oil terpenes fraction

C15H24 (204.18779039999998)


(-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1]. (-)-Cedrene (α-cedrene) is a sesquiterpene constituent of cedarwood oils, with anti-leukemic, antimicrobial and anti-obesity activities[1].

   
   

5-Dehydroavenasterol

(3S,10R,13R)-10,13-dimethyl-17-[(Z,2R)-5-propan-2-ylhept-5-en-2-yl]-2,3,4,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H46O (410.3548466)


   

Avenasterol

24Z-ethylidene-cholest-7-en-3beta-ol

C29H48O (412.37049579999996)


A stigmastane sterol that is 5alpha-stigmastane carrying a hydroxy group at position 3beta and double bonds at positions 7 and 24.

   

2-dodecenoic acid

2-dodecenoic acid

C12H22O2 (198.1619712)


A dodecenoic acid having its double bond at position 2.

   

Undecanoic acid

undecanoic acid

C11H22O2 (186.1619712)


Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9s,12as,14ar,14br)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(3-methylbut-2-enoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9s,12as,14ar,14br)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(3-methylbut-2-enoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

C47H74O16 (894.4976604)


   

4-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[7,8,10-trihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(2-methylbut-2-enoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

4-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[7,8,10-trihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(2-methylbut-2-enoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C53H84O22 (1072.5453964)


   

2,4,4-trimethyl-3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohexa-2,5-dien-1-one

2,4,4-trimethyl-3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohexa-2,5-dien-1-one

C16H24O7 (328.1521954)


   

(4s,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a-(hydroxymethyl)-2,2,6a,6b,9,9,12a-heptamethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picen-5-one

(4s,4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a-(hydroxymethyl)-2,2,6a,6b,9,9,12a-heptamethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picen-5-one

C54H88O24 (1120.5665248)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-8a-[(acetyloxy)methyl]-7,8,10-trihydroxy-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-8a-[(acetyloxy)methyl]-7,8,10-trihydroxy-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

C49H76O18 (952.5031395999999)


   

6-({8a-[(acetyloxy)methyl]-7,8,10-trihydroxy-4,4,6a,6b,11,11,14b-heptamethyl-9-[(2-methylbut-2-enoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxane-2-carboxylic acid

6-({8a-[(acetyloxy)methyl]-7,8,10-trihydroxy-4,4,6a,6b,11,11,14b-heptamethyl-9-[(2-methylbut-2-enoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxane-2-carboxylic acid

C49H76O18 (952.5031395999999)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

C49H76O18 (952.5031395999999)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9s,12as,14ar,14br)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(3-methylbut-2-enoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9s,12as,14ar,14br)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(3-methylbut-2-enoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxane-2-carboxylic acid

C47H74O16 (894.4976604)