Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Neochlorogenic acid

(1R,3R,4S,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylic acid

C16H18O9 (354.0950778)


Constituent of coffee and many other plants. First isolated from peaches (Prunus persica). trans-Neochlorogenic acid is found in coffee and coffee products, fruits, and pear. [Raw Data] CBA73_Neochlorogenic-_neg_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_20eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_40eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_20eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_40eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_30eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_30eV.txt Neochlorogenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=906-33-2 (retrieved 2024-07-17) (CAS RN: 906-33-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.153378)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0950778)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.37049579999996)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Falcarindiol

(Z)-(3S,8S)-Heptadeca-1,9-diene-4,6-diyne-3,8-diol

C17H24O2 (260.17762039999997)


Constituent of roots of several plants including the common carrot (Daucus carota) and Angelica acutiloba (Dong Dang Gui). Falcarindiol is found in many foods, some of which are wild carrot, carrot, garden tomato (variety), and caraway. Falcarindiol is found in caraway. Falcarindiol is a constituent of roots of several plants including the common carrot (Daucus carota) and Angelica acutiloba (Dong Dang Gui). Falcarindiol is a natural product found in Anthriscus nitida, Chaerophyllum aureum, and other organisms with data available. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   
   
   
   

Laserpitin

SCHEMBL11029669

C25H38O7 (450.2617398)


   
   

Trifolin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-o-beta-d-galactopyranoside, also known as trifolin or trifolioside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-o-beta-d-galactopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-d-galactopyranoside can be found in horseradish, which makes kaempferol 3-o-beta-d-galactopyranoside a potential biomarker for the consumption of this food product. Kaempferol 3-O-beta-D-galactoside is a beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position. It has a role as a plant metabolite and an antifungal agent. It is a beta-D-galactoside, a monosaccharide derivative, a glycosyloxyflavone and a trihydroxyflavone. It is functionally related to a kaempferol. It is a conjugate acid of a kaempferol 3-O-beta-D-galactoside(1-). Trifolin is a natural product found in Lotus ucrainicus, Saxifraga tricuspidata, and other organisms with data available. Isoastragalin is found in fats and oils. Isoastragalin is isolated from Gossypium hirsutum (cotton) and other plant species. A beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position.

   

Neochlorogenic_acid

CYCLOHEXANECARBOXYLIC ACID, 3-((3-(3,4-DIHYDROXYPHENYL)-1-OXO-2-PROPENYL)OXY)-1,4,5-TRIHYDROXY-, (1R-(1.ALPHA.,3.ALPHA.(E),4.ALPHA.,5.BETA.))-

C16H18O9 (354.0950778)


Trans-5-O-caffeoyl-D-quinic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. It has a role as a plant metabolite. It is a cyclitol carboxylic acid and a cinnamate ester. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a trans-5-O-caffeoyl-D-quinate. Neochlorogenic acid is a natural product found in Eupatorium perfoliatum, Centaurea bracteata, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (has part); Moringa oleifera leaf (part of). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.

   

Avicularin

3-[(2S,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

C20H18O11 (434.0849078)


Constituent of Vaccinium myrtillus (bilberry) and Juglans regia (walnut). Avicularin is found in many foods, some of which are cocoa powder, common walnut, guava, and nuts. Avicularin is found in allspice. Avicularin is a constituent of Vaccinium myrtillus (bilberry) and Juglans regia (walnut) Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3].

   

7-Glucosyl-luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.09547200000003)


   

Quercetin 3-O-rhamnoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C21H20O11 (448.100557)


   

Quercetin-3-o-rutinose

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O16 (610.153378)


   

Falcarindiol

1,9-Heptadecadiene-4,6-diyne-3,8-diol, [S-[R*,R*-(Z)]]-

C17H24O2 (260.17762039999997)


Falcarindiol is an organic molecular entity. It has a role as a metabolite. 1,9-Heptadecadiene-4,6-diyne-3,8-diol is a natural product found in Peucedanum oreoselinum, Oplopanax horridus, and other organisms with data available. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Avicularin

3-(((2S,3R,4R,5S)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C20H18O11 (434.0849078)


Avicularin is a quercetin O-glycoside in which an alpha-L-arabinofuranosyl residue is attached at position 3 of quercetin via a glycosidic linkage. It is isolated particularly from Juglans regia and Foeniculum vulgare. It has a role as a hepatoprotective agent and a plant metabolite. It is a monosaccharide derivative, an alpha-L-arabinofuranoside, a tetrahydroxyflavone and a quercetin O-glycoside. Avicularin is a natural product found in Saxifraga tricuspidata, Rhododendron mucronulatum, and other organisms with data available. A quercetin O-glycoside in which an alpha-L-arabinofuranosyl residue is attached at position 3 of quercetin via a glycosidic linkage. It is isolated particularly from Juglans regia and Foeniculum vulgare. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Trifolin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Isolated from Gossypium hirsutum (cotton) and other plant subspecies Isoastragalin is found in fats and oils. Isolated from liquorice (Glycyrrhiza glabra). Acetylastragalin is found in herbs and spices. Widespread occurrence in plant world, e.g. Pinus sylvestris (Scotch pine) and fruits of Scolymus hispanicus (Spanish salsify). Kaempferol 3-galactoside is found in many foods, some of which are horseradish, almond, peach, and tea.

   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0950778)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromenone

C27H30O16 (610.153378)


C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2352 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.724 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1921; CONFIDENCE confident structure Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Campesterol

Campesterol

C28H48O (400.37049579999996)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Sabinene

Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl)-

C10H16 (136.1251936)


Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. A thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. 4(10)-thujene, also known as sabinen or 1-isopropyl-4-methylenebicyclo[3.1.0]hexane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. 4(10)-thujene is a citrus, pepper, and pine tasting compound and can be found in a number of food items such as sweet orange, green bell pepper, pot marjoram, and parsley, which makes 4(10)-thujene a potential biomarker for the consumption of these food products. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].

   

Neochlorogenic acid

trans-5-O-Caffeoylquinic acid

C16H18O9 (354.0950778)


Neochlorogenic acid, also known as neochlorogenate or 3-O-caffeoylquinic acid, belongs to quinic acids and derivatives class of compounds. Those are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3.4, and 5, as well as a carboxylic acid at position 1. Neochlorogenic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Neochlorogenic acid can be found in a number of food items such as quince, chicory, white cabbage, and grape wine, which makes neochlorogenic acid a potential biomarker for the consumption of these food products. Neochlorogenic acid is a natural polyphenolic compound found in some types of dried fruits and a variety of other plant sources such as peaches. It is an isomer of chlorogenic acid . Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.

   

falcarindiol

1,9-Heptadecadiene-4,6-diyne-3,8-diol, (3R,8S,9Z)-

C17H24O2 (260.17762039999997)


(+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Heriguard

Cyclohexanecarboxylic acid, 3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxy-, [1S-(1.alpha.,3.beta.,4.alpha.,5.alpha.)]-

C16H18O9 (354.0950778)


Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

(3s,3ar,5as,6r,9ar,9bs)-6-(acetyloxy)-3,5a,9-trimethyl-2-oxo-1h,3ah,4h,5h,6h,7h,9ah,9bh-cyclopenta[a]naphthalen-3-yl (2e)-2-methylbut-2-enoate

(3s,3ar,5as,6r,9ar,9bs)-6-(acetyloxy)-3,5a,9-trimethyl-2-oxo-1h,3ah,4h,5h,6h,7h,9ah,9bh-cyclopenta[a]naphthalen-3-yl (2e)-2-methylbut-2-enoate

C23H32O5 (388.2249622)


   

(3s,3ar,4r,9as,9bs)-4-(acetyloxy)-3,6,9-trimethyl-2,7-dioxo-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-3-yl (2z)-2-methylbut-2-enoate

(3s,3ar,4r,9as,9bs)-4-(acetyloxy)-3,6,9-trimethyl-2,7-dioxo-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-3-yl (2z)-2-methylbut-2-enoate

C22H26O7 (402.1678446)


   

6-(acetyloxy)-3,5a,9-trimethyl-2-oxo-1h,3ah,4h,5h,6h,7h,9ah,9bh-cyclopenta[a]naphthalen-3-yl 2-methylbut-2-enoate

6-(acetyloxy)-3,5a,9-trimethyl-2-oxo-1h,3ah,4h,5h,6h,7h,9ah,9bh-cyclopenta[a]naphthalen-3-yl 2-methylbut-2-enoate

C23H32O5 (388.2249622)


   

(3s,3ar,4r,6r,6ar,8s,9bs)-6-(acetyloxy)-3,3a-dihydroxy-3,6,9-trimethyl-4-{[(2r)-2-methylbutanoyl]oxy}-2-oxo-4h,5h,6ah,7h,8h,9bh-azuleno[4,5-b]furan-8-yl (2e)-2-methylbut-2-enoate

(3s,3ar,4r,6r,6ar,8s,9bs)-6-(acetyloxy)-3,3a-dihydroxy-3,6,9-trimethyl-4-{[(2r)-2-methylbutanoyl]oxy}-2-oxo-4h,5h,6ah,7h,8h,9bh-azuleno[4,5-b]furan-8-yl (2e)-2-methylbut-2-enoate

C27H38O10 (522.2464848)


   

(3s,3ar,4s,6s,6as,9s,9ar,9bs)-3,6-bis(acetyloxy)-9-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

(3s,3ar,4s,6s,6as,9s,9ar,9bs)-3,6-bis(acetyloxy)-9-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

C24H32O9 (464.2046222)


   

(3s,3ar,4s,6s,6as,9as,9bs)-6-hydroxy-3,6,9-trimethyl-3-[(2-methylbut-2-enoyl)oxy]-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

(3s,3ar,4s,6s,6as,9as,9bs)-6-hydroxy-3,6,9-trimethyl-3-[(2-methylbut-2-enoyl)oxy]-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

C25H34O7 (446.2304414)


   

(3s,3ar,4s,6s,6as,9s,9ar,9bs)-3-(acetyloxy)-6,9-dihydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

(3s,3ar,4s,6s,6as,9s,9ar,9bs)-3-(acetyloxy)-6,9-dihydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

C22H30O8 (422.194058)


   

3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbutanoate

3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbutanoate

C22H32O7 (408.2147922)


   

(3s,3ar,5as,6r,9ar,9bs)-6-(acetyloxy)-3,5a,9-trimethyl-2-oxo-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-3-yl 2-methylbut-2-enoate

(3s,3ar,5as,6r,9ar,9bs)-6-(acetyloxy)-3,5a,9-trimethyl-2-oxo-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-3-yl 2-methylbut-2-enoate

C22H30O6 (390.204228)


   

6-ethenyl-2-hydroxy-3,6-dimethyl-7-(prop-1-en-2-yl)-hexahydro-2h-1-benzofuran-4-yl (2e)-2-methylbut-2-enoate

6-ethenyl-2-hydroxy-3,6-dimethyl-7-(prop-1-en-2-yl)-hexahydro-2h-1-benzofuran-4-yl (2e)-2-methylbut-2-enoate

C20H30O4 (334.214398)


   

(3s,3ar,5as,6r,9ar,9bs)-6-(acetyloxy)-3,5a,9-trimethyl-2-oxo-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-3-yl (2z)-2-methylbut-2-enoate

(3s,3ar,5as,6r,9ar,9bs)-6-(acetyloxy)-3,5a,9-trimethyl-2-oxo-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-3-yl (2z)-2-methylbut-2-enoate

C22H30O6 (390.204228)


   

(3s,3ar,4s,6s,6as,9as,9br)-3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 3-methylbut-2-enoate

(3s,3ar,4s,6s,6as,9as,9br)-3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 3-methylbut-2-enoate

C22H30O7 (406.199143)


   

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H48O (400.37049579999996)


   

1-(7-hydroxy-2h-1,3-benzodioxol-5-yl)propan-1-one

1-(7-hydroxy-2h-1,3-benzodioxol-5-yl)propan-1-one

C10H10O4 (194.057906)


   

3,6-bis(acetyloxy)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

3,6-bis(acetyloxy)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

C23H32O8 (436.20970719999997)


   

4,6-dihydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-3-yl acetate

4,6-dihydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-3-yl acetate

C17H24O6 (324.1572804)


   

1-(7-methoxy-2h-1,3-benzodioxol-5-yl)propan-1-one

1-(7-methoxy-2h-1,3-benzodioxol-5-yl)propan-1-one

C11H12O4 (208.0735552)


   

2-hydroxy-3,6,10-trimethyl-2h,3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2-methylbut-2-enoate

2-hydroxy-3,6,10-trimethyl-2h,3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2-methylbut-2-enoate

C20H30O4 (334.214398)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.09547200000003)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.09547200000003)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

C21H20O11 (448.100557)


   

(3s,3ar,4s,6s,6as,9as,9bs)-6-hydroxy-3,6,9-trimethyl-3-{[(2e)-2-methylbut-2-enoyl]oxy}-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

(3s,3ar,4s,6s,6as,9as,9bs)-6-hydroxy-3,6,9-trimethyl-3-{[(2e)-2-methylbut-2-enoyl]oxy}-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

C25H34O7 (446.2304414)


   

(3s,3ar,4s,6s,6as,9as,9bs)-6-(acetyloxy)-4-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-3-yl acetate

(3s,3ar,4s,6s,6as,9as,9bs)-6-(acetyloxy)-4-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-3-yl acetate

C19H26O7 (366.16784459999997)


   

(3s,3ar,4s,6s,6as,9as,9bs)-3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

(3s,3ar,4s,6s,6as,9as,9bs)-3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

C21H30O7 (394.199143)


   

(3s,3ar,4s,6s,6ar,7s,9as,9bs)-3,6-bis(acetyloxy)-7-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

(3s,3ar,4s,6s,6ar,7s,9as,9bs)-3,6-bis(acetyloxy)-7-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

C24H32O9 (464.2046222)


   

(3s,3ar,4s,6s,6as,9as,9bs)-3,6-bis(acetyloxy)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

(3s,3ar,4s,6s,6as,9as,9bs)-3,6-bis(acetyloxy)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

C24H32O8 (448.20970719999997)


   

(3s,3ar,5as,6r,9ar,9bs)-6-(acetyloxy)-3,5a,9-trimethyl-2-oxo-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-3-yl (2e)-2-methylbut-2-enoate

(3s,3ar,5as,6r,9ar,9bs)-6-(acetyloxy)-3,5a,9-trimethyl-2-oxo-3ah,4h,5h,6h,7h,9ah,9bh-naphtho[1,2-b]furan-3-yl (2e)-2-methylbut-2-enoate

C22H30O6 (390.204228)


   

3,6-bis(acetyloxy)-7-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

3,6-bis(acetyloxy)-7-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

C24H32O9 (464.2046222)


   

(3s,3ar,4s,6s,6as,9s,9ar,9bs)-3,6-bis(acetyloxy)-9-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

(3s,3ar,4s,6s,6as,9s,9ar,9bs)-3,6-bis(acetyloxy)-9-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

C24H32O9 (464.2046222)


   

(3s,3ar,4s,6s,6as,9as,9bs)-3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2r)-2-methylbutanoate

(3s,3ar,4s,6s,6as,9as,9bs)-3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2r)-2-methylbutanoate

C22H32O7 (408.2147922)


   

3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

C21H30O7 (394.199143)


   

(3s,3ar,4s,6s,6as,9as,9bs)-3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

(3s,3ar,4s,6s,6as,9as,9bs)-3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

C22H30O7 (406.199143)


   

6-(acetyloxy)-3,3a-dihydroxy-3,6,9-trimethyl-4-[(2-methylbutanoyl)oxy]-2-oxo-4h,5h,6ah,7h,8h,9bh-azuleno[4,5-b]furan-8-yl 2-methylbut-2-enoate

6-(acetyloxy)-3,3a-dihydroxy-3,6,9-trimethyl-4-[(2-methylbutanoyl)oxy]-2-oxo-4h,5h,6ah,7h,8h,9bh-azuleno[4,5-b]furan-8-yl 2-methylbut-2-enoate

C27H38O10 (522.2464848)


   

(3s,3ar,4s,6s,6as,9as,9br)-3,6-bis(acetyloxy)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2z)-2-methylbut-2-enoate

(3s,3ar,4s,6s,6as,9as,9br)-3,6-bis(acetyloxy)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2z)-2-methylbut-2-enoate

C24H32O8 (448.20970719999997)


   

(3s,3ar,4s,6s,6as,9as,9bs)-4,6-dihydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-3-yl acetate

(3s,3ar,4s,6s,6as,9as,9bs)-4,6-dihydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-3-yl acetate

C17H24O6 (324.1572804)


   

(3r,3ar,9as,9bs)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,7h,9ah,9bh-azuleno[4,5-b]furan-3-yl (2z)-2-methylbut-2-enoate

(3r,3ar,9as,9bs)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,7h,9ah,9bh-azuleno[4,5-b]furan-3-yl (2z)-2-methylbut-2-enoate

C20H26O4 (330.18309960000005)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

6-(acetyloxy)-4-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-3-yl acetate

6-(acetyloxy)-4-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-3-yl acetate

C19H26O7 (366.16784459999997)


   

(3s,3ar,4s,6s,6as,9as,9bs)-3,6-bis(acetyloxy)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

(3s,3ar,4s,6s,6as,9as,9bs)-3,6-bis(acetyloxy)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

C24H32O8 (448.20970719999997)


   

(2r,3s,3ar,4s,11ar)-2-hydroxy-3,6,10-trimethyl-2h,3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2z)-2-methylbut-2-enoate

(2r,3s,3ar,4s,11ar)-2-hydroxy-3,6,10-trimethyl-2h,3h,3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2z)-2-methylbut-2-enoate

C20H30O4 (334.214398)


   

(3s,3ar,4s,6s,6as,9as,9bs)-3,6-bis(acetyloxy)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

(3s,3ar,4s,6s,6as,9as,9bs)-3,6-bis(acetyloxy)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

C23H32O8 (436.20970719999997)


   

(3s,3ar,4s,6s,6ar,9bs)-3,6-bis(acetyloxy)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

(3s,3ar,4s,6s,6ar,9bs)-3,6-bis(acetyloxy)-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylpropanoate

C23H32O8 (436.20970719999997)


   

(3s,8r)-heptadeca-1,9-dien-4,6-diyne-3,8-diol

(3s,8r)-heptadeca-1,9-dien-4,6-diyne-3,8-diol

C17H24O2 (260.17762039999997)


   

(3s,3ar,4s,6s,6as,9as,9bs)-3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

(3s,3ar,4s,6s,6as,9as,9bs)-3-(acetyloxy)-6-hydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,7h,9ah,9bh-azuleno[4,5-b]furan-4-yl (2e)-2-methylbut-2-enoate

C22H30O7 (406.199143)


   

3-(acetyloxy)-6,9-dihydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

3-(acetyloxy)-6,9-dihydroxy-3,6,9-trimethyl-2-oxo-3ah,4h,5h,6ah,9ah,9bh-azuleno[4,5-b]furan-4-yl 2-methylbut-2-enoate

C22H30O8 (422.194058)