NCBI Taxonomy: 46070

Kigelia (ncbi_taxid: 46070)

found 104 associated metabolites at genus taxonomy rank level.

Ancestor: paleotropical clade

Child Taxonomies: Kigelia africana

4-Hydroxycinnamic acid

(E)-3-(4-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473)


4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0951)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Caffeic acid

(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0423)


Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Ferulic acid

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.0579)


trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Lapachol

4-hydroxy-3-(3-methylbut-2-en-1-yl)-1,2-dihydronaphthalene-1,2-dione

C15H14O3 (242.0943)


Lapachol is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone substituted by hydroxy and 3-methylbut-2-en-1-yl groups at positions 2 and 3, respectively. It is a natural compound that exhibits antibacterial and anticancer properties, first isolated in 1882 from the bark of Tabebuia avellanedae. It has a role as a plant metabolite, an antineoplastic agent, an antibacterial agent and an anti-inflammatory agent. It is a hydroxy-1,4-naphthoquinone and an olefinic compound. NA is a natural product found in Plenckia populnea, Stereospermum colais, and other organisms with data available. A hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone substituted by hydroxy and 3-methylbut-2-en-1-yl groups at positions 2 and 3, respectively. It is a natural compound that exhibits antibacterial and anticancer properties, first isolated in 1882 from the bark of Tabebuia avellanedae. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents [Raw Data] CB290_Lapachol_pos_40eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_50eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_10eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_30eV_CB000086.txt [Raw Data] CB290_Lapachol_pos_20eV_CB000086.txt [Raw Data] CB290_Lapachol_neg_10eV_000049.txt [Raw Data] CB290_Lapachol_neg_20eV_000049.txt [Raw Data] CB290_Lapachol_neg_40eV_000049.txt [Raw Data] CB290_Lapachol_neg_50eV_000049.txt [Raw Data] CB290_Lapachol_neg_30eV_000049.txt Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].

   

Methyl caffeate

Methyl 3,4-dihydroxycinnamate

C10H10O4 (194.0579)


Methyl caffeate, an antimicrobial agent, shows moderate antimicrobial and prominent antimycobacterial activities. Methyl caffeate also exhibits α-glucosidase inhibition activity, oxidative stress inhibiting activity, anti-platelet activity, antiproliferative activity in cervix adenocarcinoma and anticancer activity in lung and leukmia cell lines[1]. Methyl caffeate, an antimicrobial agent, shows moderate antimicrobial and prominent antimycobacterial activities. Methyl caffeate also exhibits α-glucosidase inhibition activity, oxidative stress inhibiting activity, anti-platelet activity, antiproliferative activity in cervix adenocarcinoma and anticancer activity in lung and leukmia cell lines[1].

   

Acteoside

6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054)


The main hydroxycinnamic deriv. in olives. Acteoside is found in many foods, some of which are olive, lemon verbena, bitter gourd, and common verbena. Acteoside is found in bitter gourd. It is the main hydroxycinnamic derivative in olives Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.

   

6-Methoxymellein

6-Methoxy-8-hydroxy-3-methyl-3,4-dihydroisocoumarin, (R)-(-)-isomer

C11H12O4 (208.0736)


Isolated from Aspergillus caespitosus, Aspergillus variecolor and Sporormia bipartis. Reaches fungitoxic levels in stored infected carrot. Shows broad antimicrobial action. 6-Methoxymellein is found in wild carrot, root vegetables, and carrot. 6-Methoxymellein is found in carrot. 6-Methoxymellein is isolated from Aspergillus caespitosus, Aspergillus variecolor and Sporormia bipartis. Reaches fungitoxic levels in stored infected carrot. Shows broad antimicrobial action.

   

Tritriacontane

N-tritriacontane

C33H68 (464.5321)


Tritriacontane is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, tritriacontane is considered to be a hydrocarbon lipid molecule. Tritriacontane can be found in cardamom, garden tomato (variety), and papaya, which makes tritriacontane a potential biomarker for the consumption of these food products. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Tritriacontane, also known as CH3-[CH2]31-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and consist entirely of hydrogen atoms and saturated carbon atoms. Thus, tritriacontane is a hydrocarbon lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. Tritriacontane has been detected in cardamoms, garden tomato (var.), and papaya. This could make tritriacontane a potential biomarker for the consumption of these foods. Tritriacontane is also found in Medicago arabica (PMID: 17793563).

   

Kigelinone

CHEBI:66029

C14H10O5 (258.0528)


   

Clionasterol

24beta-Ethyl-5-cholesten-3beta-ol

C29H50O (414.3861)


Clionasterol is a triterpenoid isolated from the Indian marine red alga Gracilaria edulis, the sponge Veronica aerophoba and the Kenyan Marine Green. Macroalga Halimeda macroloba. It is a potent inhibitor of complement component C1. (PMID 12624828). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

Methyl 3,4-dihydroxycinnamate

Methyl 3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C10H10O4 (194.0579)


   

lapachol

4-hydroxy-3-(3-methylbut-2-en-1-yl)-1,2-dihydronaphthalene-1,2-dione

C15H14O3 (242.0943)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].

   

Verbascoside

6-[2-(3,4-Dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C29H36O15 (624.2054)


   

Verbascoside

[(2R,3R,4R,5R,6R)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-3-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054)


Acteoside is a glycoside that is the alpha-L-rhamnosyl-(1->3)-beta-D-glucoside of hydroxytyrosol in which the hydroxy group at position 4 of the glucopyranosyl moiety has undergone esterification by formal condensation with trans-caffeic acid. It has a role as a neuroprotective agent, an antileishmanial agent, an anti-inflammatory agent, a plant metabolite and an antibacterial agent. It is a cinnamate ester, a disaccharide derivative, a member of catechols, a polyphenol and a glycoside. It is functionally related to a hydroxytyrosol and a trans-caffeic acid. Acteoside is under investigation in clinical trial NCT02662283 (Validity and Security of Reh-acteoside Therapy for Patients of IgA Nephropathy). Acteoside is a natural product found in Orobanche amethystea, Barleria lupulina, and other organisms with data available. See also: Harpagophytum zeyheri root (part of). A glycoside that is the alpha-L-rhamnosyl-(1->3)-beta-D-glucoside of hydroxytyrosol in which the hydroxy group at position 4 of the glucopyranosyl moiety has undergone esterification by formal condensation with trans-caffeic acid. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.

   

Minecoside

Minecoside

C25H30O13 (538.1686)


A natural product found in Veronica lavaudiana.

   

Verminoside

[(1S,2S,4S,5S,6R,10S)-2-(Hydroxymethyl)-10-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,9-dioxatricyclo[4.4.0.02,4]dec-7-en-5-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O13 (524.153)


Verminoside is a hydroxycinnamic acid. It has a role as a metabolite. Verminoside is a natural product found in Stereospermum colais, Veronica pulvinaris, and other organisms with data available. A natural product found in Veronica lavaudiana.

   

5,7-dihydroxy-7-methyl-octahydrocyclopenta[c]pyran-3-one

5,7-dihydroxy-7-methyl-octahydrocyclopenta[c]pyran-3-one

C9H14O4 (186.0892)


   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione

2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione

C14H10O4 (242.0579)


   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0951)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Caffeic Acid

3,4-dihydroxy cinnamic acid

C9H8O4 (180.0423)


A hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. 3,4-dihydroxycinnamic acid, also known as caffeic acid or trans-caffeate, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 3,4-dihydroxycinnamic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxycinnamic acid can be found in fats and oils and nuts, which makes 3,4-dihydroxycinnamic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxycinnamic acid exists in all eukaryotes, ranging from yeast to humans. Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is a key intermediate in the biosynthesis of lignin, one of the principal components of plant biomass and its residues . Caffeic acid is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food. (PMID:16870009) [HMDB]. Caffeic acid is found in many foods, some of which are cardoon, coriander, common persimmon, and irish moss. D020011 - Protective Agents > D000975 - Antioxidants Annotation level-2 CONFIDENCE standard compound; INTERNAL_ID 167 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.412 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.403 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Ferulic acid

4-hydroxy-3-methoxycinnamic acid

C10H10O4 (194.0579)


(E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Hexadecanoic acid

Hexadecanoic acid

C16H32O2 (256.2402)


   

C30:0

TRIACONTANOIC ACID

C30H60O2 (452.4593)


   

N-tritriacontane

N-tritriacontane

C33H68 (464.5321)


   

clionasterol

(3beta,24S)-stigmast-5-en-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is poriferast-5-ene carrying a beta-hydroxy substituent at position 3. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

Cyclopenta[c]pyran-7-carbaldehyde

Cyclopenta[c]pyran-7-carbaldehyde

C9H6O2 (146.0368)


   

Hydroxycinnamic acid

Hydroxycinnamic acid

C9H8O3 (164.0473)


The cis-stereoisomer of 3-coumaric acid.

   

630-05-7

N-tritriacontane

C33H68 (464.5321)


   

Tecomin

InChI=1\C15H14O3\c1-9(2)7-8-12-13(16)10-5-3-4-6-11(10)14(17)15(12)18\h3-7,18H,8H2,1-2H

C15H14O3 (242.0943)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2]. Lapachol is a naphthoquinone that was first isolated from Tabebuia avellanedae (Bignoniaceae)[1]. Lapachol shows anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, antiedemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, antibacterial, antifungal and pesticidal activities[2].

   

6-Methoxymellein

6-Methoxymellein

C11H12O4 (208.0736)


   

3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.0579)


   

(4r,5s,6r)-6-(2-hydroxyethyl)-4h,5h,6h-cyclopenta[c]furan-4,5-diol

(4r,5s,6r)-6-(2-hydroxyethyl)-4h,5h,6h-cyclopenta[c]furan-4,5-diol

C9H12O4 (184.0736)


   

(1s,12r,13s,16r,18s)-5-hydroxy-16,18-dimethyl-2,9-dioxo-17-oxapentacyclo[11.4.1.0¹,¹⁰.0³,⁸.0¹²,¹⁶]octadeca-3,5,7,10-tetraene-18-carbaldehyde

(1s,12r,13s,16r,18s)-5-hydroxy-16,18-dimethyl-2,9-dioxo-17-oxapentacyclo[11.4.1.0¹,¹⁰.0³,⁸.0¹²,¹⁶]octadeca-3,5,7,10-tetraene-18-carbaldehyde

C20H18O5 (338.1154)


   

(5r,7s)-5,7-dihydroxy-7-methyl-hexahydrocyclopenta[c]pyran-3-one

(5r,7s)-5,7-dihydroxy-7-methyl-hexahydrocyclopenta[c]pyran-3-one

C9H14O4 (186.0892)


   

8-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione

8-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-dione

C14H10O5 (258.0528)


   

2-acetyl-2h,3h-naphtho[2,3-b]furan-4,9-dione

2-acetyl-2h,3h-naphtho[2,3-b]furan-4,9-dione

C14H10O4 (242.0579)


   

(4as)-4a,8-dihydroxy-1,4-dimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

(4as)-4a,8-dihydroxy-1,4-dimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

C19H16O4 (308.1049)


   

2-(2-hydroxyethyl)-3-(hydroxymethyl)-4-methylcyclopent-3-en-1-ol

2-(2-hydroxyethyl)-3-(hydroxymethyl)-4-methylcyclopent-3-en-1-ol

C9H16O3 (172.1099)


   

(3as,4r,6as)-6,6a-bis(hydroxymethyl)-2h,3h,3ah,4h-cyclopenta[b]furan-4-ol

(3as,4r,6as)-6,6a-bis(hydroxymethyl)-2h,3h,3ah,4h-cyclopenta[b]furan-4-ol

C9H14O4 (186.0892)


   

[(1r,4r,5s)-4,5-dihydroxy-2,3-bis(hydroxymethyl)cyclopent-2-en-1-yl]acetic acid

[(1r,4r,5s)-4,5-dihydroxy-2,3-bis(hydroxymethyl)cyclopent-2-en-1-yl]acetic acid

C9H14O6 (218.079)


   

(3r,5s)-3-(2-hydroxyethyl)-5-[(2s)-2-hydroxypropyl]oxolan-2-one

(3r,5s)-3-(2-hydroxyethyl)-5-[(2s)-2-hydroxypropyl]oxolan-2-one

C9H16O4 (188.1049)


   

2,2-dimethyl-4ah,10ah-benzo[g]chromene-5,10-dione

2,2-dimethyl-4ah,10ah-benzo[g]chromene-5,10-dione

C15H14O3 (242.0943)


   

7-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-5-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

7-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-5-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H30O12 (510.1737)


   

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O13 (524.153)


   

8-hydroxy-1,4,4a-trimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

8-hydroxy-1,4,4a-trimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

C20H18O3 (306.1256)


   

(3r,5r)-3-(2-hydroxyethyl)-5-[(2r)-2-hydroxypropyl]oxolan-2-one

(3r,5r)-3-(2-hydroxyethyl)-5-[(2r)-2-hydroxypropyl]oxolan-2-one

C9H16O4 (188.1049)


   

(4ar)-8-hydroxy-1,4,4a-trimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

(4ar)-8-hydroxy-1,4,4a-trimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

C20H18O3 (306.1256)


   

(2s,3r,4s,5s,6r)-2-{[(1s,4ar,5r,7s,7as)-5,7-dihydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(1s,4ar,5r,7s,7as)-5,7-dihydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C15H24O9 (348.142)


   

6,6a-bis(hydroxymethyl)-2h,3h,3ah,4h-cyclopenta[b]furan-4-ol

6,6a-bis(hydroxymethyl)-2h,3h,3ah,4h-cyclopenta[b]furan-4-ol

C9H14O4 (186.0892)


   

(4ar,5s,6r)-5,6-dihydroxy-7-(hydroxymethyl)-3h,4h,4ah,5h,6h-cyclopenta[c]pyran-1-one

(4ar,5s,6r)-5,6-dihydroxy-7-(hydroxymethyl)-3h,4h,4ah,5h,6h-cyclopenta[c]pyran-1-one

C9H12O5 (200.0685)


   

(2s)-2-acetyl-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2s)-2-acetyl-2h,3h-naphtho[2,3-b]furan-4,9-dione

C14H10O4 (242.0579)


   

(2s,3s,4r,5r,6s)-6-{[(4as,7s,7ar)-7-hydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-1-yl]oxy}-2-(hydroxymethyl)oxane-2,3,4,5-tetrol

(2s,3s,4r,5r,6s)-6-{[(4as,7s,7ar)-7-hydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-1-yl]oxy}-2-(hydroxymethyl)oxane-2,3,4,5-tetrol

C15H24O9 (348.142)


   

1,4-bis(2h-1,3-benzodioxol-5-yl)-tetrahydrofuro[3,4-c]furan-3a,6a-diol

1,4-bis(2h-1,3-benzodioxol-5-yl)-tetrahydrofuro[3,4-c]furan-3a,6a-diol

C20H18O8 (386.1002)


   

[(1r,4r,5s)-4,5-dihydroxy-2-(hydroxymethyl)-3-methylcyclopent-2-en-1-yl]acetic acid

[(1r,4r,5s)-4,5-dihydroxy-2-(hydroxymethyl)-3-methylcyclopent-2-en-1-yl]acetic acid

C9H14O5 (202.0841)


   

(3r)-8-hydroxy-6,7-dimethoxy-3-methyl-3,4-dihydro-2-benzopyran-1-one

(3r)-8-hydroxy-6,7-dimethoxy-3-methyl-3,4-dihydro-2-benzopyran-1-one

C12H14O5 (238.0841)


   

2-methyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

2-methyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O12 (508.1581)


   

(12r,13s,16r,18s)-5-hydroxy-16,18-dimethyl-2,9-dioxo-17-oxapentacyclo[11.4.1.0¹,¹⁰.0³,⁸.0¹²,¹⁶]octadeca-3,5,7,10-tetraene-18-carbaldehyde

(12r,13s,16r,18s)-5-hydroxy-16,18-dimethyl-2,9-dioxo-17-oxapentacyclo[11.4.1.0¹,¹⁰.0³,⁸.0¹²,¹⁶]octadeca-3,5,7,10-tetraene-18-carbaldehyde

C20H18O5 (338.1154)


   

6-hydroxy-7-methoxy-3-methyl-3,4-dihydro-2-benzopyran-1-one

6-hydroxy-7-methoxy-3-methyl-3,4-dihydro-2-benzopyran-1-one

C11H12O4 (208.0736)


   

(1r,2r)-2-(2-hydroxyethyl)-3-(hydroxymethyl)-4-methylcyclopent-3-en-1-ol

(1r,2r)-2-(2-hydroxyethyl)-3-(hydroxymethyl)-4-methylcyclopent-3-en-1-ol

C9H16O3 (172.1099)


   

2-(1-hydroxyethyl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

2-(1-hydroxyethyl)-2h,3h-naphtho[2,3-b]furan-4,9-dione

C14H12O4 (244.0736)


   

(3s,5s)-3-(2-hydroxyethyl)-5-[(2r)-2-hydroxypropyl]oxolan-2-one

(3s,5s)-3-(2-hydroxyethyl)-5-[(2r)-2-hydroxypropyl]oxolan-2-one

C9H16O4 (188.1049)


   

(3as,4s,6as)-6,6a-bis(hydroxymethyl)-2h,3h,3ah,4h-cyclopenta[b]furan-4-ol

(3as,4s,6as)-6,6a-bis(hydroxymethyl)-2h,3h,3ah,4h-cyclopenta[b]furan-4-ol

C9H14O4 (186.0892)


   

(4ar,5r,7s,7ar)-5,7-dihydroxy-7-methyl-hexahydrocyclopenta[c]pyran-3-one

(4ar,5r,7s,7ar)-5,7-dihydroxy-7-methyl-hexahydrocyclopenta[c]pyran-3-one

C9H14O4 (186.0892)


   

[4,5-dihydroxy-2,3-bis(hydroxymethyl)cyclopent-2-en-1-yl]acetic acid

[4,5-dihydroxy-2,3-bis(hydroxymethyl)cyclopent-2-en-1-yl]acetic acid

C9H14O6 (218.079)


   

(1s,2r,5r)-5-(2-hydroxyethyl)-4-(hydroxymethyl)-3-methylcyclopent-3-ene-1,2-diol

(1s,2r,5r)-5-(2-hydroxyethyl)-4-(hydroxymethyl)-3-methylcyclopent-3-ene-1,2-diol

C9H16O4 (188.1049)


   

(7s)-1-[(5s)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(7s)-1-[(5s)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.3861)


   

2-hydroxy-3-(3-methylbut-2-en-1-yl)-2,3-dihydronaphthalene-1,4-dione

2-hydroxy-3-(3-methylbut-2-en-1-yl)-2,3-dihydronaphthalene-1,4-dione

C15H16O3 (244.1099)


   

8-hydroxy-6,7-dimethoxy-3-methyl-3,4-dihydro-2-benzopyran-1-one

8-hydroxy-6,7-dimethoxy-3-methyl-3,4-dihydro-2-benzopyran-1-one

C12H14O5 (238.0841)


   

7-hydroxy-1,4,4a-trimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

7-hydroxy-1,4,4a-trimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

C20H18O3 (306.1256)


   

(4ar)-7-hydroxy-1,4,4a-trimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

(4ar)-7-hydroxy-1,4,4a-trimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

C20H18O3 (306.1256)


   

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

2-(hydroxymethyl)-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O13 (524.153)


   

(4ar,5s,7as)-7-(hydroxymethyl)-1h,3h,4h,4ah,5h,7ah-cyclopenta[c]pyran-5-ol

(4ar,5s,7as)-7-(hydroxymethyl)-1h,3h,4h,4ah,5h,7ah-cyclopenta[c]pyran-5-ol

C9H14O3 (170.0943)


   

(2s,3s)-2-hydroxy-3-(3-methylbut-2-en-1-yl)-2,3-dihydronaphthalene-1,4-dione

(2s,3s)-2-hydroxy-3-(3-methylbut-2-en-1-yl)-2,3-dihydronaphthalene-1,4-dione

C15H16O3 (244.1099)


   

[(3ar,6as)-6-(hydroxymethyl)-2h,3h,3ah,4h-cyclopenta[b]furan-6a-yl]methanol

[(3ar,6as)-6-(hydroxymethyl)-2h,3h,3ah,4h-cyclopenta[b]furan-6a-yl]methanol

C9H14O3 (170.0943)


   

(4as,10as)-2,2-dimethyl-4ah,10ah-benzo[g]chromene-5,10-dione

(4as,10as)-2,2-dimethyl-4ah,10ah-benzo[g]chromene-5,10-dione

C15H14O3 (242.0943)


   

(3r)-6-hydroxy-7-methoxy-3-methyl-3,4-dihydro-2-benzopyran-1-one

(3r)-6-hydroxy-7-methoxy-3-methyl-3,4-dihydro-2-benzopyran-1-one

C11H12O4 (208.0736)


   

4a,7-dihydroxy-1,4-dimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

4a,7-dihydroxy-1,4-dimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

C19H16O4 (308.1049)


   

6-(2-hydroxyethyl)-4h,5h,6h-cyclopenta[c]furan-4,5-diol

6-(2-hydroxyethyl)-4h,5h,6h-cyclopenta[c]furan-4,5-diol

C9H12O4 (184.0736)


   

4a,8-dihydroxy-1,4-dimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

4a,8-dihydroxy-1,4-dimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

C19H16O4 (308.1049)


   

(2r,3s,4s,5s,6r)-2-{[(1s,4as,5r,7s,7as)-5,7-dihydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3s,4s,5s,6r)-2-{[(1s,4as,5r,7s,7as)-5,7-dihydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C15H24O9 (348.142)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

3-(2-hydroxyethyl)-5-(2-hydroxypropyl)oxolan-2-one

3-(2-hydroxyethyl)-5-(2-hydroxypropyl)oxolan-2-one

C9H16O4 (188.1049)


   

(1r,12r,13r,16s,18r)-6-hydroxy-16,18-dimethyl-2,9-dioxo-17-oxapentacyclo[11.4.1.0¹,¹⁰.0³,⁸.0¹²,¹⁶]octadeca-3,5,7,10-tetraene-18-carbaldehyde

(1r,12r,13r,16s,18r)-6-hydroxy-16,18-dimethyl-2,9-dioxo-17-oxapentacyclo[11.4.1.0¹,¹⁰.0³,⁸.0¹²,¹⁶]octadeca-3,5,7,10-tetraene-18-carbaldehyde

C20H18O5 (338.1154)


   

(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

(1s,2s,4s,5s,6r,10s)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C24H28O12 (508.1581)


   

(4as)-4a,7-dihydroxy-1,4-dimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

(4as)-4a,7-dihydroxy-1,4-dimethyl-2h,3h-cyclopenta[b]anthracene-5,10-dione

C19H16O4 (308.1049)


   

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2z)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(1s,2s,4s,5s,6s,10s)-2-(hydroxymethyl)-10-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2z)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O13 (524.153)


   

(1s,4ar,5r,7s,7as)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-5-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(1s,4ar,5r,7s,7as)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-5-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H30O12 (510.1737)


   

(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054)


   

(2r,4r,5r,10r)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,4r,5r,10r)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O13 (524.153)


   

(1s,2r,4s,5s,6r,10s)-2-methyl-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(1s,2r,4s,5s,6r,10s)-2-methyl-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O12 (508.1581)


   

[(2r,3s,4s,5r,6s)-6-{[(1s,4ar,5r,7s,7as)-5,7-dihydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-1-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

[(2r,3s,4s,5r,6s)-6-{[(1s,4ar,5r,7s,7as)-5,7-dihydroxy-7-methyl-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-1-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H30O12 (510.1737)


   

5,6-dihydroxy-7-(hydroxymethyl)-3h,4h,4ah,5h,6h-cyclopenta[c]pyran-1-one

5,6-dihydroxy-7-(hydroxymethyl)-3h,4h,4ah,5h,6h-cyclopenta[c]pyran-1-one

C9H12O5 (200.0685)


   

(2r)-2-[(1s)-1-hydroxyethyl]-2h,3h-naphtho[2,3-b]furan-4,9-dione

(2r)-2-[(1s)-1-hydroxyethyl]-2h,3h-naphtho[2,3-b]furan-4,9-dione

C14H12O4 (244.0736)


   

5-(2-hydroxyethyl)-4-(hydroxymethyl)-3-methylcyclopent-3-ene-1,2-diol

5-(2-hydroxyethyl)-4-(hydroxymethyl)-3-methylcyclopent-3-ene-1,2-diol

C9H16O4 (188.1049)


   

7-(hydroxymethyl)-1h,3h,4h,4ah,5h,7ah-cyclopenta[c]pyran-5-ol

7-(hydroxymethyl)-1h,3h,4h,4ah,5h,7ah-cyclopenta[c]pyran-5-ol

C9H14O3 (170.0943)


   

2-[(1s)-1-hydroxyethyl]naphtho[2,3-b]furan-4,9-dione

2-[(1s)-1-hydroxyethyl]naphtho[2,3-b]furan-4,9-dione

C14H10O4 (242.0579)


   

(1r,2r,4r,5r,6s,10r)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(1r,2r,4r,5r,6s,10r)-2-(hydroxymethyl)-10-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,9-dioxatricyclo[4.4.0.0²,⁴]dec-7-en-5-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C24H28O13 (524.153)


   

(1s,4ar,5r,7s,7as)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-5-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

(1s,4ar,5r,7s,7as)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-5-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C24H30O11 (494.1788)


   

2,2-dimethylbenzo[g]chromene-5,10-dione

2,2-dimethylbenzo[g]chromene-5,10-dione

C15H12O3 (240.0786)


   

(1r,3as,4r,6as)-1,4-bis(2h-1,3-benzodioxol-5-yl)-tetrahydrofuro[3,4-c]furan-3a,6a-diol

(1r,3as,4r,6as)-1,4-bis(2h-1,3-benzodioxol-5-yl)-tetrahydrofuro[3,4-c]furan-3a,6a-diol

C20H18O8 (386.1002)