NCBI Taxonomy: 3084394
Astragalus trimestris (ncbi_taxid: 3084394)
found 21 associated metabolites at species taxonomy rank level.
Ancestor: Astragalus
Child Taxonomies: none taxonomy data.
Luteolin
Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].
Isoflavone
Isoflavones are a class of phytochemicals related to the isoflavonoids. Isoflavones are produced almost exclusively by the members of the Fabaceae (i.e., Leguminosae, or bean) family. Soy isoflavones consumption has been related to a lower incidence of breast cancer and other common cancers. [Wikipedia]. Isoflavones is found in soy bean. Isoflavone, a soy phytoestrogen and a biologically active component, presents in several agriculturally important legumes such as soy, peanut, green peas, chick peas and alfalfa[1][2]. Isoflavone, a soy phytoestrogen and a biologically active component, presents in several agriculturally important legumes such as soy, peanut, green peas, chick peas and alfalfa[1][2].
Pratensein
Pratensein is a member of the class of 7-hydroxyisoflavones in which isoflavone is substituted by hydroxy groups at the 5, 7, and 3 positions, and by a methoxy group at the 4 position. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is a conjugate acid of a pratensein(1-). Pratensein is a natural product found in Dalbergia sissoo, Cicer chorassanicum, and other organisms with data available. See also: Trifolium pratense flower (part of). A member of the class of 7-hydroxyisoflavones in which isoflavone is substituted by hydroxy groups at the 5, 7, and 3 positions, and by a methoxy group at the 4 position. Constituent of Cicer arietinum (chickpea). 3-Hydroxybiochanin A is found in peanut, chickpea, and pulses. Pratensein is found in chickpea. Pratensein is a constituent of Cicer arietinum (chickpea)
Methyl pentadecanoate
Methyl pentadecanoate is a fatty acid ester obtained by condensation of the carboxy group of pentadecanoic acid with the hydroxy group of methanol. It has a role as a plant metabolite and a bacterial metabolite. It is functionally related to a pentadecanoic acid. Methyl pentadecanoate is a natural product found in Astragalus mongholicus, Aristolochia grandiflora, and Astragalus membranaceus with data available. A fatty acid ester obtained by condensation of the carboxy group of pentadecanoic acid with the hydroxy group of methanol. Methyl pentadecanoate is a fatty acid ester, can be isolated from L. wallichi extracts. Methyl pentadecanoate is obtained by condensation of the carboxy group of pentadecanoic acid with the hydroxy group of methanol[1]. Methyl pentadecanoate is a fatty acid ester, can be isolated from L. wallichi extracts. Methyl pentadecanoate is obtained by condensation of the carboxy group of pentadecanoic acid with the hydroxy group of methanol[1].
Methyl caprylate
Methyl octanoate appears as a colorless liquid. Insoluble in water and about the same density as water. Used to make other chemicals. Methyl octanoate is a fatty acid methyl ester resulting from the formal condensation of the carboxy group of octanoic acid with the hydroxy group of methanol. It has a role as a metabolite. It is a fatty acid methyl ester and an octanoate ester. Methyl octanoate is a natural product found in Astragalus mongholicus, Achillea millefolium, and other organisms with data available. Methyl octanoate is a metabolite found in or produced by Saccharomyces cerevisiae. Methyl caprylate is found in chinese cinnamon. Methyl caprylate is a flavouring agent. Methyl caprylate is present in many fruits, e.g. apple, apricot, grape, blackberry, cherimoya etc Methyl caprylate is a flavouring agent. Present in many fruits, e.g. apple, apricot, grape, blackberry, cherimoya etc. It is also found in tea, chinese cinnamon and pepper (spice). A fatty acid methyl ester resulting from the formal condensation of the carboxy group of octanoic acid with the hydroxy group of methanol. Methyl octanoate, a volatile compound, is an aroma component persimmon wine[1]. Methyl octanoate, a volatile compound, is an aroma component persimmon wine[1].
Dimethyl succinate
Dimethyl succinate, also known as DBE-4 or fema 2396, belongs to the class of organic compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Present in roasted filberts. Flavouring ingredient. Dimethyl succinate is found in nuts.
Methyl pentadecanoate
Methyl pentadecanoate is a fatty acid ester, can be isolated from L. wallichi extracts. Methyl pentadecanoate is obtained by condensation of the carboxy group of pentadecanoic acid with the hydroxy group of methanol[1]. Methyl pentadecanoate is a fatty acid ester, can be isolated from L. wallichi extracts. Methyl pentadecanoate is obtained by condensation of the carboxy group of pentadecanoic acid with the hydroxy group of methanol[1].
Isoflavone
Isoflavone, a soy phytoestrogen and a biologically active component, presents in several agriculturally important legumes such as soy, peanut, green peas, chick peas and alfalfa[1][2]. Isoflavone, a soy phytoestrogen and a biologically active component, presents in several agriculturally important legumes such as soy, peanut, green peas, chick peas and alfalfa[1][2].
Luteolin
Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].
Methyl pentadecanoate
Methyl pentadecanoate is a fatty acid ester, can be isolated from L. wallichi extracts. Methyl pentadecanoate is obtained by condensation of the carboxy group of pentadecanoic acid with the hydroxy group of methanol[1]. Methyl pentadecanoate is a fatty acid ester, can be isolated from L. wallichi extracts. Methyl pentadecanoate is obtained by condensation of the carboxy group of pentadecanoic acid with the hydroxy group of methanol[1].