Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Rosmarinic acid

(2R)-3-(3,4-dihydroxyphenyl)-2-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxypropanoic acid

C18H16O8 (360.0845136)


Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. It is commonly found in species of the Boraginaceae and the subfamily Nepetoideae of the Lamiaceae. It is a red-orange powder that is slightly soluble in water, but well soluble is most organic solvents. Rosmarinic acid is one of the polyphenolic substances contained in culinary herbs such as perilla (Perilla frutescens L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), mint (Mentha arvense L.), and basil (Ocimum basilicum L.). These herbs are commonly grown in the garden as kitchen herbs, and while used to add flavor in cooking, are also known to have several potent physiological effects (PMID: 12482446, 15120569). BioTransformer predicts that rosmarinic acid is a product of methylrosmarinic acid metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in humans and human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). (R)-rosmarinic acid is a stereoisomer of rosmarinic acid having (R)-configuration. It has a role as a plant metabolite and a geroprotector. It is a conjugate acid of a (R)-rosmarinate. It is an enantiomer of a (S)-rosmarinic acid. Rosmarinic acid is a natural product found in Dimetia scandens, Scrophularia scorodonia, and other organisms with data available. See also: Rosemary Oil (part of); Comfrey Root (part of); Holy basil leaf (part of) ... View More ... D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors Isolated from rosemary, mint, sage, thyme, lemon balm and other plants D002491 - Central Nervous System Agents > D000700 - Analgesics A stereoisomer of rosmarinic acid having (R)-configuration. D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0950778)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Caffeic acid

(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0422568)


Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.37049579999996)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

alpha-Spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3704958)


Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). Constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. alpha-Spinasterol is found in many foods, some of which are bitter gourd, towel gourd, muskmelon, and green vegetables. alpha-Spinasterol is found in alfalfa. alpha-Spinasterol is a constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

(+)-Dehydrovomifoliol

(4S)-4-hydroxy-3,5,5-trimethyl-4-[(1E)-3-oxobut-1-enyl]cyclohex-2-en-1-one;(6S)-6-hydroxy-3-oxo-alpha-ionone

C13H18O3 (222.1255878)


(+)-dehydrovomifoliol, also known as (6s)-6-hydroxy-3-oxo-alpha-ionone, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Thus, (+)-dehydrovomifoliol is considered to be an isoprenoid lipid molecule (+)-dehydrovomifoliol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-dehydrovomifoliol can be found in rice, which makes (+)-dehydrovomifoliol a potential biomarker for the consumption of this food product. (6S)-dehydrovomifoliol is a dehydrovomifoliol that has S-configuration at the chiral centre. It has a role as a plant metabolite. It is an enantiomer of a (6R)-dehydrovomifoliol. Dehydrovomifoliol is a natural product found in Psychotria correae, Dendrobium loddigesii, and other organisms with data available.

   

Quercetin 3-galactoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Quercetin 3-O-beta-D-galactopyranoside is a quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. It has a role as a hepatoprotective agent and a plant metabolite. It is a tetrahydroxyflavone, a monosaccharide derivative, a beta-D-galactoside and a quercetin O-glycoside. Hyperoside is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. See also: Bilberry (part of); Menyanthes trifoliata leaf (part of); Crataegus monogyna flowering top (part of). Quercetin 3-galactoside is found in alcoholic beverages. Quercetin 3-galactoside occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort).Hyperoside is the 3-O-galactoside of quercetin. It is a medicinally active compound that can be isolated from Drosera rotundifolia, from the Stachys plant, from Prunella vulgaris, from Rumex acetosella and from St Johns wort. (Wikipedia A quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. Occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort) Acquisition and generation of the data is financially supported in part by CREST/JST. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Dehydrovomifoliol

4-hydroxy-3,5,5-trimethyl-4-[(1E)-3-oxobut-1-en-1-yl]cyclohex-2-en-1-one

C13H18O3 (222.1255878)


Isolated from rice husks (Oryza sativa L. cv Koshihikari). Dehydrovomifoliol is found in tea, cereals and cereal products, and common grape. Dehydrovomifoliol is found in cereals and cereal products. Dehydrovomifoliol is isolated from rice husks (Oryza sativa L. cv Koshihikari).

   

Rosmarinic acid

(S)-rosmarinic acid

C18H16O8 (360.0845136)


The (S)-stereoisomer of rosmarinic acid. The 1-carboxy-2-(2,4-dihydroxyphenyl)ethyl ester of trans-caffeic acid. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.731 Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.

   

Dicaffeoylquinic acid

(1S,3R,4S,5R)-3,5-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1267703999999)


Isolated from coffee and maté, globe artichoke (Cynara scolymus) and caucasian whortleberry (Vaccinium arctostaphylos). 3,5-Di-O-caffeoylquinic acid is found in many foods, some of which are potato, green vegetables, coffee and coffee products, and carrot. Dicaffeoylquinic acid is a polyphenol compound found in foods of plant origin (PMID: 20428313) Isochlorogenic acid A (3,5-Dicaffeoylquinic acid) is a natural phenolic acid with antioxidant and anti-inflammatory activities . Isochlorogenic acid A (3,5-Dicaffeoylquinic acid) is a natural phenolic acid with antioxidant and anti-inflammatory activities .

   

cis-Caffeic acid

(2Z)-3-(3,4-Dihydroxyphenyl)-2-propenoic acid

C9H8O4 (180.0422568)


Caffeic acid, also known as caffeate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Caffeic acid exists in all living species, ranging from bacteria to humans. It is the precursor to ferulic acid, coniferyl alcohol, and sinapyl alcohol, all of which are significant building blocks in lignin. Outside of the human body, caffeic acid has been detected, but not quantified in fats and oils and nuts. Caffeic acid is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Caffeic acid has a variety of potential pharmacological effects in in vitro studies and in animal models, and the inhibitory effect of caffeic acid on cancer cell proliferation by an oxidative mechanism in the human HT-1080 fibrosarcoma cell line has recently been established. It occurs at high levels in black chokeberry (141 mg per 100 g) and in fairly high level in lingonberry (6 mg per 100 g). D020011 - Protective Agents > D000975 - Antioxidants Found in olive oil, peanuts and other plant sources Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Chondrillasterol

(2S,5S,7S,14R,15R)-14-[(2R,3E,5R)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-5-ol

C29H48O (412.37049579999996)


Oxybenzone is an organic compound used in sunscreens. It is a derivative of benzophenone. Chondrillasterol is found in tea. Chondrillasterol is found in tea. Oxybenzone is an organic compound used in sunscreens. It is a derivative of benzophenone. D020011 - Protective Agents > D011837 - Radiation-Protective Agents > D013473 - Sunscreening Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D009153 - Mutagens D003879 - Dermatologic Agents D003358 - Cosmetics

   

Rosmarinate

3-(3,4-dihydroxyphenyl)-2-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}propanoic acid

C18H16O8 (360.0845136)


   

Spinosterol

(1R,2S,5S,7S,11R,14R,15R)-14-[(2R,3E,5S)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-5-ol

C29H48O (412.37049579999996)


Spinosterol, also known as spinasterol, (3beta,5alpha,22e,24r)-isomer, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, spinosterol is considered to be a sterol lipid molecule. Spinosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Spinosterol can be found in wild celery, which makes spinosterol a potential biomarker for the consumption of this food product. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

hyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O12 (464.09547200000003)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Dehydrovomifoliol

4-hydroxy-3,5,5-trimethyl-4-[(1E)-3-oxobut-1-en-1-yl]cyclohex-2-en-1-one

C13H18O3 (222.1255878)


   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0950778)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

saniculamoid B

saniculamoid B

C15H26O3 (254.1881846)


A natural product found in Sanicula lamelligera.

   

saniculamoid C

saniculamoid C

C15H28O4 (272.19874880000003)


A natural product found in Sanicula lamelligera.

   

cynarin

CYCLOHEXANECARBOXYLIC ACID, 1,4-BIS(((2E)-3-(3,4-DIHYDROXYPHENYL)-1-OXO-2-PROPEN-1-YL)OXY)-3,5-DIHYDROXY-, (1.ALPHA.,3R,4.ALPHA.,5R)-

C25H24O12 (516.1267703999999)


1,4-Di-O-caffeoylquinic acid is a quinic acid. 1,4-Dicaffeoylquinic acid is a natural product found in Urospermum dalechampii, Helminthotheca echioides, and other organisms with data available. Annotation level-1 1,4-Dicaffeoylquinic acid (1,4-DCQA) is a phenylpropanoid from Xanthii fructus, inhibits LPS-stimulated TNF-α production[1]. 1,4-Dicaffeoylquinic acid (1,4-DCQA) is a phenylpropanoid from Xanthii fructus, inhibits LPS-stimulated TNF-α production[1]. Cynarin is an antichoke agent with a variety of biological activities including antioxidant, antihistamic and antiviral activities. Cynarin is an antichoke agent with a variety of biological activities including antioxidant, antihistamic and antiviral activities.

   

Hyperoside

Quercetin 3-beta-D-galactopyranoside

C21H20O12 (464.09547200000003)


[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Caffeate

(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0422568)


D020011 - Protective Agents > D000975 - Antioxidants KEIO_ID C107 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Campesterol

Campesterol

C28H48O (400.37049579999996)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Caffeic Acid

3,4-dihydroxy cinnamic acid

C9H8O4 (180.0422568)


A hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. 3,4-dihydroxycinnamic acid, also known as caffeic acid or trans-caffeate, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 3,4-dihydroxycinnamic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxycinnamic acid can be found in fats and oils and nuts, which makes 3,4-dihydroxycinnamic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxycinnamic acid exists in all eukaryotes, ranging from yeast to humans. Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is a key intermediate in the biosynthesis of lignin, one of the principal components of plant biomass and its residues . Caffeic acid is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food. (PMID:16870009) [HMDB]. Caffeic acid is found in many foods, some of which are cardoon, coriander, common persimmon, and irish moss. D020011 - Protective Agents > D000975 - Antioxidants Annotation level-2 CONFIDENCE standard compound; INTERNAL_ID 167 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.412 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.403 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Jyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-[(E,1R,4S)-4-ethyl-1,5-dimethyl-hex-2-enyl]-10,13-dimethyl-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.042651)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

AI3-63211

InChI=1\C9H8O4\c10-7-3-1-6(5-8(7)11)2-4-9(12)13\h1-5,10-11H,(H,12,13)\b4-2

C9H8O4 (180.0422568)


D020011 - Protective Agents > D000975 - Antioxidants Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Heriguard

Cyclohexanecarboxylic acid, 3-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxy-, [1S-(1.alpha.,3.beta.,4.alpha.,5.alpha.)]-

C16H18O9 (354.0950778)


Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

15764-81-5

(4S)-4-hydroxy-4-[(E)-3-ketobut-1-enyl]-3,5,5-trimethyl-cyclohex-2-en-1-one

C13H18O3 (222.1255878)


   

AIDS-026336

Benzenepropanoic acid, .alpha.-[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-3,4-dihydroxy-, (.alpha.R)-

C18H16O8 (360.0845136)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.

   
   

alpha-Spinasterol

14-[(3E)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-5-ol

C29H48O (412.37049579999996)


Constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. alpha-Spinasterol is found in many foods, some of which are bitter gourd, towel gourd, muskmelon, and green vegetables. alpha-Spinasterol is found in alfalfa. alpha-Spinasterol is a constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

4(15)-Eudesmene-1beta,7alpha-diol

4(15)-Eudesmene-1beta,7alpha-diol

C15H26O2 (238.1932696)


A natural product found in Sanicula lamelligera.

   

Phlomuroside

Phlomuroside

C19H32O8 (388.20970719999997)


A natural product found in Sanicula lamelligera.

   

Saniculamoid D

Saniculamoid D

C14H22O2 (222.1619712)


A natural product found in Sanicula lamelligera.

   

cyperusol C

cyperusol C

C15H26O2 (238.1932696)


A natural product found in Sanicula lamelligera.

   

(-)-Alismoxide

(-)-Alismoxide

C15H26O2 (238.1932696)


A natural product found in Sanicula lamelligera.

   

Spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3704958)


Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Dehydrovomifoliol

(4S)-4-hydroxy-3,5,5-trimethyl-4-[(1E)-3-oxobut-1-enyl]cyclohex-2-en-1-one;(6S)-6-hydroxy-3-oxo-alpha-ionone

C13H18O3 (222.1255878)


(6S)-dehydrovomifoliol is a dehydrovomifoliol that has S-configuration at the chiral centre. It has a role as a plant metabolite. It is an enantiomer of a (6R)-dehydrovomifoliol. Dehydrovomifoliol is a natural product found in Psychotria correae, Dendrobium loddigesii, and other organisms with data available.

   

citroside B

citroside B

C19H30O8 (386.194058)


A natural product found in Sanicula lamelligera.

   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-7,8,9-trihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-10-[(2-methylbutanoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2r,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-7,8,9-trihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-10-[(2-methylbutanoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2r,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C52H84O22 (1060.5453964)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C55H86O24 (1130.5508756)


   

oppsit-4(15)-ene-1β,11-diol

oppsit-4(15)-ene-1β,11-diol

C15H26O2 (238.1932696)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-9-(acetyloxy)-10-{[(2s)-2-(acetyloxy)-2-methylbutanoyl]oxy}-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-9-(acetyloxy)-10-{[(2s)-2-(acetyloxy)-2-methylbutanoyl]oxy}-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C56H88O25 (1160.5614398)


   

(1r,3as,4s,7ar)-1-[(1s)-1-hydroxy-2-methylpropyl]-3a-methyl-7-methylidene-hexahydro-1h-inden-4-ol

(1r,3as,4s,7ar)-1-[(1s)-1-hydroxy-2-methylpropyl]-3a-methyl-7-methylidene-hexahydro-1h-inden-4-ol

C15H26O2 (238.1932696)


   

propyl (2s,3r,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-7,8,9-trihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-10-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4-{[(2s,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxyoxane-2-carboxylate

propyl (2s,3r,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-7,8,9-trihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-10-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4-{[(2s,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3s,4r,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxyoxane-2-carboxylate

C55H88O22 (1100.5766948)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-{[(2s,3r,4s,5s,6s)-4,5-bis(acetyloxy)-3-hydroxy-6-methyloxan-2-yl]oxy}-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-{[(2s,3r,4s,5s,6s)-4,5-bis(acetyloxy)-3-hydroxy-6-methyloxan-2-yl]oxy}-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C62H96O28 (1288.6087816)


   

6-{[10-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(2-methylbutanoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

6-{[10-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(2-methylbutanoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

C54H86O23 (1102.5559606000002)


   

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H48O (400.37049579999996)


   

(2s,3s,4s,5r,6r)-3,4,5-trihydroxy-6-{[(1s,2r,3s,4r,7r,9r,12r,13r,17s,19s,20s,21r,22r)-2-hydroxy-19,22-bis(hydroxymethyl)-3,4,8,8,12,19-hexamethyl-21-{[(2z)-2-methylbut-2-enoyl]oxy}-23-oxahexacyclo[18.2.1.0³,¹⁶.0⁴,¹³.0⁷,¹².0¹⁷,²²]tricos-15-en-9-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-3,4,5-trihydroxy-6-{[(1s,2r,3s,4r,7r,9r,12r,13r,17s,19s,20s,21r,22r)-2-hydroxy-19,22-bis(hydroxymethyl)-3,4,8,8,12,19-hexamethyl-21-{[(2z)-2-methylbut-2-enoyl]oxy}-23-oxahexacyclo[18.2.1.0³,¹⁶.0⁴,¹³.0⁷,¹².0¹⁷,²²]tricos-15-en-9-yl]oxy}oxane-2-carboxylic acid

C41H62O13 (762.4190202)


   

(1r,2r,4as,5r,8ar)-2-isopropyl-4a-methyl-8-methylidene-octahydronaphthalene-1,5-diol

(1r,2r,4as,5r,8ar)-2-isopropyl-4a-methyl-8-methylidene-octahydronaphthalene-1,5-diol

C15H26O2 (238.1932696)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C54H84O23 (1100.5403114)


   

(2s,3r,4r,5s,6s)-2-{[(3r,4r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-4-(acetyloxy)-10-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a-(hydroxymethyl)-2,2,6a,6b,9,9,12a-heptamethyl-5-oxo-3,4,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picen-3-yl]oxy}-5-(acetyloxy)-3-hydroxy-6-methyloxan-4-yl acetate

(2s,3r,4r,5s,6s)-2-{[(3r,4r,4as,6as,6br,8ar,10s,12ar,12br,14bs)-4-(acetyloxy)-10-{[(2r,3r,4s,5s,6r)-3-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a-(hydroxymethyl)-2,2,6a,6b,9,9,12a-heptamethyl-5-oxo-3,4,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picen-3-yl]oxy}-5-(acetyloxy)-3-hydroxy-6-methyloxan-4-yl acetate

C60H94O27 (1246.5982174)


   

6-{[9-(acetyloxy)-10-{[2-(acetyloxy)-2-methylbutanoyl]oxy}-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

6-{[9-(acetyloxy)-10-{[2-(acetyloxy)-2-methylbutanoyl]oxy}-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

C56H88O24 (1144.5665248)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-9-(acetyloxy)-10-{[(2s)-2-(acetyloxy)-2-methylbutanoyl]oxy}-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-9-(acetyloxy)-10-{[(2s)-2-(acetyloxy)-2-methylbutanoyl]oxy}-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C56H88O24 (1144.5665248)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(2-methylbutanoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(2-methylbutanoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C54H86O23 (1102.5559606000002)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-8a-[(acetyloxy)methyl]-7,8,9-trihydroxy-4,4,6a,6b,11,11,14b-heptamethyl-10-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-8a-[(acetyloxy)methyl]-7,8,9-trihydroxy-4,4,6a,6b,11,11,14b-heptamethyl-10-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C54H84O23 (1100.5403114)


   

6-{[9-(acetyloxy)-10-{[2-(acetyloxy)-2-methylbutanoyl]oxy}-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

6-{[9-(acetyloxy)-10-{[2-(acetyloxy)-2-methylbutanoyl]oxy}-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

C56H88O25 (1160.5614398)


   

(1r,2s,5r,6r,7r,8s)-5-isopropyl-2-methyl-11-oxatricyclo[5.3.1.0²,⁶]undecane-8-carboxylic acid

(1r,2s,5r,6r,7r,8s)-5-isopropyl-2-methyl-11-oxatricyclo[5.3.1.0²,⁶]undecane-8-carboxylic acid

C15H24O3 (252.1725354)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2r)-2-methylbutanoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2r)-2-methylbutanoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C54H86O23 (1102.5559606000002)


   

propyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-7,8,9-trihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-10-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4-{[(2s,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxyoxane-2-carboxylate

propyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-7,8,9-trihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-10-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-4-{[(2s,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,5-dihydroxyoxane-2-carboxylate

C55H88O22 (1100.5766948)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-9-(acetyloxy)-10-{[2-(acetyloxy)-2-methylbutanoyl]oxy}-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-9-(acetyloxy)-10-{[2-(acetyloxy)-2-methylbutanoyl]oxy}-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C56H88O24 (1144.5665248)


   

(2s,3s,4s,5r,6r)-3,4,5-trihydroxy-6-{[(1s,2r,3s,4r,7r,9r,12r,13r,17s,19s,20s,21r,22r)-2-hydroxy-19,22-bis(hydroxymethyl)-3,4,8,8,12,19-hexamethyl-21-{[(2e)-2-methylbut-2-enoyl]oxy}-23-oxahexacyclo[18.2.1.0³,¹⁶.0⁴,¹³.0⁷,¹².0¹⁷,²²]tricos-15-en-9-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-3,4,5-trihydroxy-6-{[(1s,2r,3s,4r,7r,9r,12r,13r,17s,19s,20s,21r,22r)-2-hydroxy-19,22-bis(hydroxymethyl)-3,4,8,8,12,19-hexamethyl-21-{[(2e)-2-methylbut-2-enoyl]oxy}-23-oxahexacyclo[18.2.1.0³,¹⁶.0⁴,¹³.0⁷,¹².0¹⁷,²²]tricos-15-en-9-yl]oxy}oxane-2-carboxylic acid

C41H62O13 (762.4190202)


   

6-{[10-(acetyloxy)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(2-methylbutanoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

6-{[10-(acetyloxy)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(2-methylbutanoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxane-2-carboxylic acid

C54H86O22 (1086.5610456)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-{[(2s,3r,4r,5r,6s)-3,5-bis(acetyloxy)-4-hydroxy-6-methyloxan-2-yl]oxy}-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-{[(2s,3r,4r,5r,6s)-3,5-bis(acetyloxy)-4-hydroxy-6-methyloxan-2-yl]oxy}-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C63H98O29 (1318.6193458)


   

propyl 4-{[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-3,5-dihydroxy-6-{[7,8,9-trihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-10-[(2-methylbut-2-enoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylate

propyl 4-{[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-3,5-dihydroxy-6-{[7,8,9-trihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-10-[(2-methylbut-2-enoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}oxane-2-carboxylate

C55H88O22 (1100.5766948)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-9-(acetyloxy)-10-{[2-(acetyloxy)-2-methylbutanoyl]oxy}-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-9-(acetyloxy)-10-{[2-(acetyloxy)-2-methylbutanoyl]oxy}-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C56H88O25 (1160.5614398)


   

(3r,5r)-1,4-bis({[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-3,5-dihydroxycyclohexane-1-carboxylic acid

(3r,5r)-1,4-bis({[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-3,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1267703999999)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-9-(acetyloxy)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-10-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-4-{[(2r,3r,4s,5s)-2,3,4,5-tetrahydroxyoxan-2-yl]oxy}-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-9-(acetyloxy)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-10-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-4-{[(2r,3r,4s,5s)-2,3,4,5-tetrahydroxyoxan-2-yl]oxy}-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C54H84O23 (1100.5403114)


   
   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(2-methylbutanoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-[(2-methylbutanoyl)oxy]-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C54H86O22 (1086.5610456)


   

(1r,4as,6s,8ar)-6-isopropyl-8a-methyl-4-methylidene-hexahydro-1h-naphthalene-1,6-diol

(1r,4as,6s,8ar)-6-isopropyl-8a-methyl-4-methylidene-hexahydro-1h-naphthalene-1,6-diol

C15H26O2 (238.1932696)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

(3ar,5as,9as,9bs,11ar)-1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(3ar,5as,9as,9bs,11ar)-1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H48O (412.37049579999996)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2r)-2-methylbutanoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-10-(acetyloxy)-8-hydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2r)-2-methylbutanoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C54H86O22 (1086.5610456)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-{[(2s,3r,4r,5r,6s)-3,5-bis(acetyloxy)-4-hydroxy-6-methyloxan-2-yl]oxy}-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,7r,8s,8ar,9r,10r,12as,14ar,14br)-10-{[(2s,3r,4r,5r,6s)-3,5-bis(acetyloxy)-4-hydroxy-6-methyloxan-2-yl]oxy}-7,8-dihydroxy-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-hydroxy-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxane-2-carboxylic acid

C62H96O28 (1288.6087816)


   

1,5-naphthalenediol

1,5-naphthalenediol

C10H8O2 (160.0524268)