Classification Term: 167937
多元酚 (ontology term: c00b7db64f22dbc2e1e99d9ade68a2ed)
多元酚
found 266 associated metabolites at sub_class
metabolite taxonomy ontology rank level.
Ancestor: 酚类
Child Taxonomies: 单宁和没食子酰衍生物, 白藜芦醇类
Cianidanol
Catechin, also known as cyanidanol or catechuic acid, belongs to the class of organic compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Catechin also belongs to the group of compounds known as flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids. Catechin is one of the 4 catechin known diastereoisomers. Two of the isomers are in trans configuration and are called catechin and the other two are in cis configuration and are called epicatechin. The most common catechin isomer is the (+)-catechin. The other stereoisomer is (-)-catechin or ent-catechin. The most common epicatechin isomer is (-)-epicatechin. Catechin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Catechin is a bitter tasting compound and is associated with the bitterness in tea. Catechin is a plant secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Catechin is an antioxidant flavonoid, occurring especially in woody plants as both Catechin and (-)-Catechin (cis) forms. Outside of the human body, Catechin is found, on average, in the highest concentration in foods, such as blackcurrants (Ribes nigrum), evergreen blackberries (Rubus laciniatus), and blackberries (Rubus) and in a lower concentration in dills (Anethum graveolens), hot chocolates, and medlars (Mespilus germanica). Catechin has also been detected, but not quantified in, several different foods, such as rice (Oryza sativa), apple ciders, peanuts (Arachis hypogaea), fruit juices, and red teas. This could make catechin a potential biomarker for the consumption of these foods. Based on a literature review a significant number of articles have been published on Catechin. (+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Cianidanol is a natural product found in Visnea mocanera, Salacia chinensis, and other organisms with data available. Catechin is a metabolite found in or produced by Saccharomyces cerevisiae. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Gallocatechin (related); Crofelemer (monomer of); Bilberry (part of) ... View More ... Present in red wine. Widespread in plants; found in a variety of foodstuffs especies apricots, broad beans, cherries, chocolate, grapes, nectarines, red wine, rhubarb, strawberries and tea The (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. Catechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=154-23-4 (retrieved 2024-07-12) (CAS RN: 154-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.
Isomangiferin
Isomangiferin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, 6 and 7 and a 1,5-anhydro-D-glucitol moiety at position 1. It has a role as an anti-HSV-1 agent and a plant metabolite. It is a member of xanthones, a C-glycosyl compound and a polyphenol. Isomangiferin is a natural product found in Cystopteris moupinensis, Cystopteris montana, and other organisms with data available. Isomangiferin is found in fruits. Isomangiferin is a constituent of Mangifera indica (mango) Constituent of Mangifera indica (mango). Isomangiferin is found in fruits. Isomangiferin, a natural product, is reported to have antiviral activity. Isomangiferin, a natural product, is reported to have antiviral activity.
Bergenin
Bergenin is a trihydroxybenzoic acid. It has a role as a metabolite. Bergenin is a natural product found in Ficus racemosa, Ardisia paniculata, and other organisms with data available. A natural product found in Cenostigma gardnerianum. C26170 - Protective Agent > C275 - Antioxidant Annotation level-1 Bergenin is a cytoprotective and antioxidative polyphenol found in many medicinal plants. Bergenin has a wide spectrum activities such as hepatoprotective, antiinflammatory, immunomodulatory, antitumor, antiviral, and antifungal properties[1][2]. Bergenin is a cytoprotective and antioxidative polyphenol found in many medicinal plants. Bergenin has a wide spectrum activities such as hepatoprotective, antiinflammatory, immunomodulatory, antitumor, antiviral, and antifungal properties[1][2].
Arbutin
Hydroquinone O-beta-D-glucopyranoside is a monosaccharide derivative that is hydroquinone attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite and an Escherichia coli metabolite. It is a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a hydroquinone. Extracted from the dried leaves of bearberry plant in the genus Arctostaphylos and other plants commonly in the Ericaceae family, arbutin is a beta-D-glucopyranoside of [DB09526]. It is found in foods, over-the-counter drugs, and herbal dietary supplements. Most commonly, it is an active ingredient in skincare and cosmetic products as a skin-lightening agent for the prevention of melanin formation in various skin conditions that involve cutaneous hyperpigmentation or hyperactive melanocyte function. It has also been used as an anti-infective for the urinary system as well as a diuretic. Arbutin is available in both natural and synthetic forms; it can be synthesized from acetobromglucose and [DB09526]. Arbutin is a competitive inhibitor of tyrosinase (E.C.1.14.18.1) in melanocytes, and the inhibition of melanin synthesis at non-toxic concentrations was observed in vitro. Arbutin was shown to be less cytotoxic to melanocytes in culture compared to [DB09526]. Arbutin is a natural product found in Grevillea robusta, Halocarpus biformis, and other organisms with data available. See also: Arctostaphylos uva-ursi leaf (part of); Arbutin; octinoxate (component of); Adenosine; arbutin (component of) ... View More ... Arbutin, also known as hydroquinone-O-beta-D-glucopyranoside or P-hydroxyphenyl beta-D-glucopyranoside, is a member of the class of compounds known as phenolic glycosides. Phenolic glycosides are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Arbutin is soluble (in water) and a very weakly acidic compound (based on its pKa). Arbutin can be found in a number of food items such as guava, lingonberry, irish moss, and rowal, which makes arbutin a potential biomarker for the consumption of these food products. Arbutin is a glycoside; a glycosylated hydroquinone extracted from the bearberry plant in the genus Arctostaphylos among many other medicinal plants, primarily in the Ericaceae family. Applied topically, it inhibits tyrosinase and thus prevents the formation of melanin. Arbutin is therefore used as a skin-lightening agent. Very tiny amounts of arbutin are found in wheat, pear skins, and some other foods. It is also found in Bergenia crassifolia. Arbutin was also produced by an in vitro culture of Schisandra chinensis . A monosaccharide derivative that is hydroquinone attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. Arbutin is found in apple. Glucoside in pear leaves (Pyrus communis C471 - Enzyme Inhibitor CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6126; ORIGINAL_PRECURSOR_SCAN_NO 6123 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6107; ORIGINAL_PRECURSOR_SCAN_NO 6104 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 811; ORIGINAL_PRECURSOR_SCAN_NO 808 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 806; ORIGINAL_PRECURSOR_SCAN_NO 804 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 813; ORIGINAL_PRECURSOR_SCAN_NO 811 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 832; ORIGINAL_PRECURSOR_SCAN_NO 828 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 817; ORIGINAL_PRECURSOR_SCAN_NO 816 Arbutin (β-Arbutin) is a competitive inhibitor of tyrosinase, with Kiapp values of 1.42 mM for monophenolase; 0.9 mM for diphenolase. Arbutin is also used as depigmenting agents[1]. Arbutin is a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses with anti-oxidant, anti-inflammatory and anti-tumor properties[2][3]. Arbutin (β-Arbutin) is a competitive inhibitor of tyrosinase, with Kiapp values of 1.42 mM for monophenolase; 0.9 mM for diphenolase. Arbutin is also used as depigmenting agents[1]. Arbutin is a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses with anti-oxidant, anti-inflammatory and anti-tumor properties[2][3].
Pyrogallol
1,2,3-trihydroxybenzene, also known as pyrogallic acid or 1,2,3-benzenetriol, is a member of the class of compounds known as 5-unsubstituted pyrrogallols. 5-unsubstituted pyrrogallols are pyrrogallols that are unsubstituted at th5-position of the benzene ring. 1,2,3-trihydroxybenzene is soluble (in water) and a very weakly acidic compound (based on its pKa). 1,2,3-trihydroxybenzene can be found in arabica coffee, beer, cocoa powder, and coffee, which makes 1,2,3-trihydroxybenzene a potential biomarker for the consumption of these food products. 1,2,3-trihydroxybenzene can be found primarily in blood, feces, and urine. 1,2,3-trihydroxybenzene is an organic compound with the formula C6H3(OH)3. It is a white water-soluble solid although samples are typically brownish because of its sensitivity toward oxygen. It is one of three isomeric benzenetriols . Pyrogallic acid is an odorless white to gray solid. Sinks and mixes with water. (USCG, 1999) Pyrogallol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 3. It has a role as a plant metabolite. It is a phenolic donor and a benzenetriol. Pyrogallol is a natural product found in Gunnera perpensa, Nigella glandulifera, and other organisms with data available. A trihydroxybenzene or dihydroxy phenol that can be prepared by heating GALLIC ACID. See also: Stevia rebaudiuna Leaf (part of); Alchemilla monticola whole (part of); Agrimonia eupatoria flowering top (part of). 1,2,3-Trihydroxybenzene, or pyrogallol is a benzenetriol. It is a white crystalline powder and a powerful reducing agent. It was first prepared by Scheele 1786 by heating gallic acid. An alternate preparation is heating para-chlorophenoldisulphonic acid with potassium hydroxide. 1,2,3-Trihydroxybenzene has been found to be a metabolite of Aspergillus (https://www.tandfonline.com/doi/pdf/10.1080/00021369.1982.10865473). A benzenetriol carrying hydroxy groups at positions 1, 2 and 3. D020011 - Protective Agents > D000975 - Antioxidants Pyrogallol is a polyphenol compound, which has anti-fungal and anti-psoriatic properties. Pyrogallol is a reductant that is able to generate free radicals, in particular superoxide anions. Pyrogallol is a polyphenol compound, which has anti-fungal and anti-psoriatic properties. Pyrogallol is a reductant that is able to generate free radicals, in particular superoxide anions.
Noreugenin
Noreugenin is a member of the class of chromones in which the 1,4-benzopyrone skeleton is substituted with a methyl group at position 2 and with hydroxy groups at positions 5 and 7. A natural product, it is found in Pisonia aculeata. It has a role as a plant metabolite. It is a member of chromones and a member of resorcinols. It is a conjugate acid of a noreugenin(1-). Noreugenin is a natural product found in Crossosoma bigelovii, Schumanniophyton magnificum, and other organisms with data available. Noreugenin, also known as 5,7-dihydroxy-2-methyl-4h-1-benzopyran-4-one, is a member of the class of compounds known as chromones. Chromones are compounds containing a benzopyran-4-one moiety. Noreugenin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Noreugenin can be found in carrot and wild carrot, which makes noreugenin a potential biomarker for the consumption of these food products. Noreugenin, 5,7-dihydroxy-2-methyl-4H-chromen-4-one, is a new chromone from Aloe arborescens. (Amaryllidaceae)[1].
Nepodin
Nepodin is a member of naphthols. Nepodin is a natural product found in Rumex dentatus, Rumex alpinus, and other organisms with data available. Nepodin (Musizin) is a quinone oxidoreductase (PfNDH2) inhibitor isolate from Rumex crispus[1].Nepodin (Musizin) stimulates the translocation of GLUT4 to the plasma membrane by activation of AMPK[2].Nepodin (Musizin) has antidiabetic and antimalarial activities. Nepodin (Musizin) is a quinone oxidoreductase (PfNDH2) inhibitor isolate from Rumex crispus[1].Nepodin (Musizin) stimulates the translocation of GLUT4 to the plasma membrane by activation of AMPK[2].Nepodin (Musizin) has antidiabetic and antimalarial activities. Nepodin (Musizin) is a quinone oxidoreductase (PfNDH2) inhibitor isolate from Rumex crispus[1].Nepodin (Musizin) stimulates the translocation of GLUT4 to the plasma membrane by activation of AMPK[2].Nepodin (Musizin) has antidiabetic and antimalarial activities.
Pinoresinol
Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite. Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available. An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. (+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen. Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available. See also: Acai fruit pulp (part of). An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895 Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].
Tyrosol
Tyrosol is a phenolic compound present in two of the traditional components of the Mediterranean diet: wine and virgin olive oil. The presence of tyrosol has been described in red and white wines. Tyrosol is also present in vermouth and beer. Tyrosol has been shown to be able to exert antioxidant activity in vitro studies. Oxidation of low-density lipoprotein (LDL) appears to occur predominantly in arterial intimae in microdomains sequestered from antioxidants of plasma. The antioxidant content of the LDL particle is critical for its protection. The ability of tyrosol to bind human LDL has been reported. The bioavailability of tyrosol in humans from virgin olive oil in its natural form has been demonstrated. Urinary tyrosol increases, reaching a peak at 0-4 h after virgin olive oil administration. Men and women show a different pattern of urinary excretion of tyrosol. Moreover, tyrosol is absorbed in a dose-dependent manner after sustained and moderate doses of virgin olive oil. Tyrosol from wine or virgin olive oil could exert beneficial effects on human health in vivo if its biological properties are confirmed (PMID 15134375). Tyrosol is a microbial metabolite found in Bifidobacterium, Escherichia and Lactobacillus (PMID:28393285). 2-(4-hydroxyphenyl)ethanol is a phenol substituted at position 4 by a 2-hydroxyethyl group. It has a role as an anti-arrhythmia drug, an antioxidant, a cardiovascular drug, a protective agent, a fungal metabolite, a geroprotector and a plant metabolite. It is functionally related to a 2-phenylethanol. 2-(4-Hydroxyphenyl)ethanol is a natural product found in Thalictrum petaloideum, Casearia sylvestris, and other organisms with data available. Tyrosol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Sedum roseum root (part of); Rhodiola crenulata root (part of). D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents A phenol substituted at position 4 by a 2-hydroxyethyl group. D020011 - Protective Agents > D000975 - Antioxidants Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1]. Tyrosol is a derivative of phenethyl alcohol. Tyrosol attenuates pro-inflammatory cytokines from cultured astrocytes and NF-κB activation. Anti-oxidative and anti-inflammatory effects[1].
Juglone
Juglone is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone in which the hydrogen at position 5 has been replaced by a hydroxy group. A plant-derived 1,4-naphthoquinone with confirmed antibacterial and antitumor activities. It has a role as a herbicide, a reactive oxygen species generator and a geroprotector. Juglone is a natural product found in Talaromyces diversus, Carya alba, and other organisms with data available. Occurs in Juglans subspecies and pecan nuts (Carya illinoensis). Juglone is found in many foods, some of which are common walnut, liquor, black walnut, and nuts. Juglone is found in black walnut. Juglone occurs in Juglans species and pecan nuts (Carya illinoensis D000074385 - Food Ingredients > D005503 - Food Additives > D005520 - Food Preservatives D009676 - Noxae > D003603 - Cytotoxins D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors
Carnosic acid
Carnosic acid is an abietane diterpenoid that is abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12 and a carboxy group at position 20. It is isolated from rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis) and exhibits anti-angiogenic, antineoplastic, antioxidant and anti-HIV activity. It has a role as an antineoplastic agent, an antioxidant, a HIV protease inhibitor, an angiogenesis modulating agent, an apoptosis inducer, a plant metabolite, an anti-inflammatory agent and a food preservative. It is an abietane diterpenoid, a carbotricyclic compound, a member of catechols and a monocarboxylic acid. It is a conjugate acid of a carnosate. Carnosic acid is a natural product found in Salvia tomentosa, Illicium verum, and other organisms with data available. See also: Rosemary (part of). An abietane diterpenoid that is abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12 and a carboxy group at position 20. It is isolated from rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis) and exhibits anti-angiogenic, antineoplastic, antioxidant and anti-HIV activity. D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents
Gallotannin
Gallotannin is a class of hydrolysable tannins obtained by condensation of the carboxy group of gallic acid (and its polymeric derivatives) with the hydroxy groups of a monosaccharide (most commonly glucose). It is functionally related to a gallic acid. 1,3,6-tri-O-galloyl-beta-D-glucose is a natural product found in Euphorbia lunulata with data available. 1,3,6-Tri-O-galloyl-beta-D-glucose (1,3,6-Tri-O-galloyl-β-D-glucose) is a phenolic compound in Black Walnut Kernels[1]. 1,3,6-Tri-O-galloyl-beta-D-glucose (1,3,6-Tri-O-galloyl-β-D-glucose) is a phenolic compound in Black Walnut Kernels[1].
(-)-Guttiferone E
Garcinol is a monoterpenoid. CID 5281560 is a natural product found in Garcinia assugu, Garcinia pedunculata, and other organisms with data available. (-)-Guttiferone E is found in fruits. (-)-Guttiferone E is a constituent of Garcinia indica (kokam). Camboginol isolated from Garcinia cambogia. Constituent of Garcinia indica (kokam). Camboginol isolated from Garcinia cambogia. (-)-Guttiferone E is found in fruits. Garcinol, a polyisoprenylated benzophenone harvested from Garcinia indica, exerts anti-cholinesterase properties towards acetyl cholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50s of 0.66 μM and 7.39 μM, respectively[1]. Garcinol also inhibits histone acetyltransferases (HATs, IC50= 7 μM) and p300/CPB-associated factor (PCAF, IC50 = 5 μM). Garcinol has anti-inflammatory and anti-cancer activity[2].
1,2,3,6-Tetragalloyl-beta-D-glucopyranose
1,2,3,6-tetrakis-O-galloyl-beta-D-glucose is a galloyl-beta-D-glucose compound having four galloyl groups in the 1-, 2-, 3- and 6-positions. It is a gallate ester and a galloyl beta-D-glucose. 1,2,3,6-Tetrakis-O-galloyl-beta-D-glucose is a natural product found in Castanea crenata, Quercus aliena, and other organisms with data available. See also: Paeonia lactiflora root (part of). 1,2,3,6-Tetragalloyl-beta-D-glucopyranose is found in beverages. 1,2,3,6-Tetragalloyl-beta-D-glucopyranose is isolated from Ceratonia siliqua (carob). Isolated from Ceratonia siliqua (carob). 1,2,3,6-Tetragalloyl-beta-D-glucopyranose is found in beverages and fruits. 1,2,3,6-Tetragalloylglucose is a potent UDP glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1) inhibitor, with a Ki of 1.68 μM[1]. 1,2,3,6-Tetragalloylglucose is a potent UDP glucuronosyltransferase 1 family, polypeptide A1 (UGT1A1) inhibitor, with a Ki of 1.68 μM[1].
3-(3,4-Dihydroxyphenyl)lactic acid
3-(3,4-dihydroxyphenyl)lactic acid is a 2-hydroxy monocarboxylic acid and a member of catechols. It is functionally related to a rac-lactic acid. It is a conjugate acid of a 3-(3,4-dihydroxyphenyl)lactate. 3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid is a natural product found in Salvia miltiorrhiza, Salvia sonchifolia, and other organisms with data available. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271) [HMDB]. 3-(3,4-Dihydroxyphenyl)lactic acid is found in rosemary. 3-(3,4-Dihydroxyphenyl)lactic acid is a natural catecholamine metabolite present in normal newborns plasma (PMID 1391254) and in normal urine (PMID 7460271).
Purpurogallin
Purpurogallin is a cyclic ketone that is 5H-benzocycloheptene bearing an oxo group at position 5 and hydroxy groups at positions 2, 3, 4 and 6. It has a role as an antibacterial agent, an antioxidant, an EC 1.17.3.2 (xanthine oxidase) inhibitor and a protective agent. It is a tetrol, a cyclic ketone and a member of phenols. It derives from a hydride of a 5H-benzocycloheptene. Purpurogalline is a natural product found in Quercus with data available. Purpurogallin is a naturally phenol extracted from the plants of Quercus spp, has potent xanthine oxidase (XO) inhibitory activity with an IC50 of 0.2 μM. Purpurogallin has antioxidant and anti-inflammatory effects[1][2][3].
Gnetol
Gnetol is a natural product found in Gnetum edule, Gnetum hainanense, and other organisms with data available. Gnetol is a phenolic compound isolated from the root of Gnetum montanum . Gnetol potently inhibits COX-1 (IC50 of 0.78 μM) and HDAC. Gnetol is a potent tyrosinase inhibitor with an IC50 of 4.5 μM for murine tyrosinase and suppresses melanin biosynthesis. Gnetol has antioxidant, antiproliferative, anticancer and hepatoprotective activity. Gnetol also possesses concentration-dependent α-Amylase, α-glucosidase, and adipogenesis activities[1][2][3]. Gnetol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=86361-55-9 (retrieved 2024-12-11) (CAS RN: 86361-55-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Tannic acid
A gallotannin obtained by acylation of the five hydroxy groups of D-glucose by 3,4-dihydroxy-5-[(3,4,5-trihydroxybenzoyl)oxy]benzoic acid (a gallic acid dimer). Same as: D01959 Tannic acid is a light yellow to tan solid with a faint odor. Sinks and mixes with water. (USCG, 1999) Chinese gallotannin is a tannin. Tannic acid is a natural product found in Achillea millefolium, Calluna vulgaris, and other organisms with data available. Tannic acid is a novel hERG channel blocker with IC50 of 3.4 μM. Tannic acid is a novel hERG channel blocker with IC50 of 3.4 μM.
Orcinol
Orcinol is a 5-alkylresorcinol in which the alkyl group is specified as methyl. It has a role as an Aspergillus metabolite. It is a 5-alkylresorcinol and a dihydroxytoluene. Orcinol is a natural product found in Calluna vulgaris, Rumex patientia, and other organisms with data available. A 5-alkylresorcinol in which the alkyl group is specified as methyl. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.272 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.266 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.263 KEIO_ID O013
Hexahydrocurcumin
Hexahydrocurcumin is a member of the class of compounds known as curcuminoids. Curcuminoids are aromatic compounds containing a curcumin moiety, which is composed of two aryl buten-2-one (feruloyl) chromophores joined by a methylene group. Hexahydrocurcumin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Hexahydrocurcumin can be found in ginger, which makes hexahydrocurcumin a potential biomarker for the consumption of this food product. Hexahydrocurcumin is a diarylheptanoid. Hexahydrocurcumin is a natural product found in Zingiber officinale with data available. [Raw Data] CBA88_Hexahydrocurcum_pos_40eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_20eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_10eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_10eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_20eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_50eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_40eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_30eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_50eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_30eV.txt Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2]. Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2].
Cannabisin B
Cannabisin B is a natural product found in Xylopia aethiopica and Cannabis sativa with data available. See also: Cannabis sativa subsp. indica top (part of).
Torachrysone
Torachrysone is a member of naphthols. Torachrysone is a natural product found in Rheum palmatum, Rumex japonicus, and other organisms with data available. Isolated from seeds of Cassia tora (charota). Torachrysone is found in coffee and coffee products, herbs and spices, and pulses. Torachrysone is found in coffee and coffee products. Torachrysone is isolated from seeds of Cassia tora (charota).
Guaiacol
O-methoxyphenol appears as colorless to amber crystals or liquid. Density (of solid) 1.129 g / cm3. Solidifies at 28 °C (82.4 °F), but may remain liquid for a long time even at a much lower temperature. Slightly water soluble. Soluble in aqueous sodium hydroxide. Used medicinally as an expectorant. Used, because of its anti-oxidant properties, as an anti-skinning agent for paints. Guaiacol is a monomethoxybenzene that consists of phenol with a methoxy substituent at the ortho position. It has a role as an expectorant, a disinfectant, a plant metabolite and an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor. It is functionally related to a catechol. Guaiacol is an agent thought to have disinfectant properties and used as an expectorant. Guaiacol is a phenolic natural product first isolated from Guaiac resin and the oxidation of lignin. Guaiacol is also present in wood smoke, as a product of pyrolysis of lignin. Guaiacol has been found in the urine of patients with neuroblastoma and pheochromocytoma. Guaiacol is a natural product found in Verbascum lychnitis, Castanopsis cuspidata, and other organisms with data available. Guaiacol is a phenolic compound with a methoxy group and is the monomethyl ether of catechol. Guaiacol is readily oxidized by the heme iron of peroxidases including the peroxidase of cyclooxygenase (COX) enzymes. It therefore serves as a reducing co-substrate for COX reactions. Guaiacol is a phenolic natural product first isolated from Guaiac resin and the oxidation of lignin. It is a yellowish aromatic oil that is now commonly derived from guaiacum or wood creosote. It is used medicinally as an expectorant, antiseptic, and local anesthetic. Guaiacol is used in traditional dental pulp sedation, and has the property of inducing cell proliferation; guaiacol is a potent scavenger of reactive oxygen radicals and its radical scavenging activity may be associated with its effect on cell proliferation. Guaiacol is also used in the preparation of synthetic vanillin. Guaiacol is also present in wood smoke, as a product of pyrolysis of lignin. Guaiacol has been found in the urine of patients with neuroblastoma and pheochromocytoma. (A3556, A3559). 2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. An agent thought to have disinfectant properties and used as an expectorant. (From Martindale, The Extra Pharmacopoeia, 30th ed, p747) See also: Wood Creosote (part of); Tolu balsam (USP) (part of). Guaiacol is a phenolic compound with a methoxy group and is the monomethyl ether of catechol. Guaiacol is readily oxidized by the heme iron of peroxidases including the peroxidase of cyclooxygenase (COX) enzymes. It therefore serves as a reducing co-substrate for COX reactions. Guaiacol is a phenolic natural product first isolated from Guaiac resin and the oxidation of lignin. It is a yellowish aromatic oil that is now commonly derived from guaiacum or wood creosote. It is used medicinally as an expectorant, antiseptic, and local anesthetic. Guaiacol is used in traditional dental pulp sedation, and has the property of inducing cell proliferation; guaiacol is a potent scavenger of reactive oxygen radicals and its radical scavenging activity may be associated with its effect on cell proliferation. Guaiacol is also used in the preparation of synthetic vanillin. Guaiacol is also present in wood smoke, as a product of pyrolysis of lignin. Guaiacol has been found in the urine of patients with neuroblastoma and pheochromocytoma. (PMID 4344880, 16152729). Present in Parmesan cheese, tea and soybean. Flavouring ingredient. 2-Methoxyphenol is found in many foods, some of which are milk and milk products, asparagus, pepper (c. annuum), and wild celery. R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants A monomethoxybenzene that consists of phenol with a methoxy substituent at the ortho position. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C78273 - Agent Affecting Respiratory System > C29767 - Expectorant Guaiacol, a phenolic compound, inhibits LPS-stimulated COX-2 expression and NF-κB activation[1]. Anti-inflammatory activity[1]. Guaiacol, a phenolic compound, inhibits LPS-stimulated COX-2 expression and NF-κB activation[1]. Anti-inflammatory activity[1].
Methylophiopogonone B
Methylophiopogonone B is a homoisoflavonoid that is 4H-1-benzopyran-4-one substituted by hydroxy groups at positions 5 and 7, methyl groups at positions 6 and 8 and a (4-methoxyphenyl)methyl group at position 3 respectively. It has a role as a plant metabolite. It is a homoisoflavonoid, a member of resorcinols and a monomethoxybenzene. Methylophiopogonone B is a natural product found in Ophiopogon japonicus with data available. A homoisoflavonoid that is 4H-1-benzopyran-4-one substituted by hydroxy groups at positions 5 and 7, methyl groups at positions 6 and 8 and a (4-methoxyphenyl)methyl group at position 3 respectively. Methylophiopogonone B, a homoisoflavonoidal compound that could be isolated from Ophiopogonis Tiber, could scavenge ?OH and H2O2 in vitro to a certain extent[1][2]. Methylophiopogonone B, a homoisoflavonoidal compound that could be isolated from Ophiopogonis Tiber, could scavenge ?OH and H2O2 in vitro to a certain extent[1][2].
Pinostilbene
3-methoxy-4,5-dihydroxy-trans-stilbene is a stilbenoid that is trans-resveratrol in which one of the meta-hydroxy groups is converted to the corresponding methyl ether. It is functionally related to a trans-resveratrol. 3-Methoxy-4,5-dihydroxy-trans-stilbene is a natural product found in Soymida febrifuga, Rumex bucephalophorus, and other organisms with data available. A stilbenoid that is trans-resveratrol in which one of the meta-hydroxy groups is converted to the corresponding methyl ether. Pinostilbene (trans-Pinostilbene) is a major metabolite of Pterostilbene. Pinostilbene exhibits inhibitory effects on colon cancer cells[1]. Pinostilbene (trans-Pinostilbene) is a major metabolite of Pterostilbene. Pinostilbene exhibits inhibitory effects on colon cancer cells[1].
Maclurin
Maclurin is a member of benzophenones. Maclurin is a natural product found in Garcinia multiflora, Garcinia assugu, and other organisms with data available. Maclurin is found in fruits. Extract from heartwood of Garcinia mangostana (mangosteen). Also from Morus alba (white mulberry D007155 - Immunologic Factors > D000373 - Agglutinins > D037121 - Plant Lectins D007155 - Immunologic Factors > D000373 - Agglutinins > D037102 - Lectins Macurin is a xanthone that can be isolated from Garcinia lancilimba[1]. Macurin is a xanthone that can be isolated from Garcinia lancilimba[1].
3'-Hydroxypterostilbene
(E)-4-(3,5-Dimethoxystyryl)benzene-1,2-diol is a natural product found in Sphaerophysa salsula with data available. 3'-Hydroxypterostilbene is a Pterostilbene (HY-N0828) analogue. 3'-Hydroxypterostilbene inhibits the growth of COLO 205, HCT-116 and HT-29 cells with IC50s of 9.0, 40.2 and 70.9 μM, respectively. 3'-Hydroxypterostilbene significantly down-regulates PI3K/Akt and MAPKs signaling pathways and effectively inhibits the growth of human colon cancer cells by inducing apoptosis and autophagy. 3'-Hydroxypterostilbene can be used for the research of cancer[1].
Toralactone
Toralactone is an organic heterotricyclic compound that is 9,10-dihydroxy-1H-benzo[g]isochromen-1-one substituted at positions 3 and 7 by methyl and methoxy groups respectively. It has a role as a plant metabolite. It is an organic heterotricyclic compound, a lactone, a member of phenols, an aromatic ether, a polyketide and a naphtho-alpha-pyrone. It is functionally related to a nor-toralactone. Toralactone is a natural product found in Senna obtusifolia and Senna tora with data available. An organic heterotricyclic compound that is 9,10-dihydroxy-1H-benzo[g]isochromen-1-one substituted at positions 3 and 7 by methyl and methoxy groups respectively. Isolated from seeds of Cassia tora (charota). Toralactone is found in coffee and coffee products, herbs and spices, and pulses. Toralactone is found in coffee and coffee products. Toralactone is isolated from seeds of Cassia tora (charota). Toralactone, isolated from Cassia obtusifolia, mediates hepatoprotection via an Nrf2-dependent anti-oxidative mechanism[1]. Toralactone, isolated from Cassia obtusifolia, mediates hepatoprotection via an Nrf2-dependent anti-oxidative mechanism[1].
4-Vinylphenol
4-hydroxystyrene is a member of the class of phenols that is styrene carrying a hydroxy substituent at position 4. It has a role as a human urinary metabolite and a human xenobiotic metabolite. It derives from a hydride of a styrene. 4-Vinylphenol is a natural product found in Streptomyces, Cedronella canariensis, and other organisms with data available. 4-Vinylphenol is a metabolite found in or produced by Saccharomyces cerevisiae. 4-hydroxystyrene occurs frequently in different ciders, wines, foods and berries, e.g. cloudberry. Styrene is a prohapten metabolized in the skin by aryl hydrocarbon hydroxylase (AHH, EC 1.14.14.1) to styrene epoxide acting as the true hapten. Styrene occurs in nature and as a synthetic product.(PMID: 6713846). Flavour component of tea; flavouring ingredient
2',4',6'-Trihydroxyacetophenone
2,4,6-trihydroxyacetophenone is a benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. It has a role as a MALDI matrix material and a plant metabolite. It is a methyl ketone, a benzenetriol and an aromatic ketone. 2,4,6-Trihydroxyacetophenone is a natural product found in Artemisia gypsacea, Daldinia eschscholtzii, and other organisms with data available. A benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. 2,4,6-Trihydroxyacetophenone is found in fruits. 2,4,6-Trihydroxyacetophenone is isolated from bark of Prunus domestica (plum Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].
4-Ethylphenol
4-Ethylphenol belongs to the class of organic compounds known as 1-hydroxy-4-alkyl benzenoids. These are phenols that are substituted by an alkyl group at the para-position. 4-Ethylphenol exists in all living species, ranging from bacteria to humans. 4-Ethylphenol is an alcohol tasting compound. 4-Ethylphenol has been detected, but not quantified, in several different foods, such as arabica coffee, beers, corns, milk (cow), and red raspberries. 4-Ethylphenol is a potentially toxic compound, capable of producing respiratory distress, cardiovascular collapse, shock, ventricular tachycardia, and coma in an adult. Liver, lung, central nervous system and renal injury may also occur. In case of exposure to eyes, irrigate exposed eyes with copious amounts of room temperature water for at least 15 minutes. Monitor for respiratory distress in case of inhalation exposure. Systemic manifestations of toxicity may include nausea, vomiting, diarrhea, dyspnea, tachypnea, pallor, and profuse sweating. 4-Ethylphenol (4-EP) is a phenolic compound produced in wine and beer by the spoilage yeast Brettanomyces. 4-Ethylphenol is found in many foods, some of which are red raspberry, beer, arabica coffee, and corn. 4-Ethylphenol is a volatile phenolic compound associated with off-odour in wine. 4-Ethylphenol is a volatile phenolic compound associated with off-odour in wine.
Bisphenol F
4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1]. 4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1].
epsilon-Viniferin
(7E,7R,8R)-epsilon-Viniferin is found in alcoholic beverages. (7E,7R,8R)-epsilon-Viniferin is isolated from leaves of wine grape (Vitis vinifera) infected with Botrytis cinere
1,3-Benzenediol
1,3-Benzenediol, also known as resorcin or m-hydroquinone, belongs to the class of organic compounds known as resorcinols. Resorcinols are compounds containing a resorcinol moiety, which is a benzene ring bearing two hydroxyl groups at positions 1 and 3. 1,3-Benzenediol exists in all living organisms, ranging from bacteria to humans. 1,3-Benzenediol is a creamy, hawthorn, and musty tasting compound. 1,3-Benzenediol has been detected, but not quantified, in several different foods, such as alcoholic beverages, cereals and cereal products, coffee and coffee products, eggplants, and java plums. This could make 1,3-benzenediol a potential biomarker for the consumption of these foods. 1,3-Benzenediol is a potentially toxic compound. In addition, exogenous ochronosis is associated with prolonged exposure to resorcinol . Data regarding the specific mechanisms of action of resorcinol does not appear to be readily accessible in the literature. Nevertheless, the role played by iodide ions in the irreversible inactivation of the enzymes is not yet fully elucidated . Resorcinol works by helping to remove hard, scaly, or roughened skin. In particular, it appears that resorcinol indicated for treating acne, dermatitis, or eczema in various skin care topical applications and peels revolves around the compounds ability to precipitate cutaneous proteins from the treated skin . In LPO and TPO, the resulting π-cation radical of the porphyrin can isomerize to a radical cation with the radical in an aromatic side chain of the enzyme . In vitro and in vivo studies have demonstrated that resorcinol can inhibit peroxidases in the thyroid and subsequently block the synthesis of thyroid hormones and cause goiter . Present in roasted barley, cane molasses, coffee, beer and wine. Flavouring ingredient. 1,3-Benzenediol is found in many foods, some of which are cereals and cereal products, coffee and coffee products, alcoholic beverages, and java plum. D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent
Aloin
Aloin is a constituent of various Aloe species Aloin extracted from natural sources is a mixture of two diastereomers, termed aloin A (also called barbaloin) and aloin B (or isobarbaloin), which have similar chemical properties. Aloin is an anthraquinone glycoside, meaning that its anthraquinone skeleton has been modified by the addition of a sugar molecule. Anthraquinones are a common family of naturally occurring yellow, orange, and red pigments of which many have cathartic properties, attributes shared by aloin. Aloin is related to aloe emodin, which lacks a sugar group but shares aloins biological properties. Aloin, also known as Barbaloin [Reynolds, Aloes - The genus Aloe, 2004], is a bitter, yellow-brown colored compound noted in the exudate of at least 68 Aloe species at levels from 0.1 to 6.6\\\\\% of leaf dry weight (making between 3\\\\\% and 35\\\\\% of the toal exudate) (Groom & Reynolds, 1987), and in another 17 species at indeterminate levels [Reynolds, 1995b]. It is used as a stimulant-laxative, treating constipation by inducing bowel movements. The compound is present in what is commonly referred to as the aloe latex that exudes from cells adjacent to the vascular bundles, found under the rind of the leaf and in between it and the gel. When dried, it has been used as a bittering agent in commerce (alcoholic beverages) [21 CFR 172.510. Scientific names given include Aloe perryi, A. barbadensis (= A. vera), A. ferox, and hybrids of A. ferox with A. africana and A. spicata.]. Aloe is listed in federal regulations as a natural substance that may be safely used in food when used in the minimum quantity required to produce their intended physical or technical effect and in accordance with all the principles of good manufacturing practice. This food application is generally limited to use in quite small quantities as a flavoring in alcoholic beverages and may usually be identified only as a natural flavor. ; In May 2002, the U.S. Aloin is a food and Drug Administration (FDA) issued a ruling that aloe laxatives are no longer generally recognized as safe (GRAS) and effective, meaning that aloin-containing products are no longer available in over-the-counter drug products in the United States. Aloe vera leaf latex is a concentrate of an herb or other botanical, and so meets the statutory description of an ingredient that may be used in dietary supplements Aloin A is a natural product found in Aloe arborescens with data available. D005765 - Gastrointestinal Agents > D002400 - Cathartics Constituent of various Aloe subspecies CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1 INTERNAL_ID 1; CONFIDENCE Reference Standard (Level 1) Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (Aloin-A; Barbaloin-A) is a natural anti-tumor anthraquinone glycoside with iron chelating activity. Aloin (mixture of A&B) is anthraquinone derivative isolated from Aloe vera. Aloin (mixture of A&B) has diverse biological activities such as anti-inflammatory, immunity, antidiabetic, antioxidant, antibacterial, antifungal, and antitumor activities. Aloin (mixture of A&B) also an effective inhibitor of stimulated granulocyte matrix metalloproteinases (MMPs)[1][2].
Masoprocol
Masoprocol is the meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. It has a role as an antineoplastic agent, a lipoxygenase inhibitor, a hypoglycemic agent and a metabolite. Masoprocol is a natural product found in Larrea divaricata, Schisandra chinensis, and Larrea tridentata with data available. Masoprocol is a naturally occurring antioxidant dicatechol originally derived from the creosote bush Larrea divaricatta with antipromoter, anti-inflammatory, and antineoplastic activities. Masoprocol directly inhibits activation of two receptor tyrosine kinases (RTKs), the insulin-like growth factor receptor (IGF-1R) and the c-erbB2/HER2/neu receptor, resulting in decreased proliferation of susceptible tumor cell populations. This agent may induce apoptosis in susceptible tumor cell populations as a result of disruption of the actin cytoskeleton in association with the activation of stress activated protein kinases (SAPKs). In addition, masoprocol inhibits arachidonic acid 5-lipoxygenase (5LOX), resulting in diminished synthesis of inflammatory mediators such as prostaglandins and leukotrienes. It may prevent leukocyte infiltration into tissues and the release of reactive oxygen species. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The compound also inhibits formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase to a lesser extent. It also serves as an antioxidant in fats and oils. Masoprocol, also known as actinex or meso-ndga, belongs to the class of organic compounds known as dibenzylbutane lignans. These are lignan compounds containing a 2,3-dibenzylbutane moiety. Symptoms of overdose or allergic reaction include bluish coloration of skin, dizziness, or feeling faint, wheezing or trouble in breathing. Masoprocol also inhibits prostaglandins but the significance of this action is not yet known. Masoprocol is a drug which is used for the treatment of actinic keratoses (precancerous skin growths that can become malignant if left untreated). It also serves as an antioxidant in fats and oils. Masoprocol is a potentially toxic compound. It is not known exactly how masoprocol works. Although the exact mechanism of action is not known, studies have shown that masoprocol is a potent 5-lipoxygenase inhibitor and has antiproliferative activity against keratinocytes in tissue culture, but the relationship between this activity and its effectiveness in actinic keratoses is unknown. A potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. The meso-form of nordihydroguaiaretic acid. An antioxidant found in the creosote bush, Larrea divaricata, it is a potent lipoxygenase inhibitor that interferes with arachidonic acid metabolism. It also inhibits (though to a lesser extent) formyltetrahydrofolate synthetase, carboxylesterase, and cyclooxygenase. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1322 - Lipooxygenase Inhibitor D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4658; ORIGINAL_PRECURSOR_SCAN_NO 4657 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4580; ORIGINAL_PRECURSOR_SCAN_NO 4576 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4551; ORIGINAL_PRECURSOR_SCAN_NO 4548 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4643; ORIGINAL_PRECURSOR_SCAN_NO 4642 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4651; ORIGINAL_PRECURSOR_SCAN_NO 4650 CONFIDENCE standard compound; INTERNAL_ID 611; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4591; ORIGINAL_PRECURSOR_SCAN_NO 4587 Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Masoprocol (meso-Nordihydroguaiaretic acid) is a potent and orally active lipoxygenase inhibitor. Masoprocol shows antihyperglycemic activity. Masoprocol decreases the glucose concentration and hepatic triglyceride in vivo. Masoprocol has the potential for the research of type II diabetes[1][2][3]. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor. Nordihydroguaiaretic acid is a 5-lipoxygenase (5LOX) (IC50=8 μM) and tyrosine kinase inhibitor.
Lusianthridin
7-methoxy-9,10-dihydrophenanthrene-2,5-diol is a dihydrophenanthrene. 7-Methoxy-9,10-dihydrophenanthrene-2,5-diol is a natural product found in Dendrobium loddigesii, Pleione bulbocodioides, and other organisms with data available.
Curcumin
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 1.286 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors D004396 - Coloring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 1.290 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.289 [Raw Data] CBA71_Curcumin_neg_10eV.txt [Raw Data] CBA71_Curcumin_neg_30eV.txt [Raw Data] CBA71_Curcumin_neg_40eV.txt [Raw Data] CBA71_Curcumin_pos_30eV.txt [Raw Data] CBA71_Curcumin_pos_20eV.txt [Raw Data] CBA71_Curcumin_pos_40eV.txt [Raw Data] CBA71_Curcumin_neg_50eV.txt [Raw Data] CBA71_Curcumin_pos_10eV.txt [Raw Data] CBA71_Curcumin_pos_50eV.txt [Raw Data] CBA71_Curcumin_neg_20eV.txt Curcumin (Diferuloylmethane), a natural phenolic compound, is a p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. Curcumin shows inhibitory effects on NF-κB and MAPKs, and has diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification. Curcumin (Diferuloylmethane), a natural phenolic compound, is a p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. Curcumin shows inhibitory effects on NF-κB and MAPKs, and has diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification.
Bisdemethoxycucurmin
Bisdemethoxycucurmin (Curcumin III), a curcuminoid, has antioxidant and antiinflammatory activities[1][2]. Bisdemethoxycucurmin (Curcumin III), a curcuminoid, has antioxidant and antiinflammatory activities[1][2].
Demethoxycurcumin
[Raw Data] CBA69_Demethoxycurcum_neg_50eV.txt [Raw Data] CBA69_Demethoxycurcum_neg_40eV.txt [Raw Data] CBA69_Demethoxycurcum_pos_10eV.txt [Raw Data] CBA69_Demethoxycurcum_pos_20eV.txt [Raw Data] CBA69_Demethoxycurcum_neg_10eV.txt [Raw Data] CBA69_Demethoxycurcum_pos_40eV.txt [Raw Data] CBA69_Demethoxycurcum_neg_30eV.txt [Raw Data] CBA69_Demethoxycurcum_pos_30eV.txt [Raw Data] CBA69_Demethoxycurcum_neg_20eV.txt [Raw Data] CBA69_Demethoxycurcum_pos_50eV.txt Demethoxycurcumin is the main active component of curcumin and has been shown to have anti-inflammatory and toxic effects on cancer cells. Demethoxycurcumin is the main active component of curcumin and has been shown to have anti-inflammatory and toxic effects on cancer cells.
Mulberrofuran G
Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2]. Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2]. Mulberrofuran G protects ischemic injury-induced cell death via inhibition of NOX4-mediated ROS generation and ER stress[1]. Mulberrofuran G shows moderate inhibiting activity of hepatitis B virus (HBV) DNA replication with IC50 of 3.99 μM[2].
Usnic acid
A member of the class of dibenzofurans that is dibenzo[b,d]furan-1(9bH)-one substituted by acetyl groups at positions 2 and 6, hydroxy groups at positions 3 and 7 and methyl groups at positions 8 and 9b. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.457 D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.456 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.458 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.459 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.455 (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].
Tellimagrandin II
Isolated from Eugenia caryophyllata (clove) and Filipendula ulmaria (meadowsweet). Tellimagrandin II is found in many foods, some of which are nance, kelp, komatsuna, and narrowleaf cattail. Tellimagrandin II is found in acorn. Tellimagrandin II is isolated from Eugenia caryophyllata (clove) and Filipendula ulmaria (meadowsweet). Tellimagrandin II (Eugeniin), the first intermediate in the 4C1-glucose derived series of ellagitannins, also inhibits antibiotic resistance of drug-resistant Staphylococcus aureus[1][2]. Tellimagrandin II (Eugeniin), the first intermediate in the 4C1-glucose derived series of ellagitannins, also inhibits antibiotic resistance of drug-resistant Staphylococcus aureus[1][2].
Adipostatin A
Isolated from cereals and other plants. Adipostatin A is found in many foods, some of which are hard wheat, rye, cereals and cereal products, and common wheat. Adipostatin A is found in barley. Adipostatin A is isolated from cereals and other plant 5-Pentadecylresorcinol (Adipostatin A) is a glycerol-3-phosphate dehydrogenase (GPDH) inhibitor with an IC50 of 4.1 μM. Adipostatin A shows good larvicidal activity against Aedes aegypti[1][2]. 5-Pentadecylresorcinol (Adipostatin A) is a glycerol-3-phosphate dehydrogenase (GPDH) inhibitor with an IC50 of 4.1 μM. Adipostatin A shows good larvicidal activity against Aedes aegypti[1][2].
Theogallin
Theogallin is found in blackcurrant. Theogallin is isolated from tea.
3-Isomangostin
3-Isomangostin is a member of xanthones. 3-Isomangostin is a natural product found in Garcinia morella, Cratoxylum formosum, and other organisms with data available. Constituent of Garcinia mangostana (mangosteen). 3-Isomangostin is found in fruits and purple mangosteen. 3-Isomangostin is found in fruits. 3-Isomangostin is a constituent of Garcinia mangostana (mangosteen). 3-Isomangostin, extracted from Garciniamangostana.L. shell, is a potent MutT homologue 1 (MTH1) inhibitor with an IC50 value of 52?nM. 3-Isomangostin would be an attractive chemical tool for the development of anticancer agents[1]. 3-Isomangostin, extracted from Garciniamangostana.L. shell, is a potent MutT homologue 1 (MTH1) inhibitor with an IC50 value of 52?nM. 3-Isomangostin would be an attractive chemical tool for the development of anticancer agents[1].
8-Desoxygartanin
8-Desoxygartanin is a member of xanthones. 8-Desoxygartanin is a natural product found in Garcinia merguensis, Garcinia intermedia, and other organisms with data available. Isolated from Garcinia mangostana (mangosteen). 8-Desoxygartanin is found in fruits and purple mangosteen. 8-Desoxygartanin is found in fruits. 8-Desoxygartanin is isolated from Garcinia mangostana (mangosteen 8-Deoxygartanin, a prenylated xanthones from G. mangostana, is a selective inhibitor of butyrylcholinesterase (BChE)[1]. 8-Deoxygartanin exhibits antiplasmodial activity with an IC50 of 11.8 μM for the W2 strain of Plasmodium falciparum[2]. 8-Deoxygartanin inhibits NF-κB (p65) activation with an IC50 of 11.3 μM[3]. 8-Deoxygartanin, a prenylated xanthones from G. mangostana, is a selective inhibitor of butyrylcholinesterase (BChE)[1]. 8-Deoxygartanin exhibits antiplasmodial activity with an IC50 of 11.8 μM for the W2 strain of Plasmodium falciparum[2]. 8-Deoxygartanin inhibits NF-κB (p65) activation with an IC50 of 11.3 μM[3].
gamma-Mangostin
Gamma-mangostin is a member of the class of xanthones that is 9H-xanthene substituted by hydroxy group at positions 1, 3, 6 and 7, an oxo group at position 9 and prenyl groups at positions 2 and 8. Isolated from the stems of Cratoxylum cochinchinense, it exhibits antitumour activity. It has a role as an antineoplastic agent, a protein kinase inhibitor and a plant metabolite. It is a member of xanthones and a member of phenols. gamma-Mangostin is a natural product found in Hypericum androsaemum, Garcinia xipshuanbannaensis, and other organisms with data available. See also: Garcinia mangostana fruit rind (part of). A member of the class of xanthones that is 9H-xanthene substituted by hydroxy group at positions 1, 3, 6 and 7, an oxo group at position 9 and prenyl groups at positions 2 and 8. Isolated from the stems of Cratoxylum cochinchinense, it exhibits antitumour activity. Constituent of Garcinia mangostana (mangosteen). gamma-Mangostin is found in fruits and purple mangosteen. gamma-Mangostin is found in fruits. gamma-Mangostin is a constituent of Garcinia mangostana (mangosteen) Gamma-Mangostin is a novel competitive 5-hydroxytryptamine 2A (5-HT2A) receptors antagonist, purified from the fruit hull of the medicinal plant Garcinia mangostana. Gamma-Mangostin is a inhibitor of Transthyretin (TTR) fibrillization, it binds to the thyroxine (T4)-binding sites and stabilized the TTR tetramer[2]. Gamma-Mangostin inhibits [3H] spiperone binding to cultured rat aortic myocytes (IC50=3.5 nM) and reduces The perfusion pressure response of rat coronary artery to 5-HT2A (IC50=0.32 μM) [1]. Gamma-Mangostin is a novel competitive 5-hydroxytryptamine 2A (5-HT2A) receptor antagonist and potent epoxidase 2 (COX-2) inhibitor, as well as a transthyroxin protein (TTR) profibrosis inhibitor. Gamma-Mangostin binds to the thyroxine (T4)-binding sites and stabilized the TTR tetramer[2]. Gamma-Mangostin inhibits [3H] spiperone binding to cultured rat aortic myocytes (IC50=3.5 nM) and reduces The perfusion pressure response of rat coronary artery to 5-HT2A (IC50=0.32 μM). Gamma-Mangostin has anti-inflammatory, antibacterial, antioxidant and anticancer activities, and can be used in the study of metabolic disorders such as diabetes[1][2][3][4][5]. Gamma-Mangostin is a novel competitive 5-hydroxytryptamine 2A (5-HT2A) receptors antagonist, purified from the fruit hull of the medicinal plant Garcinia mangostana. Gamma-Mangostin is a inhibitor of Transthyretin (TTR) fibrillization, it binds to the thyroxine (T4)-binding sites and stabilized the TTR tetramer[2]. Gamma-Mangostin inhibits [3H] spiperone binding to cultured rat aortic myocytes (IC50=3.5 nM) and reduces The perfusion pressure response of rat coronary artery to 5-HT2A (IC50=0.32 μM) [1].
Tetrahydrocurcumin
Tetrahydrocurcumin (THC), is a product of bacterial or intestinal metabolism of curcumin (via the bacterial enzyme NADPH-dependent curcumin reductase). Curcumin is a yellow, polyphenolic pigment, derived from the rhizomes of a plant (Curcuma longa Linn). It is the principal curcuminoid of the popular Indian spice turmeric, which is a member of the ginger family and is a natural antioxidant exhibiting a variety of pharmacological activities and therapeutic properties. It has long been used as a traditional medicine and as a preservative and coloring agent in foods. In E. coli curcumin is a substrate for the enzyme NADPH-dependent curcumin reductase which catalyzes the metal-independent reduction of curcumin to dihydrocurcumin (DHC) as an intermediate product, followed by further reduction to tetrahydrocurcumin (THC) as an end product. Tetrahydrocurcumin (THC) exhibits many of the same physiologic and pharmacological activities as curcumin and in some systems may exert greater antioxidant activity than curcumin (PMID: 16061427). Tetrahydrocurcumin is a beta-diketone that is curcumin in which both of the double bonds have been reduced to single bonds. It has a role as a metabolite. It is a beta-diketone, a polyphenol and a diarylheptanoid. It is functionally related to a curcumin. Tetrahydrocurcumin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Tetrahydrocurcumin is a natural product found in Curcuma longa with data available. Tetrahydrocurcumin (THC), one of the major metabolites of curcumin, exhibits many of the same physiologic and pharmacological activities as curcumin and in some systems may exert greater antioxidant activity than curcumin (PMID: 16061427). Tetrahydrocurcumin is found in turmeric. A beta-diketone that is curcumin in which both of the double bonds have been reduced to single bonds. Tetrahydrocurcumin is a Curcuminoid found in turmeric (Curcuma longa) that is produced by the reduction of Curcumin. Tetrahydrocurcumin inhibit CYP2C9 and CYP3A4. Tetrahydrocurcumin is a Curcuminoid found in turmeric (Curcuma longa) that is produced by the reduction of Curcumin. Tetrahydrocurcumin inhibit CYP2C9 and CYP3A4.
Caffeic acid ethyl ester
Caffeic acid ethyl ester, also known as (E)-ethyl 3,4-dihydroxycinnamate or (E)-ethyl caffeate, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Caffeic acid ethyl ester is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Caffeic acid ethyl ester can be found in eggplant and vinegar, which makes caffeic acid ethyl ester a potential biomarker for the consumption of these food products. Ethyl caffeate is an ester of an hydroxycinnamic acid, a naturally occurring organic compound . Ethyl trans-caffeate is an ethyl ester resulting from the formal condensation of the carboxy group of trans-caffeic acid with ethanol. It has a role as an anti-inflammatory agent and an antineoplastic agent. It is an alkyl caffeate ester and an ethyl ester. It is functionally related to a trans-caffeic acid. Ethyl caffeate is a natural product found in Cichorium endivia, Cichorium pumilum, and other organisms with data available. Ethyl Caffeate is a natural phenolic compound isolated from Bidens pilosa. Ethyl caffeate suppresses NF-κB activation and its downstream inflammatory mediators, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) in vitro or in mouse skin[1]. Ethyl Caffeate is a natural phenolic compound isolated from Bidens pilosa. Ethyl caffeate suppresses NF-κB activation and its downstream inflammatory mediators, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) in vitro or in mouse skin[1].
Ethyl gallate
Ethyl gallate is a gallate ester obtained by the formal condensation of gallic acid with ethanol. It has a role as a plant metabolite. Ethyl gallate is a natural product found in Limonium axillare, Dimocarpus longan, and other organisms with data available. Ethyl gallate occurs, inter alia, in Indian gooseberry (Phyllanthus emblica). Ethyl gallate is found in many foods, some of which include grape wine, fruits, guava, and vinegar. Occurs, inter alia, in Indian gooseberry (Phyllanthus emblica). Ethyl gallate is found in many foods, some of which are grape wine, fruits, guava, and vinegar. A gallate ester obtained by the formal condensation of gallic acid with ethanol. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide.
Bisdemethoxycurcumin
Bisdemethoxycurcumin is a curcuminoid, a component of tumeric. Tumeric is a spice that comes from the root Curcuma longa, a member of the ginger family, Zingaberaceae. It is bright yellow and has been used as a coloring agent in food in the United States. In India, it has been used for centuries as a spice and a food preservative, and also for its various medicinal properties. In Ayurveda (Indian traditional medicine), tumeric has been used for its medicinal properties for various indications and through different routes of administration. It has been used topically on the skin for wounds, blistering diseases such as pemphigus and herpes zoster, for parasitic skin infections, and for acne. It has been used via oral administration for the common cold, liver diseases, urinary tract diseases, and as a blood purifier. For chronic rhinitis and coryza, it has been used via inhalation. The average intake of tumeric in the diet in India is approximately 2 to 2.5 g in a 60 kg individual. This corresponds to an intake of approximately 60 to 100 mg of curcumin daily. The Food and Drug Administration has classified tumeric among substances Generally Recognized as Safe (GRAS). A large number of in vitro and animal studies have been conducted to evaluate the effect of curcumin on inflammation. It has been found to act at various different levels of the arachadonic acid inflammatory cascade and through effects on various enzymes and cytokines. (PMID: 12676044). Bisdemethoxycurcumin is a beta-diketone that is methane in which two of the hydrogens are substituted by 4-hydroxycinnamoyl groups. It has a role as a metabolite and an EC 3.2.1.1 (alpha-amylase) inhibitor. It is a beta-diketone, a polyphenol, an enone and a diarylheptanoid. It is functionally related to a 4-coumaric acid. Bisdemethoxycurcumin is a natural product found in Curcuma amada, Curcuma kwangsiensis, and other organisms with data available. A beta-diketone that is methane in which two of the hydrogens are substituted by 4-hydroxycinnamoyl groups. Isolated from Curcuma zedoaria (zedoary) and Curcuma longa (turmeric) (E,E)-Bisdemethoxycurcumin ((E,E)-Curcumin III) is a curcumin derivative with anti-inflammatory and anticancer activities. (E,E)-Bisdemethoxycurcumin ((E,E)-Curcumin III) is a curcumin derivative with anti-inflammatory and anticancer activities. Bisdemethoxycucurmin (Curcumin III), a curcuminoid, has antioxidant and antiinflammatory activities[1][2]. Bisdemethoxycucurmin (Curcumin III), a curcuminoid, has antioxidant and antiinflammatory activities[1][2].
Octyl gallate
Octyl gallate is a gallate ester obtained by condensation of the carboxy group of gallic acid with the hydroxy group of octanol. It has a role as a food antioxidant, a plant metabolite and a hypoglycemic agent. Octyl gallate is an antioxidant used in margarineOctyl gallate has been shown to exhibit anti-viral function (A7906). A gallate ester obtained by condensation of the carboxy group of gallic acid with the hydroxy group of octanol. D000074385 - Food Ingredients > D005503 - Food Additives > D005520 - Food Preservatives Octyl gallate is an antioxidant used in margarin Antioxidant used in margarine. Octyl gallate (Progallin O) is widely used as a food additive, with antimicrobial and antioxidant activity[1][2]. Octyl gallate (Progallin O) shows selective and sensitive fluorescent property[2]. Octyl gallate shows a marked antiviral effect against HSV-1, vesicular stomatitis virus (VSV) and poliovirus[3]. Octyl gallate (Progallin O) is widely used as a food additive, with antimicrobial and antioxidant activity[1][2]. Octyl gallate (Progallin O) shows selective and sensitive fluorescent property[2]. Octyl gallate shows a marked antiviral effect against HSV-1, vesicular stomatitis virus (VSV) and poliovirus[3].
Curcumin
Curcumin appears as orange-yellow needles. (NTP, 1992) Curcumin is a beta-diketone that is methane in which two of the hydrogens are substituted by feruloyl groups. A natural dyestuff found in the root of Curcuma longa. It has a role as a metabolite, an anti-inflammatory agent, an antineoplastic agent, a hepatoprotective agent, a flavouring agent, a biological pigment, a nutraceutical, an antifungal agent, a dye, a lipoxygenase inhibitor, a ligand, a radical scavenger, a contraceptive drug, an EC 3.5.1.98 (histone deacetylase) inhibitor, an immunomodulator, an iron chelator, a neuroprotective agent, a food colouring, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor, an EC 1.1.1.205 (IMP dehydrogenase) inhibitor, an EC 1.6.5.2 [NAD(P)H dehydrogenase (quinone)] inhibitor, an EC 1.8.1.9 (thioredoxin reductase) inhibitor, an EC 2.7.10.2 (non-specific protein-tyrosine kinase) inhibitor and a geroprotector. It is a polyphenol, a beta-diketone, an enone, a diarylheptanoid and an aromatic ether. It is functionally related to a ferulic acid. Curcumin, also known as diferuloylmethane, is an active component in the golden spice turmeric (Curcuma longa) and in [Curcuma xanthorrhiza oil]. It is a highly pleiotropic molecule that exhibits antibacterial, anti-inflammatory, hypoglycemic, antioxidant, wound-healing, and antimicrobial activities. Due to these properties, curcumin has been investigated for the treatment and supportive care of clinical conditions including proteinuria, breast cancer, multiple myeloma, depression, and Non Small Cell Lung Cancer (NSCLC). Despite proven efficacy against numerous experimental models, poor bioavailability due to poor absorption, rapid metabolism, and rapid systemic elimination have been shown to limit the therapeutic efficacy of curcumin. Curcumin is under investigation for the treatment and supportive care of various clinical conditions including mucositis, rectal cancer, prostate cancer, chronic schizophrenia, and Mild Cognitive Impairment (MCI). curcumin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Curcumin is a natural product found in Strychnos angustiflora, Curcuma amada, and other organisms with data available. Curcumin is a phytopolylphenol pigment isolated from the plant Curcuma longa, commonly known as turmeric, with a variety of pharmacologic properties. Curcumin blocks the formation of reactive-oxygen species, possesses anti-inflammatory properties as a result of inhibition of cyclooxygenases (COX) and other enzymes involved in inflammation; and disrupts cell signal transduction by various mechanisms including inhibition of protein kinase C. These effects may play a role in the agents observed antineoplastic properties, which include inhibition of tumor cell proliferation and suppression of chemically induced carcinogenesis and tumor growth in animal models of cancer. (NCI04) A yellow-orange dye obtained from tumeric, the powdered root of CURCUMA longa. It is used in the preparation of curcuma paper and the detection of boron. Curcumin appears to possess a spectrum of pharmacological properties, due primarily to its inhibitory effects on metabolic enzymes. See also: ... View More ... Curcumin is a natural component of the rhizome of turmeric (Curcuma longa) and one of the most powerful chemopreventive and anticancer agents. Its biological effects range from antioxidant, anti-inflammatory to inhibition of angiogenesis and is also shown to possess specific antitumoral activity. The molecular mechanism of its varied cellular effects has been studied in some details and it has been shown to have multiple targets and interacting macromolecules within the cell. Curcumin has been shown to possess anti-angiogenic properties and the angioinhibitory effects of curcumin manifest due to down regulation of proangiogenic genes such as VEGF and angiopoitin and a decrease in migration and invasion of endothelial cells. One of the important factors implicated in chemoresistance and induced chemosensitivity is NFkB and curcumin has been shown to down regulate NFkB and inhibit IKB kinase thereby suppressing proliferation and inducing apoptosis. Cell lines that are resistant to certain apoptotic inducers and radiation become susceptible to apoptosis when treated in conjunction with curcumin. Besides this it can also act as a chemopreventive agent in cancers of colon, stomach and skin by suppressing colonic aberrant crypt foci formation and DNA adduct formation. This review focuses on the various aspects of curcumin as a potential drug for cancer treatment and its implications in a variety of biological and cellular processes vis-à-vis its mechanism of action (PMID: 16712454). Turmeric (Zingiberaceae family) rhizomes, has been widely used for centuries in indigenous medicine for the treatment of a variety of inflammatory conditions and other diseases. Its medicinal properties have been attributed mainly to the curcuminoids and the main component present in the rhizome is curcumin. Curcumin has been shown to possess wide range of pharmacological activities including anti-inflammatory, anti-cancer, anti-oxidant, wound healing and anti-microbial effects. Recently, curcumin treatment has been shown to correct defects associated with cystic fibrosis in homozygous DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) knock out mice. In vivo and in vitro studies have demonstrated curcumins ability to inhibit carcinogenesis at three stages: tumor promotion, angiogenesis and tumor growth. Curcumin suppresses mitogen-induced proliferation of blood mononuclear cells, inhibits neutrophil activation and mixed lymphocyte reaction and also inhibits both serum-induced and platelet derived growth factor (PDGF)-dependent mitogenesis of smooth muscle cells. It has also been reported to be a partial inhibitor of protein kinase. The other salient feature of turmeric/curcumin is that despite being consumed daily for centuries in Asian countries, it has not been shown to cause any toxicity (PMID: 16413584). Isolated from Curcuma zedoaria (zedoary) and other Curcuma subspecies flavouring ingredient. Natural colouring matter used extensively in Indian curries etc. Nutriceutical with anticancer and antiinflammatory props. Curcumin is found in many foods, some of which are asian pear, leek, chayote, and coconut. A beta-diketone that is methane in which two of the hydrogens are substituted by feruloyl groups. A natural dyestuff found in the root of Curcuma longa. C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors D004396 - Coloring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Curcumin (Diferuloylmethane), a natural phenolic compound, is a p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. Curcumin shows inhibitory effects on NF-κB and MAPKs, and has diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification. Curcumin (Diferuloylmethane), a natural phenolic compound, is a p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. Curcumin shows inhibitory effects on NF-κB and MAPKs, and has diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification.
Garcinone C
Garcinone C is a member of xanthones. Garcinone C is a natural product found in Garcinia xipshuanbannaensis, Garcinia mangostana, and Hypericum perforatum with data available. From Garcinia mangostana (mangosteen). Garcinone C is found in fruits and purple mangosteen. Garcinone C is found in fruits. Garcinone C is from Garcinia mangostana (mangosteen Garcinone C, a xanthone derivative, is a natural compound extracted from Garcinia oblongifolia that is used as an anti-inflammatory, astringency and granulation-promoting medicine, and has potential cytotoxic effects on certain cancers. Garcinone C stimulates the expression levels of ATR and 4E-BP1, while efficiently inhibiting the expression levels of cyclin B1, cyclin D1, cyclin E2, cdc2, Stat3 and CDK7. Garcinone C significantly inhibits cell viability of the human Nasopharyngeal carcinoma (NPC) cell lines CNE1, CNE2, HK1 and HONE1 in a time? and dose?dependent manner[1].
beta-Mangostin
Beta-Mangostin is a member of xanthones. beta-Mangostin is a natural product found in Garcinia oliveri, Garcinia cowa, and other organisms with data available. From Garcinia mangostana (mangosteen). beta-Mangostin is found in fruits and purple mangosteen. beta-Mangostin is found in fruits. beta-Mangostin is from Garcinia mangostana (mangosteen). beta-Mangostin (β-Mangostin) is a xanthone compound present in Cratoxylum arborescens, with antibacterial and antimalarial activities. beta-Mangostin exhibits antimycobacterial activity against Mycobacterium tuberculosis with an MIC of 6.25 μg/mL. beta-Mangostin possesses in vitro antimalarial activity against Plasmodium falciparum, with an IC50 of 3.00 μg/mL. beta-Mangostin has potent anticancer activity against various cancers (such as hepatocellular carcinoma, leukaemic)[1][2][3][4]. beta-Mangostin (β-Mangostin) is a xanthone compound present in Cratoxylum arborescens, with antibacterial and antimalarial activities. beta-Mangostin exhibits antimycobacterial activity against Mycobacterium tuberculosis with an MIC of 6.25 μg/mL. beta-Mangostin possesses in vitro antimalarial activity against Plasmodium falciparum, with an IC50 of 3.00 μg/mL. beta-Mangostin has potent anticancer activity against various cancers (such as hepatocellular carcinoma, leukaemic)[1][2][3][4].
Garcinone D
Garcinone D is a natural product found in Garcinia morella, Garcinia dulcis, and other organisms with data available. From Garcinia mangostana (mangosteen). Garcinone D is found in fruits and purple mangosteen. Garcinone D is found in fruits. Garcinone D is from Garcinia mangostana (mangosteen).
Epitheaflagallin 3-O-gallate
5,7-Dihydroxy-2-{2,3,4,5-tetrahydroxy-6-oxo-6H-benzo[7]annulen-8-yl}-3,4-dihydro-2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate is a gallate ester. Epitheaflagallin 3-O-gallate is found in tea. Epitheaflagallin 3-O-gallate is a pigment from black tea. Pigment from black tea. Epitheaflagallin 3-O-gallate is found in tea.
5-(8,11-Pentadecadienyl)-1,3-benzenediol
5-[(8Z,11Z)-pentadeca-8,11-dien-1-yl]benzene-1,3-diol is a member of resorcinols. 5-[(8Z,11Z)-pentadeca-8,11-dien-1-yl]benzene-1,3-diol is a natural product found in Merulius incarnatus, Anacardium occidentale, and Gloeostereum incarnatum with data available. 5-(8,11-Pentadecadienyl)-1,3-benzenediol is found in nuts. 5-(8,11-Pentadecadienyl)-1,3-benzenediol is isolated from Anacardium occidentale (cashew). Isolated from Anacardium occidentale (cashew). 5-(8,11-Pentadecadienyl)-1,3-benzenediol is found in nuts.
Sageone
Sageone is a diterpenoid. Sageone is a natural product found in Salvia pachyphylla, Salvia, and other organisms with data available. Constituent of Salvia officinalis (sage). Sageone is found in tea, herbs and spices, and common sage. Sageone is found in common sage. Sageone is a constituent of Salvia officinalis (sage).
Moracin M
Moracin M is a member of benzofurans. Moracin M is a natural product found in Morus insignis, Morus mesozygia, and other organisms with data available. Moracin M is found in fruits. Moracin M is isolated from Morus alba (white mulberry) infected with Fusarium solani. Isolated from Morus alba (white mulberry) infected with Fusarium solani. Moracin M is found in fruits. Moracin M, a phenolic component in the skin of Morus alba Linn., is a potent phosphodiesterase-4 (PDE4) inhibitor with IC50 values of 2.9, 4.5, >40, and >100 μM for PDE4D2, PDE4B2, PDE5A1, and PDE9A2, respectively. Moracin M has anti-inflammatory activity[1]. Moracin M, a phenolic component in the skin of Morus alba Linn., is a potent phosphodiesterase-4 (PDE4) inhibitor with IC50 values of 2.9, 4.5, >40, and >100 μM for PDE4D2, PDE4B2, PDE5A1, and PDE9A2, respectively. Moracin M has anti-inflammatory activity[1].
Batatasin III
Batatasin III is a stilbenoid. batatasin III is a natural product found in Bulbophyllum reptans, Cymbidium aloifolium, and other organisms with data available. Batatasin III is found in root vegetables. Batatasin III is a constituent of Dioscorea batatas (Chinese yam) Batatasin III, a stilbenoid, inhibits cancer migration and invasion by suppressing epithelial to mesenchymal transition (EMT) and FAK-AKT signals. Batatasin III has anti-cancer activities[1]. Batatasin III, a stilbenoid, inhibits cancer migration and invasion by suppressing epithelial to mesenchymal transition (EMT) and FAK-AKT signals. Batatasin III has anti-cancer activities[1]. Batatasin III, a stilbenoid, inhibits cancer migration and invasion by suppressing epithelial to mesenchymal transition (EMT) and FAK-AKT signals. Batatasin III has anti-cancer activities[1].
N6-cis-p-Coumaroylserotonin
N6-cis-p-Coumaroylserotonin is a member of hydroxyindoles and a carboxamide. It is functionally related to a serotonin. N-Coumaroyl serotonin is a natural product found in Echinochloa esculenta, Centaurea montana, and other organisms with data available. Ipobscurine A is found in fats and oils. Ipobscurine A is an alkaloid from Carthamus tinctorius (safflower). N-(p-Coumaroyl) Serotonin is a polyphenol isolated from the seeds of safflower and has antioxidative, anti-atherogenic and anti-inflammatory properties. N-(p-Coumaroyl) Serotonin inhibits PDGF-induced on phosphorylation of PDGF receptor and Ca2+ release from sarcoplasmic reticulum[1]. N-(p-Coumaroyl) Serotonin ameliorates atherosclerosis and distensibility of the aortic wall in vivo and is usually used for the atherosclerosis research[2]. N-(p-Coumaroyl) Serotonin is a polyphenol isolated from the seeds of safflower and has antioxidative, anti-atherogenic and anti-inflammatory properties. N-(p-Coumaroyl) Serotonin inhibits PDGF-induced on phosphorylation of PDGF receptor and Ca2+ release from sarcoplasmic reticulum[1]. N-(p-Coumaroyl) Serotonin ameliorates atherosclerosis and distensibility of the aortic wall in vivo and is usually used for the atherosclerosis research[2].
Pinoresinol
4-[6-(4-Hydroxy-3-methoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxyphenol is a natural product found in Zanthoxylum riedelianum, Forsythia suspensa, and other organisms with data available. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].
(2S,2'S,3S,3'R,4S)-3,4',5,7-Tetrahydroxyflavan(2->7,4->8)-3,4',5,7-tetrahydroxyflavan
(2S,2R,3S,3S,4S)-3,4,5,7-Tetrahydroxyflavan(2->7,4->8)-3,4,5,7-tetrahydroxyflavan is found in fruits. (2S,2R,3S,3S,4S)-3,4,5,7-Tetrahydroxyflavan(2->7,4->8)-3,4,5,7-tetrahydroxyflavan is a constituent of Prunus armeniaca (apricot). (2S,2S,3S,3R,4S)-3,4,5,7-Tetrahydroxyflavan(2->7,4->8)-3,4,5,7-tetrahydroxyflavan is a flavonoid oligomer.
Proanthocyanidin A5
Proanthocyanidin A5 is a flavonoid oligomer. Proanthocyanidin A5 is a natural product found in Prunus spinosa with data available. Proanthocyanidin A5 is found in alcoholic beverages. Proanthocyanidin A5 is isolated from sloe (Prunus spinosa).
Albanol B
Albanol B is a member of benzofurans. Albanol B is a natural product found in Morus lhou, Morus mongolica, and other organisms with data available. Albanol B is found in fruits. Albanol B is a constituent of bark of white mulberry Morus alba (famine food)
2',4'-Dihydroxy-6'-methoxyacetophenone
2,4-Dihydroxy-6-methoxyacetophenone is an aromatic ketone. 2,4-Dihydroxy-6-methoxyacetophenone is a natural product found in Artemisia oliveriana, Kniphofia foliosa, and other organisms with data available. 2,4-Dihydroxy-6-methoxyacetophenone is found in herbs and spices. 2,4-Dihydroxy-6-methoxyacetophenone is a constituent of Artemisia sp. Constituent of Artemisia species 2,4-Dihydroxy-6-methoxyacetophenone is found in herbs and spices.
3-(2,4-Dihydroxyphenyl)propanoic acid
3-(2,4-Dihydroxyphenyl)propanoic acid belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid. 3-(2,4-Dihydroxyphenyl)propanoic acid is an extremely weak basic (essentially neutral) compound (based on its pKa). BioTransformer predicts that 3-(2,4-dihydroxyphenyl)propanoic acid is a product of 3-(2,4-dihydroxyphenyl)prop-2-enoic acid metabolism via a reduction-of-alpha-beta-unsaturated-compounds-pattern1 reaction occurring in human gut microbiota and catalyzed by the abkar1 enzyme (PMID: 30612223). 3-(2,4-Dihydroxyphenyl)propanoic acid (DPPacid) is a potent and competitive tyrosinase inhibitor, inhibits L-Tyrosine and DL-DOPA with an IC50 and a Ki of 3.02 μM and 11.5 μM, respectively[1]. 3-(2,4-Dihydroxyphenyl)propanoic acid (DPPacid) is a potent and competitive tyrosinase inhibitor, inhibits L-Tyrosine and DL-DOPA with an IC50 and a Ki of 3.02 μM and 11.5 μM, respectively[1].
Dihydrocurcumin
Dihydrocurcumin is a beta-diketone that is curcumin in which one of the double bonds has been reduced to a single bond. It is functionally related to a curcumin. (1E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hept-1-ene-3,5-dione is a natural product found in Curcuma longa, Curcuma xanthorrhiza, and Aframomum letestuanum with data available. Dihydrocurcumin is found in herbs and spices. Dihydrocurcumin is a constituent of Curcuma longa (turmeric) A beta-diketone that is curcumin in which one of the double bonds has been reduced to a single bond. Constituent of Curcuma longa (turmeric). Dihydrocurcumin is found in turmeric and herbs and spices. Dihydrocurcumin, a major metabolites of curcumin, reduces lipid accumulation and oxidative stress. Dihydrocurcumin regulates mRNA and protein expression levels of SREBP-1C, PNPLA3 and PPARα, increases protein expression levels of pAKT and PI3K, and reduced the levels of cellular NO and ROS via Nrf2 signaling pathways[1]. Dihydrocurcumin, a major metabolites of curcumin, reduces lipid accumulation and oxidative stress. Dihydrocurcumin regulates mRNA and protein expression levels of SREBP-1C, PNPLA3 and PPARα, increases protein expression levels of pAKT and PI3K, and reduced the levels of cellular NO and ROS via Nrf2 signaling pathways[1]. Dihydrocurcumin, a major metabolites of curcumin, reduces lipid accumulation and oxidative stress. Dihydrocurcumin regulates mRNA and protein expression levels of SREBP-1C, PNPLA3 and PPARα, increases protein expression levels of pAKT and PI3K, and reduced the levels of cellular NO and ROS via Nrf2 signaling pathways[1].
5-Heptadecyl-1,3-benzenediol
5-heptadecylresorcinol is a 5-alkylresorcinol that is resorcinol which is substituted by a heptadecyl group at position 5. It is found in wheat bran. It has a role as an antineoplastic agent and a plant metabolite. 5-Heptadecylbenzene-1,3-diol is a natural product found in Merulius incarnatus, Avena sativa, and other organisms with data available. Isolated from cereal grains. 5-Heptadecyl-1,3-benzenediol is found in many foods, some of which are oat, corn, breakfast cereal, and barley. 5-Heptadecyl-1,3-benzenediol is found in barley. 5-Heptadecyl-1,3-benzenediol is isolated from cereal grains. 5-Heptadecylresorcinol (AR-C17), a phenolic lipid component, is also an orally active mitochondrial protector. 5-Heptadecylresorcinol improves mitochondrial function via sirtuin3 signaling pathway, thus alleviates endothelial cell damage and apoptosis. 5-Heptadecylresorcinol induces sirtuin3-mediated autophagy. 5-Heptadecylresorcinol reduces the atherosclerotic plaques in the aortic root region of mice heart. 5-Heptadecylresorcinol can be used for research of atherosclerosis prevention and obesity[1][2].
Moracin P
Moracin P is a member of benzofurans. Moracin P is a natural product found in Morus alba with data available. Moracin P is found in fruits. Moracin P is a constituent of Morus alba (white mulberry). Constituent of Morus alba (white mulberry). Moracin P is found in mulberry and fruits. Moracin P is a 2-arylbenzofuran isolated from the Mori Cortex Radicis. Moracin P exhibits potent in vitro inhibitory activity against hypoxia-inducible factor (HIF-1). Moracin P reduces oxygen-glucose deprivation (OGD)-induced reactive oxygen species (ROS) production. Moracin P has neuroprotective and anti-inflammatory effects[1][2][3]. Moracin P is a 2-arylbenzofuran isolated from the Mori Cortex Radicis. Moracin P exhibits potent in vitro inhibitory activity against hypoxia-inducible factor (HIF-1). Moracin P reduces oxygen-glucose deprivation (OGD)-induced reactive oxygen species (ROS) production. Moracin P has neuroprotective and anti-inflammatory effects[1][2][3].
Moracin O
Moracin O is a member of benzofurans. Moracin O is a natural product found in Morus cathayana, Morus lhou, and Morus alba with data available. Moracin O is found in fruits. Moracin O is a constituent of Morus alba (white mulberry). Constituent of Morus alba (white mulberry). Moracin O is found in fruits. Moracin O is a 2-arylbenzofuran isolated from the Morus alba Linn. . Moracin O exhibits potent in vitro inhibitory activity against hypoxia-inducible factor (HIF-1). Moracin O reduces oxygen-glucose deprivation (OGD)-induced reactive oxygen species (ROS) production. Moracin O has neuroprotective and anti-inflammatory effects[1][2][3]. Moracin O is a 2-arylbenzofuran isolated from the Morus alba Linn. . Moracin O exhibits potent in vitro inhibitory activity against hypoxia-inducible factor (HIF-1). Moracin O reduces oxygen-glucose deprivation (OGD)-induced reactive oxygen species (ROS) production. Moracin O has neuroprotective and anti-inflammatory effects[1][2][3]. Moracin O is a 2-arylbenzofuran isolated from the Morus alba Linn. . Moracin O exhibits potent in vitro inhibitory activity against hypoxia-inducible factor (HIF-1). Moracin O reduces oxygen-glucose deprivation (OGD)-induced reactive oxygen species (ROS) production. Moracin O has neuroprotective and anti-inflammatory effects[1][2][3].
Moracin C
Moracin C is a member of benzofurans. Moracin C is a natural product found in Morus mesozygia, Morus alba var. multicaulis, and other organisms with data available. Isolated from Morus alba (white mulberry) infected with Fusarium solani. Moracin C is found in mulberry and fruits. Moracin C is found in fruits. Moracin C is isolated from Morus alba (white mulberry) infected with Fusarium solani. Moracin C, a natural product, is an anti-inflammatory agent. Moracin C inhibits LPS-activated reactive oxygen species (ROS) and nitric oxide (NO) release from cells[1]. Moracin C, a natural product, is an anti-inflammatory agent. Moracin C inhibits LPS-activated reactive oxygen species (ROS) and nitric oxide (NO) release from cells[1].
(R)-2-Feruloyl-1-(4-Hydroxyphenyl)-1,2-ethanediol
(R)-2-Feruloyl-1-(4-Hydroxyphenyl)-1,2-ethanediol is found in herbs and spices. (R)-2-Feruloyl-1-(4-Hydroxyphenyl)-1,2-ethanediol is a constituent of Coriandrum sativum (coriander) (R)-2-Feruloyl-1-(4-Hydroxyphenyl)-1,2-ethanediol is a hydroxycinnamic acid.
Mulberrofuran Q
Mulberrofuran Q is a member of benzofurans. Mulberrofuran Q is a natural product found in Morus mongolica with data available. Mulberrofuran Q is found in fruits. Mulberrofuran Q is a constituent of Morus alba (white mulberry). Constituent of Morus alba (white mulberry). Mulberrofuran Q is found in fruits.
(4-Hydroxy-3-methoxyphenyl)ethanol
(4-Hydroxy-3-methoxyphenyl)ethanol is a member of methoxybenzenes and a member of phenols. Homovanillyl alcohol is a natural product found in Saussurea medusa, Urtica dioica, and other organisms with data available. Homovanillyl alcohol is a metabolite found in or produced by Saccharomyces cerevisiae. Metabolite of serotonin and norepinephrine. (4-Hydroxy-3-methoxyphenyl)ethanol is isolated from various plant species (4-Hydroxy-3-methoxyphenyl)ethanol is a constituent of mandibular secretion of honeybees [CCD]. Isolated from various plant subspecies Constituent of mandibular secretion of honeybees [CCD] Homovanillyl alcohol is a biological metabolite of Hydroxytyrosol. Hydroxytyrosol is a phenolic compound that is present in virgin olive oil (VOO) and wine. Homovanillyl alcohol protects red blood cells (RBCs) from oxidative injury and has protective effect on cardiovascular disease[1][2]. Homovanillyl alcohol is a biological metabolite of Hydroxytyrosol. Hydroxytyrosol is a phenolic compound that is present in virgin olive oil (VOO) and wine. Homovanillyl alcohol protects red blood cells (RBCs) from oxidative injury and has protective effect on cardiovascular disease[1][2].
N-cis-Caffeoyltyramine
N-cis-Caffeoyltyramine is a member of catechols. n-Caffeoyltyramine is a natural product found in Lycium chinense, Limoniastrum guyonianum, and other organisms with data available. See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Cocoa (part of) ... View More ... N-cis-Caffeoyltyramine is found in fruits. N-cis-Caffeoyltyramine is an alkaloid from stems of cherimoya (Annona cherimola). Alkaloid from stems of cherimoya (Annona cherimola). N-cis-Caffeoyltyramine is found in fruits. N-TRANS-CaffeoyLtyramine is an effective inflammatory response regulator, which has antioxidant activity and anticoagulation effects[1]. N-TRANS-CaffeoyLtyramine is an effective inflammatory response regulator, which has antioxidant activity and anticoagulation effects[1].
Cyclocurcumin
Cyclocurcumin is found in herbs and spices. Cyclocurcumin is a constituent of the rhizome of Curcuma longa (turmeric). Constituent of the rhizome of Curcuma longa (turmeric). Cyclocurcumin is found in turmeric and herbs and spices. Cyclocurcumin is a diarylheptanoid.
Malabaricone C
Malabaricone C is an antimicrobial resorcinol found in nutmeg, the dried seed covers of Myristica fragrans and Myristica malabarica (rampatri). This Compound exhibits strong antifungal and antibacterial activity. (PMID 1955885, 10501006). Malabaricone C a diarylnonanoid, shows strong scavenging activity. (PMID 16104820). Malabaricone C is an antimicrobial resorcinol found in nutmeg, the dried seed covers of Myristica fragrans and Myristica malabarica (rampatri). This Compound exhibits strong antifungal and antibacterial activity. (PMID 1955885, 10501006) Malabaricone C is a butanone. It has a role as a metabolite. Malabaricone C is a natural product found in Myristica cinnamomea, Myristicaceae, and other organisms with data available. A natural product found in Myristica cinnamomea. Malabaricone C is a natural sphingomyelin synthase (SMS) inhibitor with IC50s of 3 and 1.5 μM for SMS 1 and 2, respectively[1]. Malabaricone C is a natural sphingomyelin synthase (SMS) inhibitor with IC50s of 3 and 1.5 μM for SMS 1 and 2, respectively[1]. Malabaricone C is a natural sphingomyelin synthase (SMS) inhibitor with IC50s of 3 and 1.5 μM for SMS 1 and 2, respectively[1].
Emodinanthranol
Emodin anthrone is a member of the class of anthracenones that is anthracen-9(10H)-one which carries a methyl group at position 6 and hydroxy groups at positions 1, 3 and 8, respectively. It is an intermediate precursor in the synthesis of hypericin. It has a role as a fungal metabolite. It is an anthracenone and a member of phenols. Emodin anthrone is a natural product found in Rhamnus prinoides, Paeonia emodi, and Rumex acetosa with data available. A member of the class of anthracenones that is anthracen-9(10H)-one which carries a methyl group at position 6 and hydroxy groups at positions 1, 3 and 8, respectively. It is an intermediate precursor in the synthesis of hypericin. Isolated from Hypericum perforatum (St. Johns wort). Emodinanthrone is found in many foods, some of which are alcoholic beverages, tea, herbs and spices, and garden rhubarb. Emodinanthranol is found in alcoholic beverages. Emodinanthranol is isolated from Hypericum perforatum (St. Johns wort).
2',5'-Dihydroxyacetophenone
2,5-Dihydroxyacetophenone is an aromatic ketone. 2,5-Dihydroxyacetophenone is a natural product found in Cynanchum wilfordii and Ganoderma applanatum with data available. 2,5-Dihydroxyacetophenone is a mixture of dihydroxyacetophenone isomers is used in food flavouring. Potential component of FEMA 366 2,5-Dihydroxyacetophenone, isolated from Rehmannia glutinosa, inhibits the production of inflammatory mediators in activated macrophages by blocking the ERK1/2 and NF-κB signaling pathways[1]. 2,5-Dihydroxyacetophenone, isolated from Rehmannia glutinosa, inhibits the production of inflammatory mediators in activated macrophages by blocking the ERK1/2 and NF-κB signaling pathways[1]. 2,5-Dihydroxyacetophenone, isolated from Rehmannia glutinosa, inhibits the production of inflammatory mediators in activated macrophages by blocking the ERK1/2 and NF-κB signaling pathways[1].
Hamamelitannin
Hamamelitannin is found in nuts. Hamamelitannin is isolated from Castanea sativa (sweet chestnut). Isolated from Castanea sativa (sweet chestnut). Hamamelitannin is found in nuts.
alpha-Viniferin
Constituent of Vitis vinifera (wine grape). alpha-Viniferin is found in alcoholic beverages, fruits, and common grape. alpha-Viniferin is found in alcoholic beverages. alpha-Viniferin is a constituent of Vitis vinifera (wine grape) α-Viniferin is an anti-inflammatory compound from Caragana chamlagu root[1].
Safflor Yellow B
Pigment from the flowers of Carthamus tinctorius (safflower). Safflor Yellow B is found in safflower, fats and oils, and herbs and spices. Safflor Yellow B is found in fats and oils. Safflor Yellow B is a pigment from the flowers of Carthamus tinctorius (safflower).
(Z)-Resveratrol 4'-glucoside
(Z)-Resveratrol 4-glucoside is found in alcoholic beverages. (Z)-Resveratrol 4-glucoside is a constituent of the wine grape (Vitis vinifera) Constituent of the wine grape (Vitis vinifera). (Z)-Resveratrol 4-glucoside is found in alcoholic beverages and fruits.
Sennidin B
Anthraquinone derivative, a stereoisomer of sennidin A, stimulates glucose incoporation into adipocytes in rats, but the activity of sennidin B is lower than sennidin A. [HMDB] Anthraquinone derivative, a stereoisomer of sennidin A, stimulates glucose incoporation into adipocytes in rats, but the activity of sennidin B is lower than sennidin A.
Homomangiferin
Homomangiferin is found in fruits. Homomangiferin is a constituent of Mangifera indica (mango). Constituent of Mangifera indica (mango). Homomangiferin is found in fruits.
cis-Mulberroside A
cis-Mulberroside A is found in fruits. cis-Mulberroside A is a constituent of Morus alba (white mulberry)
(E)-Oxyresveratrol 3'-O-b-D-glucoside
(E)-Oxyresveratrol 3-O-b-D-glucoside is found in fruits. (E)-Oxyresveratrol 3-O-b-D-glucoside is isolated from Morus alba (white mulberry). Isolated from Morus alba (white mulberry). (E)-Oxyresveratrol 3-O-b-D-glucoside is found in fruits.
Hydroxytyrosol Acetate
Hydroxytyrosol acetate belongs to tyrosols and derivatives class of compounds. Those are compounds containing a hydroxyethyl group attached to the C4 carbon of a phenol group. Hydroxytyrosol acetate is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Hydroxytyrosol acetate can be found in olive, which makes hydroxytyrosol acetate a potential biomarker for the consumption of this food product. Hydroxytyrosol acetate is found in the olive oil with an antioxidant activity. Hydroxytyrosol acetate had a weaker DPPH radical scavenging activity?than hydroxytyrosol[1]. Hydroxytyrosol acetate is found in the olive oil with an antioxidant activity. Hydroxytyrosol acetate had a weaker DPPH radical scavenging activity?than hydroxytyrosol[1].
Dimethyl lithospermate B
3,4-Dihydroxybenzaldehyde
Protocatechualdehyde, also known as rancinamycin iv or 1,2-dihydroxy-4-formylbenzene, is a member of the class of compounds known as hydroxybenzaldehydes. Hydroxybenzaldehydes are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. Protocatechualdehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Protocatechualdehyde is an almond, bitter, and dry tasting compound and can be found in a number of food items such as plains prickly pear, mugwort, silver linden, and cardamom, which makes protocatechualdehyde a potential biomarker for the consumption of these food products. Protocatechualdehyde can be found primarily in urine. This molecule can be used as a precursor in the vanillin synthesis by biotransformation by cell cultures of Capsicum frutescens, a type of Chili pepper. It is also found in the mushroom Phellinus linteus . 3,4-dihydroxybenzaldehyde is a dihydroxybenzaldehyde. Also known as protocatechuic aldehyde, protocatechualdehyde is a naturally-occuring phenolic aldehyde that is found in barley, green cavendish bananas, grapevine leaves and root of the herb S. miltiorrhiza. Protocatechualdehyde possesses antiproliferative and pro-apoptotic properties against human breast cancer cells and colorectal cancer cells by reducing the expression of pro-oncogenes β-catenin and cyclin D1. 3,4-Dihydroxybenzaldehyde is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. See also: Black Cohosh (part of). 3,4-Dihydroxybenzaldehyde, also known as protocatechuic aldehyde, is a phenolic aldehyde, a compound released from cork stoppers into wine. This molecule can be used as a precursor in vanillin synthesis via biotransformation by cell cultures of Capsicum frutescens, a type of chili pepper. It is also found in the mushroom Phellinus linteus (Wikipedia). D006401 - Hematologic Agents > D000925 - Anticoagulants Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1]. Protocatechualdehyde (Catechaldehyde), a natural polyphenol compound isolated from the roots of radix Salviae Miltiorrhizae, is associated with a wide variety of biological activities and has been widely used in medicine as an antioxidant, anti-aging, an antibacterial and anti-inflammatory agent[1].
Hydroxychavicol
4-Allylpyrocatechol is a natural product found in Dracaena draco, Piper retrofractum, and other organisms with data available. 4-Allylcatechol (4-Allylpyrocatechol, Hydroxychavicol) is an intermediate to synthetic safrole. 4-Allylcatechol (4-Allylpyrocatechol, Hydroxychavicol) is an intermediate to synthetic safrole.
dehydroeffusol
5-Ethenyl-1-methylphenanthrene-2,7-diol is a natural product found in Juncus setchuensis, Juncus effusus, and Juncus acutus with data available. Dehydroeffusol is a phenanthrene from medicinal herb Juncus effuses. Dehydroeffusol inhibits gastric cancer cell growth and tumorigenicity by selectively inducing tumor-suppressive endoplasmic reticulum stress and a moderate apoptosis. It shows very low toxicity[1][2]. Dehydroeffusol is a phenanthrene from medicinal herb Juncus effuses. Dehydroeffusol inhibits gastric cancer cell growth and tumorigenicity by selectively inducing tumor-suppressive endoplasmic reticulum stress and a moderate apoptosis. It shows very low toxicity[1][2].
Gentisin
Gentisin is a member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1 and 7 and a methoxy group at position 3. It has a role as a plant metabolite. It is a member of xanthones, a polyphenol and an aromatic ether. Gentisin is a natural product found in Pterocarpus santalinus, Gentiana orbicularis, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). A member of the class of xanthones that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1 and 7 and a methoxy group at position 3. Gentisin is found in alcoholic beverages. Gentisin is a pigment from root of Gentiana lutea (yellow gentian
1,7-Dihydroxy-2,3-methylenedioxyxanthone
1,7-Dihydroxy-2,3-methylenedioxyxanthone is a natural product found in Polygala fallax, Polygala arillata, and other organisms with data available.
Alkannin
Alkannin is a hydroxy-1,4-naphthoquinone. Alkannin is a natural product found in Arnebia hispidissima, Alkanna cappadocica, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3].
Brevifolincarboxylic acid
Brevifolincarboxylic acid is a natural product found in Melaleuca leucadendra, Euphorbia maculata, and other organisms with data available. Brevifolincarboxylic acid is extracted from Polygonum capitatum[1], has inhibitory effect on the aryl hydrocarbon receptor (AhR)[2]. Brevifolincarboxylic acid is an α-glucosidase inhibitor with an IC50 of 323.46 μM[3]. Brevifolincarboxylic acid is extracted from Polygonum capitatum[1], has inhibitory effect on the aryl hydrocarbon receptor (AhR)[2]. Brevifolincarboxylic acid is an α-glucosidase inhibitor with an IC50 of 323.46 μM[3].
3,3′-Di-O-methylellagic acid
3,3-Di-O-methylellagic acid is a natural product found in Kunzea ambigua, Lagerstroemia speciosa, and other organisms with data available.
Rosmanol
Rosmanol is a natural product found in Salvia tomentosa, Lepechinia salviae, and other organisms with data available. Rosmanol could inhibit the oxidation of low density lipoprotein (LPL) and significantly inhibit lipopolysaccharide induced iNOS and COX-2 expression, with anti-inflammatory effect. Rosmanol could inhibit the oxidation of low density lipoprotein (LPL) and significantly inhibit lipopolysaccharide induced iNOS and COX-2 expression, with anti-inflammatory effect.
YS2A8X6SX2
Octahydrocurcumin is a natural product found in Zingiber officinale with data available. Octahydrocurcumin is a hydrogenated derivative of curcumin and a metabolite of curcumin. Octahydrocurcumin is a hydrogenated derivative of curcumin and a metabolite of curcumin.
THSG cpd
(E)-2,3,5,4-tetrahydroxystilbene-2-O-beta-D-glucoside is a stilbenoid that is trans-stilbene which has been substituted by hydroxy groups at positions 2, 3, 5, and 4, and in which the hydroxy group at positon 2 has then been converted to the corresponding the beta-D-glucoside. It has a role as an antioxidant, a cyclooxygenase 2 inhibitor, an anti-inflammatory agent, a cardioprotective agent, a platelet aggregation inhibitor and an apoptosis inhibitor. It is a stilbenoid, a beta-D-glucoside and a member of resorcinols. (2S,3R,4S,5S,6R)-2-[2,4-dihydroxy-6-[(E)-2-(4-hydroxyphenyl)ethenyl]phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol is a natural product found in Euphorbia marschalliana, Hopea reticulata, and other organisms with data available. See also: Reynoutria multiflora root (part of). 2,3,4',5-tetrahydroxystilbene 2-OD-glucoside is isolated from the roots of Polygonaceae species and inhibits the formation of 5-HETE, HHT and thromboxane B2. 2,3,5,4'-Tetrahydroxystilbene 2-O-β-D-glucoside isolats from the roots of Polygonaceae species, inhibits the formation of 5-HETE, HHT and thromboxane B2. 2,3,5,4'-Tetrahydroxystilbene 2-O-β-D-glucoside has hypotensive, anti-ageing, anti-inflammatory, hypolipidemic, cardioprotective, and neuroprotective actions[1][2]. 2,3,4',5-tetrahydroxystilbene 2-OD-glucoside is isolated from the roots of Polygonaceae species and inhibits the formation of 5-HETE, HHT and thromboxane B2.
Cowaxanthone B
Cowaxanthone B is a natural product found in Garcinia cowa and Cratoxylum arborescens with data available.
Cratoxylone
Cratoxylone is a natural product found in Garcinia cowa, Pentadesma butyracea, and other organisms with data available.
O-Methylmangiferin
7-O-Methylmangiferin is a natural product found in Iris germanica, Polygala tenuifolia, and other organisms with data available.
Lindleyin
Isolindleyin is a glycoside. CID 10390322 is a natural product found in Rheum palmatum with data available. Lindleyin is a glycoside. Lindleyin is a natural product found in Rheum officinale, Rheum palmatum, and Rheum with data available.
3,5-CQA
3,5-di-O-caffeoyl quinic acid is a carboxylic ester that is the diester obtained by the condensation of the hydroxy groups at positions 3 and 5 of (-)-quinic acid with the carboxy group of trans-caffeic acid. Isolated from Brazilian propolis and Suaeda glauca, it exhibits hepatoprotective and cytotoxic activities. It has a role as a metabolite, a hepatoprotective agent and an antineoplastic agent. It is a cyclitol carboxylic acid and a carboxylic ester. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. Isochlorogenic acid A is a natural product found in Psiadia viscosa, Dipsacus inermis, and other organisms with data available. A carboxylic ester that is the diester obtained by the condensation of the hydroxy groups at positions 3 and 5 of (-)-quinic acid with the carboxy group of trans-caffeic acid. Isolated from Brazilian propolis and Suaeda glauca, it exhibits hepatoprotective and cytotoxic activities. D004791 - Enzyme Inhibitors > D019429 - Integrase Inhibitors > D019428 - HIV Integrase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents 3,5-O-Dicaffeoylquinic acid reverses Trimethyltin-induced learning and memory deficits[1]. 3,5-O-Dicaffeoylquinic acid reverses Trimethyltin-induced learning and memory deficits[1]. Isochlorogenic acid A (3,5-Dicaffeoylquinic acid) is a natural phenolic acid with antioxidant and anti-inflammatory activities . Isochlorogenic acid A (3,5-Dicaffeoylquinic acid) is a natural phenolic acid with antioxidant and anti-inflammatory activities .
Hypocrellin C
Hypocrellin b is a natural product found in Shiraia bambusicola with data available. Hypocrellin B, a pigment isolated from the fungi Hypocrella bambusae and Shiraia bambusicola, is an apoptosis inducer. Hypocrellin B can be used as a photosensitizer for photodynamic therapy of cancer. Hypocrellin B also has antimicrobial and antileishmanial activities[1][2][3]. Hypocrellin B, a pigment isolated from the fungi Hypocrella bambusae and Shiraia bambusicola, is an apoptosis inducer. Hypocrellin B can be used as a photosensitizer for photodynamic therapy of cancer. Hypocrellin B also has antimicrobial and antileishmanial activities[1][2][3].
Hypocrellin
Hypocrellin is a natural product found in Parastagonospora nodorum with data available. Hypocrellin A, a naturally occurring PKC inhibitor, has many biological and pharmacological properties, such as antitumour, antiviral, antibacterial, and antileishmanial activities. Hypocrellin A is a promising photosensitizer for anticancer photodynamic therapy (PDT)[1][2][3][4]. Hypocrellin A, a naturally occurring PKC inhibitor, has many biological and pharmacological properties, such as antitumour, antiviral, antibacterial, and antileishmanial activities. Hypocrellin A is a promising photosensitizer for anticancer photodynamic therapy (PDT)[1][2][3][4].
Polygalaxanthone
Polygalaxanthone III is a natural product found in Polygala tenuifolia and Polygala sibirica with data available. Polygalaxanthone III is extracted from polygala tenuifolia wild, has inhibitory effect towards CYP450 enzyme. Polygalaxanthone III inhibits chlorzoxazone 6-hydroxylation catalyzed by CYP2E1 with an IC50 of 50.56 μM[1]. Polygalaxanthone III is extracted from polygala tenuifolia wild, has inhibitory effect towards CYP450 enzyme. Polygalaxanthone III inhibits chlorzoxazone 6-hydroxylation catalyzed by CYP2E1 with an IC50 of 50.56 μM[1].
polygalaxanthone XI
Polygalaxanthone XI is a natural product found in Polygala tenuifolia with data available. Polygalaxanthone XI, a xanthone glycoside isolated from the cortexes of Polygala tenuifolia, can be used in the study of expectorant, and tranquilizing agent[1]. Polygalaxanthone XI, a xanthone glycoside isolated from the cortexes of Polygala tenuifolia, can be used in the study of expectorant, and tranquilizing agent[1].
gosspyl acetate
R-(-)-Gossypol Acetic Acid is the orally bioavailable solvate of the R-(-) enantiomer of gossypol and acetic acid with potential antineoplastic activity. As a BH3 mimetic, R-(-)-gossypol binds to the hydrophobic surface binding groove BH3 of the anti-apoptotic proteins Bcl-2 and Bcl-xL, blocking their heterodimerization with pro-apoptotic members of the Bcl-2 family of proteins such as Bad, Bid, and Bim; this may result in the inhibition of tumor cell proliferation and the induction of tumor cell apoptosis. Racemic gossypol is a polyphenolic compound isolated from cottonseed. Gossypol acetic acid ((±)-Gossypol-acetic acid) binds to Bcl-xL protein and Bcl-2 protein with Kis of 0.5-0.6 μM and 0.2-0.3 mM, respectively. Gossypol acetic acid ((±)-Gossypol-acetic acid) binds to Bcl-xL protein and Bcl-2 protein with Kis of 0.5-0.6 μM and 0.2-0.3 mM, respectively.
Neomangiferin
Neomangiferin is a natural product found in Metagentiana rhodantha and Anemarrhena asphodeloides with data available. Neomangiferin is a natural C-glucosyl xanthone isolated from m the dried rhizome of Anemarrhena asphodeloides. Neomangiferin has significant therapeutic effects on high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in rats[1]. Neomangiferin is a natural C-glucosyl xanthone isolated from m the dried rhizome of Anemarrhena asphodeloides. Neomangiferin has significant therapeutic effects on high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in rats[1].
gambogenic acid
Gambogenic acid is an active ingredient in gamboge, with anticancer activity. Gambogenic acid acts as an effective inhibitor of EZH2, specifically and covalently binds to Cys668 within the EZH2-SET domain, and induces EZH2 ubiquitination[1]. Gambogenic acid is an active ingredient in gamboge, with anticancer activity. Gambogenic acid acts as an effective inhibitor of EZH2, specifically and covalently binds to Cys668 within the EZH2-SET domain, and induces EZH2 ubiquitination[1].
Agrimol B
Agrimol B, a polyphenol, is an orally active and potent SIRT1 activator. Agrimol B shows anti-adipogenic and anticancer activity. Agrimol B shows antibacterial activity against plant pathogens. Agrimol B dramatically inhibits 3T3-L1 adipocyte differentiation by reducing PPARγ, C/EBPα, FAS, UCP-1, and apoE expression. The action of Agrimol B on the cancer cells is likely derived from its effect on c-MYC, SKP2 and p27[1][2][3]. Agrimol B, a polyphenol, is an orally active and potent SIRT1 activator. Agrimol B shows anti-adipogenic and anticancer activity. Agrimol B shows antibacterial activity against plant pathogens. Agrimol B dramatically inhibits 3T3-L1 adipocyte differentiation by reducing PPARγ, C/EBPα, FAS, UCP-1, and apoE expression. The action of Agrimol B on the cancer cells is likely derived from its effect on c-MYC, SKP2 and p27[1][2][3]. Agrimol B, a polyphenol, is an orally active and potent SIRT1 activator. Agrimol B shows anti-adipogenic and anticancer activity. Agrimol B shows antibacterial activity against plant pathogens. Agrimol B dramatically inhibits 3T3-L1 adipocyte differentiation by reducing PPARγ, C/EBPα, FAS, UCP-1, and apoE expression. The action of Agrimol B on the cancer cells is likely derived from its effect on c-MYC, SKP2 and p27[1][2][3]. Agrimol B, a polyphenol, is an orally active and potent SIRT1 activator. Agrimol B shows anti-adipogenic and anticancer activity. Agrimol B shows antibacterial activity against plant pathogens. Agrimol B dramatically inhibits 3T3-L1 adipocyte differentiation by reducing PPARγ, C/EBPα, FAS, UCP-1, and apoE expression. The action of Agrimol B on the cancer cells is likely derived from its effect on c-MYC, SKP2 and p27[1][2][3].
Dryocrassin
Isorhapontigenin
Isorhapontigenin is a stilbenoid. Isorhapontigenin is a natural product found in Smilax corbularia, Aiphanes horrida, and other organisms with data available. Isorhapontigenin, an orally bioavailable dietary polyphenol isolated from the Chinese herb Gnetum cleistostachyum, displays anti-inflammatory effects. Isorhapontigenin induces autophagy and inhibits invasive bladder cancer formation[1][2]. Isorhapontigenin, an orally bioavailable dietary polyphenol isolated from the Chinese herb Gnetum cleistostachyum, displays anti-inflammatory effects. Isorhapontigenin induces autophagy and inhibits invasive bladder cancer formation[1][2].
Orsellinic
2,4-dihydroxy-6-methylbenzoic acid ethyl ester is a 4-hydroxybenzoate ester. Ethyl 2,4-dihydroxy-6-methylbenzoate is a natural product found in Parmotrema reticulatum, Parmotrema tinctorum, and other organisms with data available. Ethyl orsellinate is a lichen metabolite and a derivative of lecanoric acid with antiproliferative and antitumour activities[1]. Ethyl Orsellinate is against A. salina for the cytotoxic activity with an LC50 of 495 μM[2]. Ethyl orsellinate is a lichen metabolite and a derivative of lecanoric acid with antiproliferative and antitumour activities[1]. Ethyl Orsellinate is against A. salina for the cytotoxic activity with an LC50 of 495 μM[2].
Mulberroside_A
Cis-Mulberroside A is a glycoside and a stilbenoid. Mulberroside A is a natural product found in Morus lhou, Schoenocaulon officinale, and other organisms with data available. Mulberroside A is one of the main bioactive constituent in mulberry (Morus alba L.)[1]. Mulberroside A decreases the expressions of TNF-α, IL-1β, and IL-6 and inhibits the activation of NALP3, caspase-1, and NF-κB and the phosphorylation of ERK, JNK, and p38, exhibiting anti-inflammatory antiapoptotic effects[2]. Mulberroside A shows inhibitory activity against mushroom tyrosinase with an IC50 of 53.6 μM[3]. Mulberroside A is one of the main bioactive constituent in mulberry (Morus alba L.)[1]. Mulberroside A decreases the expressions of TNF-α, IL-1β, and IL-6 and inhibits the activation of NALP3, caspase-1, and NF-κB and the phosphorylation of ERK, JNK, and p38, exhibiting anti-inflammatory antiapoptotic effects[2]. Mulberroside A shows inhibitory activity against mushroom tyrosinase with an IC50 of 53.6 μM[3].
Propyl gallate
Propyl gallate appears as fine white to creamy-white crystalline powder. Odorless or with a faint odor. Melting point 150 °C. Insoluble in water. Slightly bitter taste.
N-propyl gallate is a trihydroxybenzoic acid.
Propyl Gallate is under investigation in clinical trial NCT01450098 (A Study of LY2484595 in Healthy Subjects).
Propyl gallate is a natural product found in Alchornea glandulosa, Mangifera indica, and Zea mays with data available.
Propyl gallate is found in corn. Propyl gallate is an antioxidant used in foods especially animal fats and vegetable oils. Synergistic with other antioxidants such as Butylated hydroxyanisole
Protosappanin
Protosappanin B is a phenolic compound extracted from Caesalpinia sappan. Anti-cancer activity[1]. Protosappanin B induces apoptosis and causes G1 cell cycle arrest in human bladder cancer cells[2]. Protosappanin B is a phenolic compound extracted from Caesalpinia sappan. Anti-cancer activity[1]. Protosappanin B induces apoptosis and causes G1 cell cycle arrest in human bladder cancer cells[2].
Rhapontigenin
Rhapontigenin is a stilbenoid. Rhapontigenin is a natural product found in Rheum undulatum, Gnetum hainanense, and other organisms with data available. Rhapontigenin is a natural analog of resveratrol with anticancer, antioxidant, antifungal and antibacterial activities. Rhapontigenin is amechanism-based, potent and selective cytochrome P450 1A1?inactivator (IC50 ?= 400 nM). Rhapontigenin exhibits 400-fold and 23-fold selectivity for P450 1A1 over P450 1A2 and P450 1B1, respectively[1]. Rhapontigenin is a natural analog of resveratrol with anticancer, antioxidant, antifungal and antibacterial activities. Rhapontigenin is amechanism-based, potent and selective cytochrome P450 1A1?inactivator (IC50 ?= 400 nM). Rhapontigenin exhibits 400-fold and 23-fold selectivity for P450 1A1 over P450 1A2 and P450 1B1, respectively[1].
Ethyl_protocatechuate
Ethyl 3,4-dihydroxybenzoate is an ethyl ester resulting from the formal condensation of the carboxy group of 3,4-dihydroxybenzoic acid with ethanol. It is the anti-oxidative component of peanut seed testa. It has a role as an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor, an antibacterial agent, an antioxidant, an apoptosis inducer and a plant metabolite. It is an ethyl ester and a member of catechols. It is functionally related to a 3,4-dihydroxybenzoic acid. Ethyl 3,4-dihydroxybenzoate is a natural product found in Liatris elegans, Xylocarpus granatum, and other organisms with data available. An ethyl ester resulting from the formal condensation of the carboxy group of 3,4-dihydroxybenzoic acid with ethanol. It is the anti-oxidative component of peanut seed testa. Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect[1][2][3][4]. Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect[1][2][3][4]. Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect[1][2][3][4].
trans-Piceid
Trans-piceid is a stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. It has a role as a metabolite, a potassium channel modulator, an anti-arrhythmia drug, a hepatoprotective agent, an antioxidant, a nephroprotective agent and a geroprotector. It is a stilbenoid, a polyphenol, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-resveratrol. Polydatin, or Piceid, is a natural precursor and glycoside form of resveratrol with a monocrystalline structure. While it is isolated from the bark of *Picea sitchensis* or *Polygonum cuspidatum*, polydatin may be detected in grape, peanut, hop cones, red wines, hop pellets, cocoa-containing products, chocolate products and many daily diets. Polydatin possesses anti-inflammatory, immunoregulatory, anti-oxidative and anti-tumor activities. It is shown to mediate a cytotoxic action on colorectal cancer cells by inducing cell arrest and apoptosis. Polydatin is a natural product found in Vitis rupestris, Vitis labrusca, and other organisms with data available. trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices A stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.
Tenuifoliside
Tenuifoliside B is a natural product found in Polygala tenuifolia, Polygala japonica, and Polygala sibirica with data available. Tenuifoliside B, a component isolated from Polygalae Radix, inhibits potassium cyanide (KCN)-induced hypoxia and scopolamine-induced memory impairment. Tenuifoliside B shows potential cognitive improvement and cerebral protective effects. Tenuifoliside B has potential to become an anti-AD lead compound[1][2]. Tenuifoliside B, a component isolated from Polygalae Radix, inhibits potassium cyanide (KCN)-induced hypoxia and scopolamine-induced memory impairment. Tenuifoliside B shows potential cognitive improvement and cerebral protective effects. Tenuifoliside B has potential to become an anti-AD lead compound[1][2].
Sibiricaxanthone
Sibiricaxanthone B is a member of xanthones. Sibiricaxanthone B is a natural product found in Polygala tenuifolia and Polygala sibirica with data available. Sibiricaxanthone B is a xanthone isolated from Polygala tenuifolia[1]. Sibiricaxanthone B is a xanthone isolated from Polygala tenuifolia[1].
Hirsutenone
(4E)-1,7-bis(3,4-dihydroxyphenyl)hept-4-en-3-one is a diarylheptanoid. Hirsutenone is a natural product found in Viscum cruciatum, Meistera muricarpa, and other organisms with data available.
Agrimonolide
Agrimonolide is a natural product found in Spiraea formosana and Agrimonia pilosa with data available.
Myricanol
Myricanol is a member of the class of compounds known as meta,meta-bridged biphenyls. Meta,meta-bridged biphenyls are cyclic diarylheptanoids where the two aryl groups are linked to each other by an ether group conjugated to their 3-position. Myricanol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Myricanol can be found in anise, which makes myricanol a potential biomarker for the consumption of this food product. Myricanol is a natural product found in Myrica nagi, Morella rubra, and other organisms with data available.
Ampelopsin F
Fraxamoside
Fraxamoside is a natural product found in Fraxinus americana with data available.
Norbergenin
(2S,3R,4R,4aS,10bR)-3,4,8,9,10-pentahydroxy-2-(hydroxymethyl)-3,4,4a,10b-tetrahydro-2H-pyrano[3,2-c]isochromen-6-one is a natural product found in Ardisia paniculata, Saxifraga stolonifera, and other organisms with data available. Norbergenin, the O-demethyl derivative of bergenin, shows moderate antioxidant activity (IC50 13 μM in DPPH radical scavenging; 32 μM in superoxide anion scavenging)[1]. Norbergenin, the O-demethyl derivative of bergenin, shows moderate antioxidant activity (IC50 13 μM in DPPH radical scavenging; 32 μM in superoxide anion scavenging)[1].
Grandifloroside
Shanciol B
Shanciol B is a natural product found in Pleione bulbocodioides with data available.
7,4-Dihydroxy-3-prenylflavan
(S)-2-(4-Hydroxy-3-(3-methylbut-2-en-1-yl)phenyl)chroman-7-ol is a natural product found in Broussonetia papyrifera with data available.
Neonuezhenide
Neonuezhenide is a natural product found in Ligustrum lucidum with data available.
Heveaflavone
Heveaflavone is a natural product found in Podocarpus fasciculus, Podocarpus latifolius, and other organisms with data available.
Vanicoside A
Vanicoside A is a natural product found in Persicaria pensylvanica, Persicaria perfoliata, and Persicaria bungeana with data available.
Phoyunnanin E
8-[(5-Hydroxy-7-methoxy-9,10-dihydrophenanthren-2-yl)oxy]-7-methoxy-9,10-dihydrophenanthrene-2,5-diol is a natural product found in Pholidota yunnanensis with data available.
moscatilin
Dendrophenol is a natural product found in Cymbidium aloifolium, Dendrobium fimbriatum, and other organisms with data available.
Spiranthol A
Spiranthol A is a natural product found in Spiranthes sinensis and Spiranthes vernalis with data available.
Vanicoside B
[(2R,3R,4S,5R)-3-hydroxy-4-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy-5-[[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]oxymethyl]-5-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxymethyl]oxan-2-yl]oxyoxolan-2-yl]methyl (E)-3-(4-hydroxyphenyl)prop-2-enoate is a natural product found in Persicaria pensylvanica, Persicaria perfoliata, and Persicaria bungeana with data available.
Isosalvianolic acid C
isosalvianolic acid C is a natural product found in Salvia cavaleriei, Salvia chinensis, and Salvia prionitis with data available.
Blestrin D
Blestrin D is a natural product found in Bletilla striata with data available.
Neolancerin
Neolancerin is a natural product found in Hypericum sampsonii and Gentiana thunbergii with data available. Neolancerin is a natural product with weak cytotoxic activity against HL-60 cells[1].
Tectol
Tectol is a natural product found in Markhamia stipulata, Firmiana simplex, and other organisms with data available. Tectol, isolated from Lippia sidoides, exhibits significant activity against human leukemia cell lines HL60 and CEM[1]. Tectol is a farnesyltransferase (FTase) inhibitor with IC50s of 2.09 and 1.73 μM for human and T. brucei FTase, respectively. Tectol inhibits drug-resistant strain of P. falciparum (FcB1) with an IC50 of 3.44 μM[1][2].
Curculigoside C
Curculigoside C is a natural product found in Curculigo orchioides with data available.
Effusol
Effusol is a natural product found in Juncus setchuensis, Juncus effusus, and Juncus acutus with data available. Effusol, a phenolic constituent from Juncus effuses, exhibits potent scavenging activity for DPPH and ABTS radicals, with IC50 values of 79 μM and 2.73 μM, respectively. Effusol rescues CA1 LTP attenuated by corticosterone, defending the hippocampal function against stress-induced cognitive decline[1]. Effusol, a phenolic constituent from Juncus effuses, exhibits potent scavenging activity for DPPH and ABTS radicals, with IC50 values of 79 μM and 2.73 μM, respectively. Effusol rescues CA1 LTP attenuated by corticosterone, defending the hippocampal function against stress-induced cognitive decline[1].
2,3,4-Trihydroxybenzoic acid
2,3,4-Trihydroxybenzoic acid is an internal standard in separation of phenolic acids by HPLC. 2,3,4-Trihydroxybenzoic acid is an internal standard in separation of phenolic acids by HPLC.
4-Methoxyresveratrol
5-[2-(4-methoxyphenyl)ethenyl]benzene-1,3-diol is a stilbenoid. (E)-5-(4-Methoxystyryl)benzene-1,3-diol is a natural product found in Alpinia hainanensis, Rheum undulatum, and other organisms with data available. 4'-Methoxyresveratrol (4'-O-Methylresveratrol) is a polyphenol derived from Dipterocarpaceae, with antiandrogenic, antifungal and anti-inflammatory activities. 4'-Methoxyresveratrol alleviates AGE-induced inflammation through suppressing RAGE-mediated MAPK/NF-κB signaling pathway and NLRP3 inflammasome activation[1]. 4'-Methoxyresveratrol (4'-O-Methylresveratrol) is a polyphenol derived from Dipterocarpaceae, with antiandrogenic, antifungal and anti-inflammatory activities. 4'-Methoxyresveratrol alleviates AGE-induced inflammation through suppressing RAGE-mediated MAPK/NF-κB signaling pathway and NLRP3 inflammasome activation[1].
6-Hydroxyrubiadin
1,3,6-trihydroxy-2-methyl-9,10-anthraquinone is a trihydroxyanthraquinone that is 9,10-anthraquinone substituted by hydroxy groups at positions 1, 3 and 6 and a methyl group at position 2. It has been isolated from the roots of Rubia yunnanensis. It has a role as a plant metabolite. 1,3,6-Trihydroxy-2-methylanthracene-9,10-dione is a natural product found in Rubia argyi, Rubia yunnanensis, and other organisms with data available.
Monomethyl lithospermate
Cudraflavone B
Cudraflavone B is an extended flavonoid that consists of a pyranochromane skeleton that is 2H,6H-pyrano[3,2-g]chromen-6-one substituted by geminal methyl groups at position 2, a 2,4-dihydroxyphenyl group at position 8, a hydroxy group at position 5 and a prenyl group at position 7. Isolated from Morus alba and Morus species it exhibits anti-inflammatory activity. It has a role as an anti-inflammatory agent and a plant metabolite. It is an extended flavonoid, a pyranochromane and a trihydroxyflavone. cudraflavone B is a natural product found in Artocarpus altilis, Maclura tricuspidata, and other organisms with data available. An extended flavonoid that consists of a pyranochromane skeleton that is 2H,6H-pyrano[3,2-g]chromen-6-one substituted by geminal methyl groups at position 2, a 2,4-dihydroxyphenyl group at position 8, a hydroxy group at position 5 and a prenyl group at position 7. Isolated from Morus alba and Morus species it exhibits anti-inflammatory activity.
Tetrahydromagnolol
Tetrahydromagnolol (Magnolignan), a main metabolite of Magnolol, is a potent and selective cannabinoid CB2 receptor agonist with an EC50 of 170 nM and a Ki of 416 nM. Tetrahydromagnolol possesses 20-fold more selective for CB2 receptor than CB1 receptor. Tetrahydromagnolol is also a weak GPR55 receptor antagonist[1]. Tetrahydromagnolol (Magnolignan), a main metabolite of Magnolol, is a potent and selective cannabinoid CB2 receptor agonist with an EC50 of 170 nM and a Ki of 416 nM. Tetrahydromagnolol possesses 20-fold more selective for CB2 receptor than CB1 receptor. Tetrahydromagnolol is also a weak GPR55 receptor antagonist[1].
Hannokinol
(3S,5S)-1,7-bis(4-hydroxyphenyl)heptane-3,5-diol is a natural product found in Alpinia blepharocalyx, Alpinia roxburghii, and Centrolobium sclerophyllum with data available.
Cannabinodiol
Cannabinodiol is a natural product found in Cannabis sativa with data available. See also: Cannabis sativa subsp. indica top (part of).
Olivetol
Olivetol appears as off-white crystals or olive to light purple waxy solid. Forms monohydrate (melting point: 102-106 °F). (NTP, 1992) Olivetol is a member of the class of resorcinols that is resorcinol in which the hydrogen at position 5 is replaced by a pentyl group. It has a role as a lichen metabolite. Olivetol is a natural product found in Ardisia virens, Primula obconica, and Cannabis sativa with data available. A member of the class of resorcinols that is resorcinol in which the hydrogen at position 5 is replaced by a pentyl group. Olivetol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=500-66-3 (retrieved 2024-07-12) (CAS RN: 500-66-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Olivetol is a naturally phenol found in lichens and produced by certain insects, acting as a competitive inhibitor of the cannabinoid receptors CB1 and CB2[3]. Olivetol also inhibits CYP2C19 and CYP2D6 activity, with IC50s of 15.3 μM, 7.21 μM and Kis of 2.71 μM, 2.87 μM, respectively[1][2]. Olivetol is a naturally phenol found in lichens and produced by certain insects, acting as a competitive inhibitor of the cannabinoid receptors CB1 and CB2[3]. Olivetol also inhibits CYP2C19 and CYP2D6 activity, with IC50s of 15.3 μM, 7.21 μM and Kis of 2.71 μM, 2.87 μM, respectively[1][2].
Flopropione
C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent Flopropione is an organic molecular entity. Flopropione is a 5-HT receptor antagonist and also a catechol-o-methyltransferase (COMT) inhibitor[1][2]. Flopropione also as an antispasmodic agent[3]. Flopropione is a 5-HT receptor antagonist and also a catechol-o-methyltransferase (COMT) inhibitor[1][2]. Flopropione also as an antispasmodic agent[3]. Flopropione is a 5-HT receptor antagonist and also a catechol-o-methyltransferase (COMT) inhibitor[1][2]. Flopropione also as an antispasmodic agent[3].
3-Deoxy-4-O-methylsappanol
3-Deoxy-4-O-methylsappanol is a natural product found in Biancaea decapetala and Biancaea sappan with data available.
Noraucuparin
Noraucuparin is a natural product found in Berberis koreana with data available.
Cercosporamide
Cercosporamide is a member of the class of dibenzofurans that is a potent broad spectrum antifungal agent isolated from the fungus Cercosporidium henningsii. It has a role as an antifungal agent, a phytotoxin, a fungal metabolite and an EC 2.7.11.24 (mitogen-activated protein kinase) inhibitor. It is a member of dibenzofurans, a polyphenol, a monocarboxylic acid amide and a methyl ketone. Cercosporamide is a natural product found in Clarohilum henningsii and Phoma with data available. Chlorinated dibenzofurans (CDFs) are a family of chemical that contain one to eight chlorine atoms attached to the carbon atoms of the parent chemical, dibenzofuran. The CDF family contains 135 individual compounds (known as congeners) with varying harmful health and environmental effects. Of these 135 compounds, those that contain chlorine atoms at the 2,3,7,8-positions of the parent dibenzofuran molecule are especially harmful. Other than for laboratory use of small amounts of CDFs for research and development purposes, these chemicals are not deliberately produced by industry. Most CDFs are produced in very small amounts as unwanted impurities of certain products and processes utilizing chlorinated compounds. Only a few of the 135 CDF compounds have been produced in large enough quantities so that their properties, such as color, smell, taste, and toxicity could be studied. (L952) A member of the class of dibenzofurans that is a potent broad spectrum antifungal agent isolated from the fungus Cercosporidium henningsii.
Quzhaqigan
Piceatannol 3-O-glucoside is a natural product found in Rheum undulatum, Rheum rhabarbarum, and Rheum rhaponticum with data available. Piceatannol 3'-O-glucoside, an active component of Rhubarb, activates endothelial nitric oxide (NO) synthase through inhibition of arginase activity with IC50s of 11.22 μM and 11.06 μM against arginase I and arginase II, respectively. Piceatannol 3'-O-glucoside, an active component of Rhubarb, activates endothelial nitric oxide (NO) synthase through inhibition of arginase activity with IC50s of 11.22 μM and 11.06 μM against arginase I and arginase II, respectively.
3,4-Di-O-caffeoylquinic acid methyl ester
methyl (1S,3R,4R,5R)-3,4-bis[[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy]-1,5-dihydroxycyclohexane-1-carboxylate is a natural product found in Vitex quinata, Petasites japonicus, and other organisms with data available.
Iriflophenone
Iriflophenone is a natural product found in Iris potaninii, Aquilaria sinensis, and Iris domestica with data available. D007155 - Immunologic Factors > D000373 - Agglutinins > D037121 - Plant Lectins D007155 - Immunologic Factors > D000373 - Agglutinins > D037102 - Lectins Iriflophenone, isolated from Aquilaria sinensis, stimulates MCF-7 and T-47D human breast cancer cells proliferation[1][2]. Iriflophenone, isolated from Aquilaria sinensis, stimulates MCF-7 and T-47D human breast cancer cells proliferation[1][2].
Neochebulagic acid
Neochebulagic acid is a natural product found in Phyllanthus emblica with data available.
9-Hydroxyeriobofuran
9-Hydroxyeriobofuran is a natural product found in Pyracantha coccinea and Berberis koreana with data available.
Sanggenofuran B
Sanggenofuran B is a natural product found in Morus cathayana with data available.
Xanthohumol I
Xanthohumol I is a natural product found in Humulus lupulus with data available.
Caraphenol A
Corymbiferin
Corymbiferin is a natural product found in Gentiana orbicularis, Gentianopsis barbata, and other organisms with data available.
Regaloside K
[(2S)-3-hydroxy-2-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate is a natural product found in Lilium mackliniae with data available.
Mulberrofuran H
Mulberrofuran H is a natural product found in Morus lhou, Morus mongolica, and Morus alba with data available.
Eckol
Eckol is a phlorotannin that is oxanthrene-1,3,6,8-tetrol substituted by a 3,5-dihydroxyphenoxy moiety at position 4. Isolated from the marine brown alga, Ecklonia cava, it exhibits antioxidant activity. It has a role as a metabolite and an antioxidant. It is functionally related to a phloroglucinol. Eckol is a natural product found in Ecklonia cava, Ecklonia maxima, and Eisenia bicyclis with data available. A phlorotannin that is oxanthrene-1,3,6,8-tetrol substituted by a 3,5-dihydroxyphenoxy moiety at position 4. Isolated from the marine brown alga, Ecklonia cava, it exhibits antioxidant activity.
Atranorin
Atranorin is a carbonyl compound. Atranorin is a natural product found in Candelaria concolor, Loxospora elatina, and other organisms with data available. Atranorin is a lichen secondary metabolite. Atranorin inhibits lung cancer cell motility and tumorigenesis by affecting AP-1, Wnt, and STAT signaling and suppressing RhoGTPase activity[1][2]. Atranorin is a lichen secondary metabolite. Atranorin inhibits lung cancer cell motility and tumorigenesis by affecting AP-1, Wnt, and STAT signaling and suppressing RhoGTPase activity[1][2]. Atranorin is a lichen secondary metabolite. Atranorin inhibits lung cancer cell motility and tumorigenesis by affecting AP-1, Wnt, and STAT signaling and suppressing RhoGTPase activity[1][2].
sappanol B
Protosappanin A is a member of catechols. It has a role as a metabolite. Protosappanin A is a natural product found in Alpinia japonica, Biancaea decapetala, and Biancaea sappan with data available. A natural product found in Caesalpinia sappan. Protosappanin A (PTA), an immunosuppressive ingredient and major biphenyl compound isolated from Caesalpinia sappan L, suppresses JAK2/STAT3-dependent inflammation pathway through down-regulating the phosphorylation of JAK2 and STAT3[1]. Protosappanin A (PTA), an immunosuppressive ingredient and major biphenyl compound isolated from Caesalpinia sappan L, suppresses JAK2/STAT3-dependent inflammation pathway through down-regulating the phosphorylation of JAK2 and STAT3[1].
Kobophenol_A
Kobophenol A is a natural product found in Caragana korshinskii, Carex folliculata, and other organisms with data available.
cambogin
Garcinol is a monoterpenoid. CID 5281560 is a natural product found in Garcinia assugu, Garcinia pedunculata, and other organisms with data available. Isogarcinol is a natural product found in Garcinia pedunculata, Garcinia cowa, and other organisms with data available. Garcinol, a polyisoprenylated benzophenone harvested from Garcinia indica, exerts anti-cholinesterase properties towards acetyl cholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50s of 0.66 μM and 7.39 μM, respectively[1]. Garcinol also inhibits histone acetyltransferases (HATs, IC50= 7 μM) and p300/CPB-associated factor (PCAF, IC50 = 5 μM). Garcinol has anti-inflammatory and anti-cancer activity[2].
Guajadial F
Tanshinol borneol ester
Ellagic acid hydrate
Gallicum acidum
See also: Gallic Acid (has active moiety) ... View More ... Gallic acid (3,4,5-Trihydroxybenzoic acid) hydrate is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid hydrate has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) hydrate is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid hydrate has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].
Gymconopin C
Gymconopin C is a natural product found in Pholidota chinensis, Bletilla formosana, and other organisms with data available.
4-Methyl-6-(3,4-dihydroxystyryl)-2-pyrone
Bleformin A
Bleformin A is a natural product found in Bletilla formosana with data available.
BChE-IN-11
1-[(4-Hydroxyphenyl)methyl]-4-methoxyphenanthrene-2,7-diol is a natural product found in Bletilla formosana, Gymnadenia conopsea, and Bletilla striata with data available.
G8DW2Y2JBT
(-)-Dihydroguaiaretic acid is a natural product found in Machilus thunbergii, Saururus cernuus, and other organisms with data available.
Denudaquinol
Denudaquinol is a natural product found in Magnolia denudata with data available.
Vanicoside E
Bvuhzouvuwdzgr-vahuyremsa- is a natural product found in Persicaria pensylvanica and Persicaria bungeana with data available.
2-O-Methylbroussonin C
4-(3-(4-Hydroxy-2-methoxyphenyl)propyl)-2-(3-methylbut-2-en-1-yl)phenol is a natural product found in Broussonetia papyrifera with data available.
3',4'-Dihydroxyacetophenone
3,4-Dihydroxyacetophenone is found in coffee and coffee products. 3,4-Dihydroxyacetophenone is extracted from coffee residues. Potential component of FEMA 3662. 3,4-Dihydroxyacetophenone is a mixture of dihydroxyacetophenone isomers is used in food flavourin 3,4-dihydroxyacetophenone is a member of acetophenones. It has a role as a metabolite. 3,4-Dihydroxyacetophenone is a natural product found in Vincetoxicum atratum, Picea obovata, and other organisms with data available. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents 3',4'-Dihydroxyacetophenone (3,4-DHAP), isolated from Picea Schrenkiana Needles exhibits a strong suppressive action against tyrosinase activity, with an IC50 of 10 μM. 3',4'-Dihydroxyacetophenone (3,4-DHAP) is a vasoactive agent and antioxidant[1][2]. 3',4'-Dihydroxyacetophenone (3,4-DHAP), isolated from Picea Schrenkiana Needles exhibits a strong suppressive action against tyrosinase activity, with an IC50 of 10 μM. 3',4'-Dihydroxyacetophenone (3,4-DHAP) is a vasoactive agent and antioxidant[1][2].
Deoxysappanone B
3-deoxysappanone B is a homoisoflavonoid that is 2,3-dihydro-4H-1-benzopyran-4-one substituted by a hydroxy group at position 7 and a (3,4-dihydroxyphenyl)methyl group at position 3 respectively (the 3R-stereoiosmer). it has been isolated from Caesalpinia sappan. It has a role as a plant metabolite. It is a homoisoflavonoid and a polyphenol. (3R)-3-[(3,4-dihydroxyphenyl)methyl]-7-hydroxy-2,3-dihydro-4H-1-benzopyran-4-one is a natural product found in Biancaea sappan with data available. A homoisoflavonoid that is 2,3-dihydro-4H-1-benzopyran-4-one substituted by a hydroxy group at position 7 and a (3,4-dihydroxyphenyl)methyl group at position 3 respectively (the 3R-stereoiosmer). it has been isolated from Caesalpinia sappan.
QHJ45RLC3Q
Protopseudohypericin is a natural product found in Hypericum perforatum with data available.
Rhapontigenin 3-O-glucoside
9-Methyl salvianolate B
9''-Methyl salvianolate B is a phenolic compound isolated from Radix Salvia miltiorrhizae[1]. 9''-Methyl salvianolate B is a phenolic compound isolated from Radix Salvia miltiorrhizae[1].
Cochinchinenin C
Cochinchinenin C is a natural product found in Dracaena cochinchinensis
5-Heptadec-cis-8-enylresorcinol
5-(Z-heptadec-8-enyl) resorcinol is a natural product found in Merulius incarnatus, Ardisia gigantifolia, and other organisms with data available.
44SF3SS9W7
2-[3-(4-Hydroxyphenyl)propyl]-5-methoxyphenol is a natural product found in Broussonetia papyrifera and Anemarrhena asphodeloides with data available.
broussoninE
broussonin E is a natural product found in Broussonetia papyrifera with data available. Broussonin E is a phenolic compound and shows anti-inflammatory activity. Broussonin E can suppress inflammation by modulating macrophages activation statevia inhibiting the ERK and p38 MAPK and enhancing JAK2-STAT3 signaling pathway. Broussonin E can be used for the research of inflammation-related diseases such as atherosclerosis[1]. Broussonin E is a phenolic compound and shows anti-inflammatory activity. Broussonin E can suppress inflammation by modulating macrophages activation statevia inhibiting the ERK and p38 MAPK and enhancing JAK2-STAT3 signaling pathway. Broussonin E can be used for the research of inflammation-related diseases such as atherosclerosis[1]. Broussonin E is a phenolic compound and shows anti-inflammatory activity. Broussonin E can suppress inflammation by modulating macrophages activation statevia inhibiting the ERK and p38 MAPK and enhancing JAK2-STAT3 signaling pathway. Broussonin E can be used for the research of inflammation-related diseases such as atherosclerosis[1].
wikstromol
Nortrachelogenin is a lignan. Nortrachelogenin is a natural product found in Passerina corymbosa, Didymochlaena truncatula, and other organisms with data available. (+)-Nortrachelogenin is a natural product found in Carissa carandas, Daphne oleoides, and other organisms with data available.
Medioresil
(-)-medioresinol is a lignan that is tetrahydro-1H,3H-furo[3,4-c]furan substituted by a 4-hydroxy-3,5-dimethoxyphenyl group at position 1 and a 4-hydroxy-3-methoxyphenyl group at position 4. It has been isolated from the stems of Sinocalamus affinis. It has a role as a plant metabolite. It is a lignan, a dimethoxybenzene, a furofuran and a polyphenol. Medioresinol is a natural product found in Catunaregam spinosa, Saussurea medusa, and other organisms with data available. A lignan that is tetrahydro-1H,3H-furo[3,4-c]furan substituted by a 4-hydroxy-3,5-dimethoxyphenyl group at position 1 and a 4-hydroxy-3-methoxyphenyl group at position 4. It has been isolated from the stems of Sinocalamus affinis. Medioresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units. Medioresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Medioresinol can be found in a number of food items such as garden tomato (variety), common buckwheat, radish (variety), and black elderberry, which makes medioresinol a potential biomarker for the consumption of these food products.
Isotaxiresinol
Isotaxiresinol is a lignan that consists of 1,2,3,4-tetrahydronaphthalene substituted by a hydroxy group at position 7, hydroxymethyl groups at positions 2 and 3, a methoxy group at position 6 and a 3,4-dihydroxyphenyl group at position 1. It has been isolated from Taxus yunnanensis. It has a role as a plant metabolite. It is a lignan, a pentol, a polyphenol and a primary alcohol. Isotaxiresinol is a natural product found in Fitzroya cupressoides, Taxus wallichiana, and other organisms with data available. A lignan that consists of 1,2,3,4-tetrahydronaphthalene substituted by a hydroxy group at position 7, hydroxymethyl groups at positions 2 and 3, a methoxy group at position 6 and a 3,4-dihydroxyphenyl group at position 1. It has been isolated from Taxus yunnanensis.
Oxyresveratrol 2-O-β-D-glucopyranoside
Oxyresveratrol 2-O-beta-D-glucopyranoside is a natural product found in Schoenocaulon officinale, Morus alba, and Morus nigra with data available. Oxyresveratrol 2-O-β-D-glucopyranoside is a phenolic compound isolated from Morus nigra root and is an effective tyrosinase inhibitor with an IC50 of 29.75 μM[1].
Drimiopsin D
ACon1_001328
Iriflophenone 3-C-glucoside is a natural product found in Aquilaria sinensis with data available. Iriflophenone 3-C-β-D-glucopyranoside, isolated from Cyclopia genistoides, has antioxidant activity[1]. Iriflophenone 3-C-β-D-glucopyranoside, isolated from Cyclopia genistoides, has antioxidant activity[1].
Chebulic_acid
Chebulic acid is a natural product found in Terminalia chebula, Terminalia citrina, and Phyllanthus emblica with data available. Chebulic acid, a phenolcarboxylic acid compound isolated from Terminalia chebula, has potent anti-oxidant activity, which breaks the cross-links of proteins induced by advanced glycation end-products (AGEs) and inhibits the formation of AGEs. Chebulic acid is effective in controlling elevated metabolic parameters, oxidative stress and renal damage, supporting its beneficial effect in diabetic nephropathy[1][2]. Chebulic acid, a phenolcarboxylic acid compound isolated from Terminalia chebula, has potent anti-oxidant activity, which breaks the cross-links of proteins induced by advanced glycation end-products (AGEs) and inhibits the formation of AGEs. Chebulic acid is effective in controlling elevated metabolic parameters, oxidative stress and renal damage, supporting its beneficial effect in diabetic nephropathy[1][2].
Plicatol_B
Moscatin is a natural product found in Dendrobium loddigesii, Dendrobium moschatum, and other organisms with data available.
Plicatol_C
Rotundatin is a natural product found in Dendrobium plicatile with data available.
M3OMG
Methyl 3,4-dihydroxy-5-methoxybenzoate is a natural product found in Crinodendron hookerianum and Acer rubrum with data available. Methyl 3-O-methylgallate (M3OMG) possesses antioxidant effect and can protect neuronal cells from oxidative damage[1].
Purpurogallin carboxylic acid
Rabdosiin
Rabdosiin is a natural product found in Salvia yunnanensis, Arnebia euchroma, and other organisms with data available. Rabdosiin is a tetramer of caffeic acid isolated from the stem of Ocimum sanctum. Rabdosiin possess anti-allergic activity, anti-HIV activity and inhibition on DNA topoisomerase[1]. Rabdosiin is a tetramer of caffeic acid isolated from the stem of Ocimum sanctum. Rabdosiin possess anti-allergic activity, anti-HIV activity and inhibition on DNA topoisomerase[1].
Osmundacetone
(E)-3,4-Dihydroxybenzylideneacetone is a natural product found in Inonotus obliquus, Peltigera dolichorrhiza, and Phellinus igniarius with data available. (E)-Osmundacetone is the isomer of Osmundacetone. Osmundacetone significantly suppresses the phosphorylation of MAPKs, including JNK, ERK, and p38 kinases. Osmundacetone has a neuroprotective effect against oxidative stress[1]. (E)-Osmundacetone is the isomer of Osmundacetone. Osmundacetone significantly suppresses the phosphorylation of MAPKs, including JNK, ERK, and p38 kinases. Osmundacetone has a neuroprotective effect against oxidative stress[1]. (E)-Osmundacetone is the isomer of Osmundacetone. Osmundacetone significantly suppresses the phosphorylation of MAPKs, including JNK, ERK, and p38 kinases. Osmundacetone has a neuroprotective effect against oxidative stress[1].
VCONERRCKOKCHE-UHFFFAOYSA-N
1-(2,3-Dihydroxy-4-methoxyphenyl)ethanone is a natural product found in Paeonia suffruticosa with data available. 2,3-Dihydroxy-4-methoxyacetophenone is a neuroprotective compound from Cynenchum paniculatum. 2,3-Dihydroxy-4-methoxyacetophenone improves cognitive function and may has the potential for the treatment of Alzheimer's disease research[1]. 2,3-Dihydroxy-4-methoxyacetophenone is a neuroprotective compound from Cynenchum paniculatum. 2,3-Dihydroxy-4-methoxyacetophenone improves cognitive function and may has the potential for the treatment of Alzheimer's disease research[1].
Curculigoside B
Curculigoside B is a natural product found in Curculigo orchioides with data available. Curculigoside B, a phenolic glycoside isolated from Curculigo orchioides, enhances the osteoblast proliferation, decreases the area of bone resorption pit, osteoclastic formation and TRAP activity. Antiosteoporotic and antioxidative activities[1]. Curculigoside B, a phenolic glycoside isolated from Curculigo orchioides, enhances the osteoblast proliferation, decreases the area of bone resorption pit, osteoclastic formation and TRAP activity. Antiosteoporotic and antioxidative activities[1].
Stachyanthuside A
Stachyanthuside A is a natural product found in Eucalyptus globulus with data available.
Cassiaside2,3,4-Trihydroxy-3,5-dimethoxypropiophenoneGinsenoside Rg4Methyl dihydrojasmonate1-Dehydroxy-23-deoxojessic acidMalvidin-3-galactoside chlorideTropine4,5-Dioxodehydroasimilobine(2R,3R)-3,7-Dihydroxy-2-(4-hydroxyphenyl)-5-methoxy-8-(3-methylbut-2-en-1-yl)chroman-4-one
Cassiaside is a naphthopyrone glucoside, shows mixed-type inhibition against BACE1 (IC50=4.45 μM; Ki=9.85 μM). Cassiaside possesses potential anti- Alzheimer's disease (AD) activity[1]. Cassiaside is a naphthopyrone glucoside, shows mixed-type inhibition against BACE1 (IC50=4.45 μM; Ki=9.85 μM). Cassiaside possesses potential anti- Alzheimer's disease (AD) activity[1].
EbracteolatacpdB
1-(2,4-Dihydroxy-6-methoxy-3-methylphenyl)ethanone is a natural product found in Euphorbia ebracteolata and Pancratium maritimum with data available.
Rhaponticin 2-O-gallate
Rhaponticin 2-O-gallate is a natural product found in Rheum undulatum, Rheum rhabarbarum, and Rheum rhaponticum with data available.
Rhaponticin 6-O-gallate
Rhaponticin 6-O-gallate is a natural product found in Rheum undulatum, Rheum rhabarbarum, and Rheum rhaponticum with data available.
(R)-(4-Hydroxy)-5,7-dihydroxy-4-chromanone
(3R)-5,7-dihydroxy-3-[(4-hydroxyphenyl)methyl]-2,3-dihydrochromen-4-one is a natural product found in Soymida febrifuga, Eucomis montana, and other organisms with data available.
NCI60_041532
5-Hydroxy-3-(4-hydroxybenzyl)-7-methoxychroman-4-one is a natural product found in Ledebouria leptophylla with data available.
Isoarundinin II
Isoarundinin II is a natural product found in Pleione bulbocodioides, Pleione yunnanensis, and other organisms with data available.
Ethyl 3,4-dicaffeoylquinate
Ethyl 3,4-dicaffeoylquinate is a natural product found in Dichrocephala integrifolia with data available.
Myrciaphenone A
Myrciaphenone A is a natural product found in Curcuma comosa, Leontodon tuberosus, and Myrcia multiflora with data available.
Nortrachelogenin-8-O-β-glucoside
3-(4-Hydroxybenzyl)chroman-7-ol
7-Hydroxy-3-(4-hydroxybenzyl)chroman is a natural product found in Agavaceae, Garcinia dulcis, and other organisms with data available.
Galloylalbiflorin
6-O-galloylalbiflorin is a monoterpene glycoside that is albiflorin carrying a galloyl substituent at position 6. Isolated from the roots of Paeonia lactiflora. It has a role as a plant metabolite, an androgen antagonist and an antineoplastic agent. It is a beta-D-glucoside, a gamma-lactone, a gallate ester, a bridged compound, a monoterpene glycoside and a secondary alcohol. It is functionally related to an albiflorin. Galloylalbiflorin is a natural product found in Paeonia lactiflora with data available. See also: Paeonia lactiflora root (part of). A monoterpene glycoside that is albiflorin carrying a galloyl substituent at position 6. Isolated from the roots of Paeonia lactiflora.
6-Ethylresorcinol
4-Ethylresorcinol, a derivative of resorcinol, can act as substrates of tyrosinase. 4-Ethylresorcinol possess hypopigmentary effects. 4-Ethylresorcinol attenuates mRNA and protein expression of tyrosinase-related protein (TRP)-2, and possessed antioxidative effect by inhibiting lipid peroxidation[1][2]. 4-Ethylresorcinol, a derivative of resorcinol, can act as substrates of tyrosinase. 4-Ethylresorcinol possess hypopigmentary effects. 4-Ethylresorcinol attenuates mRNA and protein expression of tyrosinase-related protein (TRP)-2, and possessed antioxidative effect by inhibiting lipid peroxidation[1][2].
MDHB compound
Methyl 3,4-dihydroxybenzoate is a methyl ester resulting from the formal condensation of the carboxy group of 3,4-dihydroxybenzoic acid with methanol. It has a role as an antioxidant, a neuroprotective agent and a plant metabolite. It is a methyl ester and a member of catechols. It is functionally related to a 3,4-dihydroxybenzoic acid. Methyl 3,4-dihydroxybenzoate is a natural product found in Smilax bracteata, Rhododendron simsii, and other organisms with data available. See also: Acai fruit pulp (part of). A methyl ester resulting from the formal condensation of the carboxy group of 3,4-dihydroxybenzoic acid with methanol. Methyl 3,4-dihydroxybenzoate (Protocatechuic acid methyl ester; Methyl protocatechuate) is a major metabolite of antioxidant polyphenols found in green tea. Antioxidant and anti-inflammatory effect[1]. Methyl 3,4-dihydroxybenzoate (Protocatechuic acid methyl ester; Methyl protocatechuate) is a major metabolite of antioxidant polyphenols found in green tea. Antioxidant and anti-inflammatory effect[1].
4-Hydroxybenzaldehyde
p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.
3-methylcatechol
A methylcatechol carrying a methyl substituent at position 3. It is a xenobiotic metabolite produced by some bacteria capable of degrading nitroaromatic compounds present in pesticide-contaminated soil samples. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1]. 3-Methylcatechol is a building block in the chemical synthesis produced by Pseudomonas putida MC2[1].
cis-resveratrol
Annotation level-1 cis-Resveratrol exhibits signifcant antiviral activity. cis-Resveratrol inhibits enteroviruses with IC50s of 12.2 μM and 37.6 μM for coxsackievirus B3 (CVB3) and enterovirus 71 (EV71), respectively[1].
Lignins
Lignin (Lignine) is a natural complex biopolymer with biodegradable and biocompatible. Lignin is the main component of plant cell walls and is a renewable aromatic polymer. Lignin has strongly antioxidant activity The most abundant natural aromatic organic polymer found in all vascular plants. Lignin together with cellulose and hemicellulose are the major cell wall components of the fibers of all wood and grass species. Lignin is composed of coniferyl, p-coumaryl, and sinapyl alcohols in varying ratios in different plant species. (From Merck Index, 11th ed) Lignin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=9005-53-2 (retrieved 2024-08-19) (CAS RN: 9005-53-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).