N-cis-Caffeoyltyramine (BioDeep_00000017642)

   

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


(E,2E)-3-(3,4-dihydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

化学式: C17H17NO4 (299.11575220000003)
中文名称:
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 3.6%

分子结构信息

SMILES: C1=CC(=CC=C1CCNC(=O)C=CC2=CC(=C(C=C2)O)O)O
InChI: InChI=1S/C17H17NO4/c19-14-5-1-12(2-6-14)9-10-18-17(22)8-4-13-3-7-15(20)16(21)11-13/h1-8,11,19-21H,9-10H2,(H,18,22)/b8-4+

描述信息

N-cis-Caffeoyltyramine is a member of catechols.
n-Caffeoyltyramine is a natural product found in Lycium chinense, Limoniastrum guyonianum, and other organisms with data available.
See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Cocoa (part of) ... View More ...
N-cis-Caffeoyltyramine is found in fruits. N-cis-Caffeoyltyramine is an alkaloid from stems of cherimoya (Annona cherimola).
Alkaloid from stems of cherimoya (Annona cherimola). N-cis-Caffeoyltyramine is found in fruits.
N-TRANS-CaffeoyLtyramine is an effective inflammatory response regulator, which has antioxidant activity and anticoagulation effects[1].
N-TRANS-CaffeoyLtyramine is an effective inflammatory response regulator, which has antioxidant activity and anticoagulation effects[1].

同义名列表

24 个代谢物同义名

(E,2E)-3-(3,4-dihydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid; (2E)-3-(3,4-Dihydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidate; (2E)-3-(3,4-Dihydroxyphenyl)-N-(2-(4-hydroxyphenyl)ethyl)-2-propenamide; (2E)-3-(3,4-dihydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide; (E)-3-(3,4-dihydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide; (2e)-3-(3,4-Dihydroxyphenyl)-N-[2-(4-Hydroxyphenyl)ethyl]acrylamide; (E)-3-(3,4-Dihydroxyphenyl)-N-(4-hydroxyphenethyl)acrylamide; N-trans-caffeoyltyramine, >=85\\% (LC/MS-ELSD); N-(E)-CAFFEOYL-.LAMBDA.-TYRAMINE; N-(E)-Caffeoyl-lambda-tyramine; VSHUQLRHTJOKTA-XBXARRHUSA-N; N-trans-Caffeoyltyramine; Trans-N-Caffeoyltyramine; N-cis-Caffeoyltyramine; N-Caffeoyltyramine; Caffeoyl tyramine; UNII-3LZ974DQ9J; MEGxp0_001140; ACon1_001661; Typheramide; 3LZ974DQ9J; 2ew6; Y13; 3-(3,4-DIHYDROXYPHENYL)-N-[2-(4-HYDROXYPHENYL)ETHYL]PROP-2-ENAMIDE



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

19 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Seung-Hee Lee, Vimal Veeriah, Fred Levine. Liver fat storage is controlled by HNF4α through induction of lipophagy and is reversed by a potent HNF4α agonist. Cell death & disease. 2021 06; 12(6):603. doi: 10.1038/s41419-021-03862-x. [PMID: 34117215]
  • Opeyemi J Olatunji, Hongxia Chen, Yifeng Zhou. Neuroprotective effect of trans-N-caffeoyltyramine from Lycium chinense against H2O2 induced cytotoxicity in PC12 cells by attenuating oxidative stress. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Sep; 93(?):895-902. doi: 10.1016/j.biopha.2017.07.013. [PMID: 28715870]
  • Xiaoli Ma, Jin Yan, Kailin Xu, Luiqi Guo, Hui Li. Binding mechanism of trans-N-caffeoyltyramine and human serum albumin: Investigation by multi-spectroscopy and docking simulation. Bioorganic chemistry. 2016 06; 66(?):102-10. doi: 10.1016/j.bioorg.2016.04.002. [PMID: 27131098]
  • Thanika Promchai, Atchara Jaidee, Sarot Cheenpracha, Kongkiat Trisuwan, Roonglawan Rattanajak, Sumalee Kamchonwongpaisan, Surat Laphookhieo, Stephen G Pyne, Thunwadee Ritthiwigrom. Antimalarial Oxoprotoberberine Alkaloids from the Leaves of Miliusa cuneata. Journal of natural products. 2016 Apr; 79(4):978-83. doi: 10.1021/acs.jnatprod.5b01054. [PMID: 26928423]
  • Jing-Xian Zhang, Shu-Hong Guan, Rui-Hong Feng, Yang Wang, Zhi-Yuan Wu, Yi-Bei Zhang, Xiao-Hui Chen, Kai-Shun Bi, De-An Guo. Neolignanamides, lignanamides, and other phenolic compounds from the root bark of Lycium chinense. Journal of natural products. 2013 Jan; 76(1):51-8. doi: 10.1021/np300655y. [PMID: 23282106]
  • Tianpeng Chen, Jinfeng He, Jianchun Zhang, Xiaohui Li, Hua Zhang, Jianxiong Hao, Lite Li. The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.). Food chemistry. 2012 Sep; 134(2):1030-7. doi: 10.1016/j.foodchem.2012.03.009. [PMID: 23107724]
  • Fahimeh Moradi-Afrapoli, Nargues Yassa, Stefanie Zimmermann, Soodabeh Saeidnia, Abbas Hadjiakhoondia, Samad N Ebrahimi, Matthias Hamburger. Cinnamoylphenethyl amides from Polygonum hyrcanicum possess anti-trypanosomal activity. Natural product communications. 2012 Jun; 7(6):753-5. doi: . [PMID: 22816300]
  • Areej Mohammad Al-Taweel, Shagufta Perveen, Azza Muhammed El-Shafae, Ghada Ahmed Fawzy, Abdul Malik, Nighat Afza, Lubna Iqbal, Mehreen Latif. Bioactive phenolic amides from Celtis africana. Molecules (Basel, Switzerland). 2012 Mar; 17(3):2675-82. doi: 10.3390/molecules17032675. [PMID: 22391601]
  • Jae B Park. Identification and quantification of a major anti-oxidant and anti-inflammatory phenolic compound found in basil, lemon thyme, mint, oregano, rosemary, sage, and thyme. International journal of food sciences and nutrition. 2011 Sep; 62(6):577-84. doi: 10.3109/09637486.2011.562882. [PMID: 21506887]
  • Jae B Park. Effects of typheramide and alfrutamide found in Allium species on cyclooxygenases and lipoxygenases. Journal of medicinal food. 2011 Mar; 14(3):226-31. doi: 10.1089/jmf.2009.0198. [PMID: 21332401]
  • Chung-Yi Chen, Yu-Ting Yeh, Woei-Ling Yang. Amides from the stem of Capsicum annuum. Natural product communications. 2011 Feb; 6(2):227-9. doi: . [PMID: 21425680]
  • Kiyoon Kang, Munyoung Park, Sangkyu Park, Young Soon Kim, Sungbeom Lee, Seong-Gene Lee, Kyoungwhan Back. Production of plant-specific tyramine derivatives by dual expression of tyramine N-hydroxycinnamoyltransferase and 4-coumarate:coenzyme A ligase in Escherichia coli. Biotechnology letters. 2009 Sep; 31(9):1469-75. doi: 10.1007/s10529-009-0032-3. [PMID: 19479321]
  • Su Zhang, Jiao Shi, Zhi-Hua Sun, Chang-Qi Hu. [Studies on the chemical constituents from Caragana intermedia]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2006 Jan; 29(1):19-21. doi: . [PMID: 16722312]
  • Jae B Park. Quantitation of clovamide-type phenylpropenoic acid amides in cells and plasma using high-performance liquid chromatography with a coulometric electrochemical detector. Journal of agricultural and food chemistry. 2005 Oct; 53(21):8135-40. doi: 10.1021/jf0516078. [PMID: 16218655]
  • Dae Keun Kim, Jong Pil Lim, Jin Wook Kim, Hee Wook Park, Jae Soon Eun. Antitumor and antiinflammatory constituents from Celtis sinensis. Archives of pharmacal research. 2005 Jan; 28(1):39-43. doi: 10.1007/bf02975133. [PMID: 15742806]
  • Dong Gun Lee, Yoonkyung Park, Mi-Ran Kim, Hyun Jun Jung, Young Bae Seu, Kyung-Soo Hahm, Eun-Rhan Woo. Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense. Biotechnology letters. 2004 Jul; 26(14):1125-30. doi: 10.1023/b:bile.0000035483.85790.f7. [PMID: 15266117]
  • Song-Hee Han, Hyang-Hee Lee, Ik-Soo Lee, Young-Hee Moon, Eun-Rhan Woo. A new phenolic amide from Lycium chinense Miller. Archives of pharmacal research. 2002 Aug; 25(4):433-7. doi: 10.1007/bf02976596. [PMID: 12214850]