Classification Term: 170098

白藜芦醇类 (ontology term: 白藜芦醇类)

白藜芦醇类

found 50 associated metabolites at no_class-level_20 metabolite taxonomy ontology rank level.

Ancestor: 多元酚

Child Taxonomies: There is no child term of current ontology term.

3,3',4'5-Tetrahydroxystilbene

(E)-4-[2-(3,5Dihydroxyphenyl)ethenyl]1,2-benzenediol, 3,3a?4,5a?Tetrahydroxy-trans-stilbene

C14H12O4 (244.0735552)


Piceatannol is a stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. It has a role as a protein kinase inhibitor, a tyrosine kinase inhibitor, an antineoplastic agent, a plant metabolite, a hypoglycemic agent, an apoptosis inducer and a geroprotector. It is a stilbenol, a member of resorcinols, a member of catechols and a polyphenol. It derives from a hydride of a trans-stilbene. Piceatannol is a natural product found in Vitis amurensis, Smilax bracteata, and other organisms with data available. Piceatannol is a polyhydroxylated stilbene extract from the seeds of Euphorbia lagascae, which inhibits protein tyrosine kinase Syk and induces apoptosis. (NCI) Piceatannol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Wine grape (part of); Robinia pseudoacacia whole (part of); Tsuga canadensis bark (part of). 3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). [HMDB] 3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). A stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4]. Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].

   

Pinosylvin

3-06-00-05577 (Beilstein Handbook Reference)

C14H12O2 (212.0837252)


Pinosylvin is a stilbenol. Pinosylvin is a natural product found in Alnus pendula, Calligonum leucocladum, and other organisms with data available. Pinosylvin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=22139-77-1 (retrieved 2024-07-12) (CAS RN: 22139-77-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Pinosylvin is a?pre-infectious stilbenoid toxin?isolated from the heartwood of Pinus species, has anti-bacterial activities[1]. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells[2]. Pinosylvin is a?pre-infectious stilbenoid toxin?isolated from the heartwood of Pinus species, has anti-bacterial activities[1]. Pinosylvin is a resveratrol analogue, can induce cell apoptosis and autophapy in leukemia cells[2].

   

Gnetol

1,3-Benzenediol, 2-[(1E)-2-(3,5-dihydroxyphenyl)ethenyl]-

C14H12O4 (244.0735552)


Gnetol is a natural product found in Gnetum edule, Gnetum hainanense, and other organisms with data available. Gnetol is a phenolic compound isolated from the root of Gnetum montanum . Gnetol potently inhibits COX-1 (IC50 of 0.78 μM) and HDAC. Gnetol is a potent tyrosinase inhibitor with an IC50 of 4.5 μM for murine tyrosinase and suppresses melanin biosynthesis. Gnetol has antioxidant, antiproliferative, anticancer and hepatoprotective activity. Gnetol also possesses concentration-dependent α-Amylase, α-glucosidase, and adipogenesis activities[1][2][3]. Gnetol is a phenolic compound isolated from the root of Gnetum montanum . Gnetol potently inhibits COX-1 (IC50 of 0.78 μM) and HDAC. Gnetol is a potent tyrosinase inhibitor with an IC50 of 4.5 μM for murine tyrosinase and suppresses melanin biosynthesis. Gnetol has antioxidant, antiproliferative, anticancer and hepatoprotective activity. Gnetol also possesses concentration-dependent α-Amylase, α-glucosidase, and adipogenesis activities[1][2][3].

   

Combretastatin_A-4

phenol, 2-methoxy-5-((1z)-2-(3,4,5-trimethoxyphenyl)ethenyl)-,1-(dihydrogen phosphate)

C18H20O5 (316.13106700000003)


Combretastatin A4 is a stilbenoid. Combretastatin A4 is a natural product found in Combretum caffrum with data available. Combretastatin A-4 is an inhibitor of microtubule polymerization derived from the South African willow bush which causes mitotic arrest and selectively targets and reduces or destroys existing blood vessels, causing decreased tumor blood supply. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D000970 - Antineoplastic Agents Combretastatin A4 is a microtubule-targeting agent that binds β-tubulin with Kd of 0.4 μM.

   

Pinostilbene

3-[2-(4-hydroxyphenyl)vinyl]-5-methoxy-phenol;Pinostilbene

C15H14O3 (242.0942894)


3-methoxy-4,5-dihydroxy-trans-stilbene is a stilbenoid that is trans-resveratrol in which one of the meta-hydroxy groups is converted to the corresponding methyl ether. It is functionally related to a trans-resveratrol. 3-Methoxy-4,5-dihydroxy-trans-stilbene is a natural product found in Soymida febrifuga, Rumex bucephalophorus, and other organisms with data available. A stilbenoid that is trans-resveratrol in which one of the meta-hydroxy groups is converted to the corresponding methyl ether. Pinostilbene (trans-Pinostilbene) is a major metabolite of Pterostilbene. Pinostilbene exhibits inhibitory effects on colon cancer cells[1]. Pinostilbene (trans-Pinostilbene) is a major metabolite of Pterostilbene. Pinostilbene exhibits inhibitory effects on colon cancer cells[1].

   

3-HPT

trans-4-[2-(3,5-dimethoxyphenyl)ethenyl]-1,2-benzenediol

C16H16O4 (272.1048536)


(E)-4-(3,5-Dimethoxystyryl)benzene-1,2-diol is a natural product found in Sphaerophysa salsula with data available. 3'-Hydroxypterostilbene is a Pterostilbene (HY-N0828) analogue. 3'-Hydroxypterostilbene inhibits the growth of COLO 205, HCT-116 and HT-29 cells with IC50s of 9.0, 40.2 and 70.9 μM, respectively. 3'-Hydroxypterostilbene significantly down-regulates PI3K/Akt and MAPKs signaling pathways and effectively inhibits the growth of human colon cancer cells by inducing apoptosis and autophagy. 3'-Hydroxypterostilbene can be used for the research of cancer[1].

   

Salvianolic acid A

(2R)-3-(3,4-dihydroxyphenyl)-2-[(E)-3-[2-[(E)-2-(3,4-dihydroxyphenyl)ethenyl]-3,4-dihydroxyphenyl]prop-2-enoyl]oxypropanoic acid

C26H22O10 (494.1212912)


Salvianolic acid A could protect the blood brain barrier through matrix metallopeptidase 9 (MMP-9) inhibition and anti-inflammation. Salvianolic acid A could protect the blood brain barrier through matrix metallopeptidase 9 (MMP-9) inhibition and anti-inflammation.

   

Pterostilbene

Phenol, 4-[(1Z)-2-(3,5-dimethoxyphenyl)ethenyl]-

C16H16O3 (256.10993859999996)


C26170 - Protective Agent > C275 - Antioxidant Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4]. Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4].

   

trans-Piceid

(2S,3R,4S,5S,6R)-2-{3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O8 (390.1314612)


trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

Astringin

(2S,3R,4S,5S,6R)-2-[3-[(E)-2-(3,4-dihydroxyphenyl)vinyl]-5-hydroxy-phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O9 (406.1263762)


Trans-astringin is a stilbenoid that is piceatannol substituted at position 3 by a beta-D-glucosyl residue. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a polyphenol, a stilbenoid, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a piceatannol. Astringin is a natural product found in Fagopyrum megacarpum, Vitis vinifera, and other organisms with data available. Astringin is a metabolite found in or produced by Saccharomyces cerevisiae. A stilbenoid that is piceatannol substituted at position 3 by a beta-D-glucosyl residue. Acquisition and generation of the data is financially supported in part by CREST/JST. Astringin (trans-Astringin) is a natural glycoside found in the bark of Picea sitchensis and Picea abies (Norway spruce), in Vitis vinifera cell cultures and in wine. Astringin has potent antioxidant capacity and cancer-chemopreventive activity[1]. Astringin (trans-Astringin) is a natural glycoside found in the bark of Picea sitchensis and Picea abies (Norway spruce), in Vitis vinifera cell cultures and in wine. Astringin has potent antioxidant capacity and cancer-chemopreventive activity[1].

   

Oxyresveratrol

4-[2-(3,5-Dihydroxyphenyl)vinyl]-1,3-benzenediol

C14H12O4 (244.0735552)


Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4]. Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4].

   

Rose oxide (cis)

(2S,3R,4S,5S,6R)-2-{3-hydroxy-5-[(e)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C21H24O9 (420.14202539999997)


Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1]. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].

   

Rhapontigenin

1-(3,5-Dihydroxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethylene

C15H14O4 (258.0892044)


Rhapontigenin is found in garden rhubarb. Rhapontigenin is isolated from rhizomes of Rheum undulatum (rhubarb) 4-Guanidinobutanoate is a normal metabolite present in low concentrations. Patients with hyperargininemia have an arginase deficiency which leads to blockade of the urea cycle in the last step with several clinical symptoms. Owing to the arginase deficiency this patients accumulate arginine which leads eventually to epileptogenic guanidino compounds (PMID 7752905 Isolated from rhizomes of Rheum undulatum (rhubarb) Rhapontigenin is a natural analog of resveratrol with anticancer, antioxidant, antifungal and antibacterial activities. Rhapontigenin is amechanism-based, potent and selective cytochrome P450 1A1?inactivator (IC50 ?= 400 nM). Rhapontigenin exhibits 400-fold and 23-fold selectivity for P450 1A1 over P450 1A2 and P450 1B1, respectively[1]. Rhapontigenin is a natural analog of resveratrol with anticancer, antioxidant, antifungal and antibacterial activities. Rhapontigenin is amechanism-based, potent and selective cytochrome P450 1A1?inactivator (IC50 ?= 400 nM). Rhapontigenin exhibits 400-fold and 23-fold selectivity for P450 1A1 over P450 1A2 and P450 1B1, respectively[1].

   

Astringin

2-{3-[(Z)-2-(3,4-dihydroxyphenyl)ethenyl]-5-hydroxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O9 (406.1263762)


Astringin is a member of the class of compounds known as stilbene glycosides. Stilbene glycosides are compounds structurally characterized by the presence of a carbohydrate moiety glycosidically linked to the stilbene skeleton. Astringin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Astringin can be found in grape wine, which makes astringin a potential biomarker for the consumption of this food product. Astringin is a stilbenoid, the 3-beta-D-glucoside of piceatannol. It can be found in the bark of Picea sitchensis or Picea abies (Norway spruce) . Astringin is a member of the class of compounds known as stilbene glycosides. Stilbene glycosides are compounds structurally characterized by the presence of a carbohydrate moiety glycosidically linked to the stilbene skeleton. Astringin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Astringin can be found in grape wine, which makes astringin a potential biomarker for the consumption of this food product. Astringin is a stilbenoid, the 3-β-D-glucoside of piceatannol. It can be found in the bark of Picea sitchensis or Picea abies (Norway spruce) . Astringin (trans-Astringin) is a natural glycoside found in the bark of Picea sitchensis and Picea abies (Norway spruce), in Vitis vinifera cell cultures and in wine. Astringin has potent antioxidant capacity and cancer-chemopreventive activity[1]. Astringin (trans-Astringin) is a natural glycoside found in the bark of Picea sitchensis and Picea abies (Norway spruce), in Vitis vinifera cell cultures and in wine. Astringin has potent antioxidant capacity and cancer-chemopreventive activity[1].

   

Isorhapontigenin

5-[(Z)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]benzene-1,3-diol

C15H14O4 (258.0892044)


Isorhapontigenin is a member of the class of compounds known as stilbenes. Stilbenes are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. Isorhapontigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Isorhapontigenin can be found in garden rhubarb, which makes isorhapontigenin a potential biomarker for the consumption of this food product. Isorhapontigenin is a tetrahydroxylated stilbenoid with a methoxy group. It is an isomer of rhapontigenin and an analog of resveratrol. It is found in the Chinese herb Gnetum cleistostachyum, in Gnetum parvifolium and in the seeds of the palm Aiphanes aculeata . Isorhapontigenin, an orally bioavailable dietary polyphenol isolated from the Chinese herb Gnetum cleistostachyum, displays anti-inflammatory effects. Isorhapontigenin induces autophagy and inhibits invasive bladder cancer formation[1][2]. Isorhapontigenin, an orally bioavailable dietary polyphenol isolated from the Chinese herb Gnetum cleistostachyum, displays anti-inflammatory effects. Isorhapontigenin induces autophagy and inhibits invasive bladder cancer formation[1][2].

   

Pterostilbene

4-[(Z)-2-(3,5-dimethoxyphenyl)ethenyl]phenol

C16H16O3 (256.10993859999996)


Pterostilbene is a member of the class of compounds known as stilbenes. Stilbenes are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. Pterostilbene is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pterostilbene can be found in common grape and grape wine, which makes pterostilbene a potential biomarker for the consumption of these food products. Pterostilbene is a stilbenoid chemically related to resveratrol. In plants, it serves a defensive phytoalexin role . Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4]. Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4].

   

4A04YKB3FT

16,17-dimethoxy-5,7-dioxa-13-azapentacyclo[11.8.0.02,10.04,8.015,20]henicosa-1(21),2,4(8),9,15(20),16,18-heptaen-14-one

C20H17NO5 (351.1106672)


Oxyberberine is a natural product found in Thalictrum podocarpum, Thalictrum acutifolium, and other organisms with data available. 8-Oxoepiberberine is an alkaloid metabolite in the plasma after oral administration of Zuojin formula, a traditional chinese medicine used to treat gastrointestinal disease[1]. Oxyberberine (Oxyberberin) is a natural alkaloid isolated from many plants[1]. Oxyberberine (Oxyberberin) is a natural alkaloid isolated from many plants[1].

   

Oxyepiberberine

16,17-dimethoxy-5,7-dioxa-1-azapentacyclo[11.8.0.03,11.04,8.014,19]henicosa-3(11),4(8),9,12,14,16,18-heptaen-2-one

C20H17NO5 (351.1106672)


8-Oxoepiberberine is an alkaloid metabolite in the plasma after oral administration of Zuojin formula, a traditional chinese medicine used to treat gastrointestinal disease[1].

   

Dihydropalmatine

2,3,9,10-tetramethoxy-6,8-dihydro-5H-isoquinolino[2,1-b]isoquinoline

C21H23NO4 (353.16269980000004)


Dihydropalmatine is a natural product found in Thalictrum foliolosum with data available. Dihydropalmatine is a alkaloid isolated from Berberis aristata[1].

   

THSG cpd

2,3,5,4-Tetrahydroxystilbene 2-O-AfAEA centa notA inverted exclamation markAfasAA|AfAEAdaggeratrade markAfA centA centasA notA em leaderA inverted exclamation mark-D-glucoside

C20H22O9 (406.1263762)


(E)-2,3,5,4-tetrahydroxystilbene-2-O-beta-D-glucoside is a stilbenoid that is trans-stilbene which has been substituted by hydroxy groups at positions 2, 3, 5, and 4, and in which the hydroxy group at positon 2 has then been converted to the corresponding the beta-D-glucoside. It has a role as an antioxidant, a cyclooxygenase 2 inhibitor, an anti-inflammatory agent, a cardioprotective agent, a platelet aggregation inhibitor and an apoptosis inhibitor. It is a stilbenoid, a beta-D-glucoside and a member of resorcinols. (2S,3R,4S,5S,6R)-2-[2,4-dihydroxy-6-[(E)-2-(4-hydroxyphenyl)ethenyl]phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol is a natural product found in Euphorbia marschalliana, Hopea reticulata, and other organisms with data available. See also: Reynoutria multiflora root (part of). 2,3,4',5-tetrahydroxystilbene 2-OD-glucoside is isolated from the roots of Polygonaceae species and inhibits the formation of 5-HETE, HHT and thromboxane B2. 2,3,5,4'-Tetrahydroxystilbene 2-O-β-D-glucoside isolats from the roots of Polygonaceae species, inhibits the formation of 5-HETE, HHT and thromboxane B2. 2,3,5,4'-Tetrahydroxystilbene 2-O-β-D-glucoside has hypotensive, anti-ageing, anti-inflammatory, hypolipidemic, cardioprotective, and neuroprotective actions[1][2]. 2,3,4',5-tetrahydroxystilbene 2-OD-glucoside is isolated from the roots of Polygonaceae species and inhibits the formation of 5-HETE, HHT and thromboxane B2.

   

Pterostilbene

trans-1-(3,5-Dimethoxyphenyl)-2-(4-hydroxyphenyl)ethylene

C16H16O3 (256.10993859999996)


Pterostilbene is a stilbenol that consists of trans-stilbene bearing a hydroxy group at position 4 as well as two methoxy substituents at positions 3 and 5. It has a role as an antioxidant, an antineoplastic agent, a neurotransmitter, a plant metabolite, an apoptosis inducer, a neuroprotective agent, an anti-inflammatory agent, a radical scavenger and a hypoglycemic agent. It is a stilbenol, a member of methoxybenzenes and a diether. It derives from a hydride of a trans-stilbene. Pterostilbene is a natural product found in Vitis rupestris, Pterocarpus marsupium, and other organisms with data available. Pterostilbene is a naturally-derived stilbenoid structurally related to resveratrol, with potential antioxidant, anti-inflammatory, pro-apoptotic, antineoplastic and cytoprotective activities. Upon administration, pterostilbene exerts its anti-oxidant activity by scavenging reactive oxygen species (ROS), thereby preventing oxidative stress and ROS-induced cell damage. It may also activate the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated pathway and increase the expression of various antioxidant enzymes, such as superoxide dismutase (SOD). In addition, pterostilbene is able to inhibit inflammation by reducing the expression of various inflammatory mediators, such as interleukin (IL) 1beta, tumor necrosis factor alpha (TNF-a), inducible nitric oxide synthase (iNOS), cyclooxygenases (COX), and nuclear factor kappa B (NF-kB). It also inhibits or prevents the activation of many signaling pathways involved in carcinogenesis, and increases expression of various tumor suppressor genes while decreasing expression of certain tumor promoting genes. It also directly induces apoptosis in tumor cells. See also: Pterocarpus marsupium wood (part of). A stilbenol that consists of trans-stilbene bearing a hydroxy group at position 4 as well as two methoxy substituents at positions 3 and 5. C26170 - Protective Agent > C275 - Antioxidant Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4]. Pterostilbene is a stilbenoid isolated from blueberries and Pterocarpus marsupium[1]. Shows anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and anti-obesity properties[1][4]. Pterostilbene blocks ROS production[3], also exhibits inhibitory activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide[4].

   

Isorhapontigenin

1,3-BENZENEDIOL, 5-(2-(4-HYDROXY-3-METHOXYPHENYL)ETHENYL)-, (E)-

C15H14O4 (258.0892044)


Isorhapontigenin is a stilbenoid. Isorhapontigenin is a natural product found in Smilax corbularia, Aiphanes horrida, and other organisms with data available. Isorhapontigenin, an orally bioavailable dietary polyphenol isolated from the Chinese herb Gnetum cleistostachyum, displays anti-inflammatory effects. Isorhapontigenin induces autophagy and inhibits invasive bladder cancer formation[1][2]. Isorhapontigenin, an orally bioavailable dietary polyphenol isolated from the Chinese herb Gnetum cleistostachyum, displays anti-inflammatory effects. Isorhapontigenin induces autophagy and inhibits invasive bladder cancer formation[1][2].

   

Mulberroside_A

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-4-((E)-3-hydroxy-5-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)styryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C26H32O14 (568.1791972)


Cis-Mulberroside A is a glycoside and a stilbenoid. Mulberroside A is a natural product found in Morus lhou, Schoenocaulon officinale, and other organisms with data available. Mulberroside A is one of the main bioactive constituent in mulberry (Morus alba L.)[1]. Mulberroside A decreases the expressions of TNF-α, IL-1β, and IL-6 and inhibits the activation of NALP3, caspase-1, and NF-κB and the phosphorylation of ERK, JNK, and p38, exhibiting anti-inflammatory antiapoptotic effects[2]. Mulberroside A shows inhibitory activity against mushroom tyrosinase with an IC50 of 53.6 μM[3]. Mulberroside A is one of the main bioactive constituent in mulberry (Morus alba L.)[1]. Mulberroside A decreases the expressions of TNF-α, IL-1β, and IL-6 and inhibits the activation of NALP3, caspase-1, and NF-κB and the phosphorylation of ERK, JNK, and p38, exhibiting anti-inflammatory antiapoptotic effects[2]. Mulberroside A shows inhibitory activity against mushroom tyrosinase with an IC50 of 53.6 μM[3].

   

Acetylresveratrol

ACETIC ACID 3-ACETOXY-5-[2-(4-ACETOXY-PHENYL)-VINYL]-PHENYL ESTER 95+\\%

C20H18O6 (354.1103328)


Acetic acid [4-[2-(3,5-diacetyloxyphenyl)ethenyl]phenyl] ester is a stilbenoid. Triacetylresveratrol, an acetylated analog of Resveratrol. Triacetylresveratrol decreases the phosphorylation of STAT3 and NF-κB in a dose- and time- dependent manner in PANC-1 and BxPC-3 cells. Anticancer effects[1]. Triacetylresveratrol, an acetylated analog of Resveratrol. Triacetylresveratrol decreases the phosphorylation of STAT3 and NF-κB in a dose- and time- dependent manner in PANC-1 and BxPC-3 cells. Anticancer effects[1].

   

Rhaponticin

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(3-hydroxy-4-methoxy-phenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C21H24O9 (420.14202539999997)


Trans-rhaponticin is a rhaponticin in which the double bond adopts a trans-configuration. It possesses a range of pharmacological activities including antitumour, antiinflammatory, antilipemic and neuroprotective activities. It has a role as an anti-inflammatory agent, a plant metabolite, a neuroprotective agent, an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a hypoglycemic agent, an anti-allergic agent and an antilipemic drug. Rhapontin is a natural product found in Rheum compactum, Rheum hotaoense, and other organisms with data available. A rhaponticin in which the double bond adopts a trans-configuration. It possesses a range of pharmacological activities including antitumour, antiinflammatory, antilipemic and neuroprotective activities. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1]. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].

   

Oxyresveratrol

(oxyresveratrol)4-[(E)-2-(3,5-dihydroxyphenyl)vinyl]benzene-1,3-diol

C14H12O4 (244.0735552)


Oxyresveratrol is a stilbenoid. Oxyresveratrol is a natural product found in Spirotropis longifolia, Melaleuca leucadendra, and other organisms with data available. Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4]. Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4].

   

Rhapontigenin

trans-1-(3,5-Dihydroxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)ethylene

C15H14O4 (258.0892044)


Rhapontigenin is a stilbenoid. Rhapontigenin is a natural product found in Rheum undulatum, Gnetum hainanense, and other organisms with data available. Rhapontigenin is a natural analog of resveratrol with anticancer, antioxidant, antifungal and antibacterial activities. Rhapontigenin is amechanism-based, potent and selective cytochrome P450 1A1?inactivator (IC50 ?= 400 nM). Rhapontigenin exhibits 400-fold and 23-fold selectivity for P450 1A1 over P450 1A2 and P450 1B1, respectively[1]. Rhapontigenin is a natural analog of resveratrol with anticancer, antioxidant, antifungal and antibacterial activities. Rhapontigenin is amechanism-based, potent and selective cytochrome P450 1A1?inactivator (IC50 ?= 400 nM). Rhapontigenin exhibits 400-fold and 23-fold selectivity for P450 1A1 over P450 1A2 and P450 1B1, respectively[1].

   

trans-Piceid

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1314612)


Trans-piceid is a stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. It has a role as a metabolite, a potassium channel modulator, an anti-arrhythmia drug, a hepatoprotective agent, an antioxidant, a nephroprotective agent and a geroprotector. It is a stilbenoid, a polyphenol, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-resveratrol. Polydatin, or Piceid, is a natural precursor and glycoside form of resveratrol with a monocrystalline structure. While it is isolated from the bark of *Picea sitchensis* or *Polygonum cuspidatum*, polydatin may be detected in grape, peanut, hop cones, red wines, hop pellets, cocoa-containing products, chocolate products and many daily diets. Polydatin possesses anti-inflammatory, immunoregulatory, anti-oxidative and anti-tumor activities. It is shown to mediate a cytotoxic action on colorectal cancer cells by inducing cell arrest and apoptosis. Polydatin is a natural product found in Vitis rupestris, Vitis labrusca, and other organisms with data available. trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices A stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

Salvianolic

BENZENEPROPANOIC ACID, .ALPHA.-(((2E)-3-(2-((1E)-2-(3,4-DIHYDROXYPHENYL)ETHENYL)-3,4-DIHYDROXYPHENYL)-1-OXO-2-PROPENYL)OXY)-3,4-DIHYDROXY-, (.ALPHA.R)-

C26H22O10 (494.1212912)


Salvianolic acid A is a stilbenoid. Salvianolic acid A is under investigation in clinical trial NCT03908242 (Phase I Study of Continuous Administration of Salvianolic Acid A Tablet). Salvianolic acid A is a natural product found in Salvia miltiorrhiza, Salvia flava, and other organisms with data available. D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors D000970 - Antineoplastic Agents Salvianolic acid A could protect the blood brain barrier through matrix metallopeptidase 9 (MMP-9) inhibition and anti-inflammation. Salvianolic acid A could protect the blood brain barrier through matrix metallopeptidase 9 (MMP-9) inhibition and anti-inflammation.

   

Deoxyrhapontin

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-methoxyphenyl)ethenyl]phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O8 (404.1471104)


Desoxyrhaponticin is a stilbenoid and a glycoside. Desoxyrhaponticin is a natural product found in Rheum palmatum, Rheum undulatum, and other organisms with data available. Desoxyrhaponticin is a kind of oral drug that inhibits effective fatty acid synthesis (FASN), and has a fatal effect on cancer cells. Desoxyrhaponticin has the ability to inhibit glucose uptake, improve oral glucose tolerance as a diabetic agent, and possess anti-diabetic effects[1][2]. Desoxyrhaponticin is a stilbene glycoside from the Tibetan nutritional food Rheum tanguticum Maxim. Desoxyrhaponticin is a Fatty acid synthase (FASN) inhibitor, and has apoptotic effect on human cancer cells[1]. Desoxyrhaponticin is a stilbene glycoside from the Tibetan nutritional food Rheum tanguticum Maxim. Desoxyrhaponticin is a Fatty acid synthase (FASN) inhibitor, and has apoptotic effect on human cancer cells[1].

   

Resveratrol trimethyl ether

3,5,4-Trimethoxy-trans-stilbene

C17H18O3 (270.1255878)


Trans-Trimethoxyresveratrol is a derivative of Resveratrol (RSV),and it may be a more potent anti-inflammatory, antiangiogenic and vascular-disrupting agent when compared with resveratrol. In vitro: The in vitro study of resveratrol and trans-Trimethoxyresveratrol showed rather weak cytotoxic effects on three cancer cell lines (HepG2, MCF-7, and MDA-MB-231), which contradicted a previous study reporting that resveratrol inhibited MCF-7 cells with an IC50 of about 10 μM. This discrepancy might be explained by the fact that the measurements were made 24 h after drug treatment, whereas the measurements of the previous study were taken 6 days after. The fact that the cytotoxic effect of trans-Trimethoxyresveratrol was lower than that of resveratrol is surprising, because in many studies, trans-Trimethoxyresveratrol is the most active analogue of resveratrol , although resveratrol shows much stronger antioxidant effects than that of trans-Trimethoxyresveratrol.[1] In vivo: Zebrafish embryos offer great advantage over their adults as well as other in vivo models because of the external development and optical transparency during their first few days, making them invaluable in the inspection of developmental processes. These unique advantages can even be made more useful when specific cell types are labeled with fluorescent probes. Zebrafish embryo in vivo, suggests that trans-Trimethoxyresveratrol has both more potent antiangiogenic activity and more importantly, stronger specific cytotoxic effects on endothelial cells than does resveratrol.[1] Trans-Trimethoxyresveratrol is a derivative of Resveratrol (RSV),and it may be a more potent anti-inflammatory, antiangiogenic and vascular-disrupting agent when compared with resveratrol. In vitro: The in vitro study of resveratrol and trans-Trimethoxyresveratrol showed rather weak cytotoxic effects on three cancer cell lines (HepG2, MCF-7, and MDA-MB-231), which contradicted a previous study reporting that resveratrol inhibited MCF-7 cells with an IC50 of about 10 μM. This discrepancy might be explained by the fact that the measurements were made 24 h after drug treatment, whereas the measurements of the previous study were taken 6 days after. The fact that the cytotoxic effect of trans-Trimethoxyresveratrol was lower than that of resveratrol is surprising, because in many studies, trans-Trimethoxyresveratrol is the most active analogue of resveratrol , although resveratrol shows much stronger antioxidant effects than that of trans-Trimethoxyresveratrol.[1] In vivo: Zebrafish embryos offer great advantage over their adults as well as other in vivo models because of the external development and optical transparency during their first few days, making them invaluable in the inspection of developmental processes. These unique advantages can even be made more useful when specific cell types are labeled with fluorescent probes. Zebrafish embryo in vivo, suggests that trans-Trimethoxyresveratrol has both more potent antiangiogenic activity and more importantly, stronger specific cytotoxic effects on endothelial cells than does resveratrol.[1]

   

Mulberroside A

(E)-3-[2-[4-(beta-D-Glucopyranosyloxy)-2-hydroxyphenyl]ethenyl]-5-hydroxyphenyl beta-D-glucopyranoside

C26H32O14 (568.1791972)


Mulberroside A is one of the main bioactive constituent in mulberry (Morus alba L.)[1]. Mulberroside A decreases the expressions of TNF-α, IL-1β, and IL-6 and inhibits the activation of NALP3, caspase-1, and NF-κB and the phosphorylation of ERK, JNK, and p38, exhibiting anti-inflammatory antiapoptotic effects[2]. Mulberroside A shows inhibitory activity against mushroom tyrosinase with an IC50 of 53.6 μM[3]. Mulberroside A is one of the main bioactive constituent in mulberry (Morus alba L.)[1]. Mulberroside A decreases the expressions of TNF-α, IL-1β, and IL-6 and inhibits the activation of NALP3, caspase-1, and NF-κB and the phosphorylation of ERK, JNK, and p38, exhibiting anti-inflammatory antiapoptotic effects[2]. Mulberroside A shows inhibitory activity against mushroom tyrosinase with an IC50 of 53.6 μM[3].

   

2,3,5,4-Tetrahydroxy stilbene 2-Ο-β-D-glucoside

2,3,4,5-Tetrahydroxystilbene 2-O-beta-D-glucopyranoside

C20H22O9 (406.1263762)


2,3,4',5-tetrahydroxystilbene 2-OD-glucoside is isolated from the roots of Polygonaceae species and inhibits the formation of 5-HETE, HHT and thromboxane B2. 2,3,5,4'-Tetrahydroxystilbene 2-O-β-D-glucoside isolats from the roots of Polygonaceae species, inhibits the formation of 5-HETE, HHT and thromboxane B2. 2,3,5,4'-Tetrahydroxystilbene 2-O-β-D-glucoside has hypotensive, anti-ageing, anti-inflammatory, hypolipidemic, cardioprotective, and neuroprotective actions[1][2]. 2,3,4',5-tetrahydroxystilbene 2-OD-glucoside is isolated from the roots of Polygonaceae species and inhibits the formation of 5-HETE, HHT and thromboxane B2.

   

4-Methoxyresveratrol

5-[2-(4-methoxyphenyl)vinyl]benzene-1,3-diol;(E)-5-(4-Methoxystyryl)benzene-1,3-diol

C15H14O3 (242.0942894)


5-[2-(4-methoxyphenyl)ethenyl]benzene-1,3-diol is a stilbenoid. (E)-5-(4-Methoxystyryl)benzene-1,3-diol is a natural product found in Alpinia hainanensis, Rheum undulatum, and other organisms with data available. 4'-Methoxyresveratrol (4'-O-Methylresveratrol) is a polyphenol derived from Dipterocarpaceae, with antiandrogenic, antifungal and anti-inflammatory activities. 4'-Methoxyresveratrol alleviates AGE-induced inflammation through suppressing RAGE-mediated MAPK/NF-κB signaling pathway and NLRP3 inflammasome activation[1]. 4'-Methoxyresveratrol (4'-O-Methylresveratrol) is a polyphenol derived from Dipterocarpaceae, with antiandrogenic, antifungal and anti-inflammatory activities. 4'-Methoxyresveratrol alleviates AGE-induced inflammation through suppressing RAGE-mediated MAPK/NF-κB signaling pathway and NLRP3 inflammasome activation[1].

   

Quzhaqigan

(2S,3R,4S,5S,6R)-2-(5-((E)-3,5-dihydroxystyryl)-2-hydroxyphenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C20H22O9 (406.1263762)


Piceatannol 3-O-glucoside is a natural product found in Rheum undulatum, Rheum rhabarbarum, and Rheum rhaponticum with data available. Piceatannol 3'-O-glucoside, an active component of Rhubarb, activates endothelial nitric oxide (NO) synthase through inhibition of arginase activity with IC50s of 11.22 μM and 11.06 μM against arginase I and arginase II, respectively. Piceatannol 3'-O-glucoside, an active component of Rhubarb, activates endothelial nitric oxide (NO) synthase through inhibition of arginase activity with IC50s of 11.22 μM and 11.06 μM against arginase I and arginase II, respectively.

   

CA 4P

Phenol, 2-methoxy-5-((1Z)-2-(3,4,5-trimethoxyphenyl)ethenyl)-, 1-(dihydrogen phosphate), sodium salt (1:2)

C18H19Na2O8P (440.0612904)


Fosbretabulin Disodium is the disodium salt of a water-soluble phosphate derivative of a natural stilbenoid phenol derived from the African bush willow (Combretum caffrum) with potential vascular disrupting and antineoplastic activities. Upon administration, the prodrug fosbretabulin is dephosphorylated to its active metabolite, the microtubule-depolymerizing agent combretastatin A4, which binds to tubulin dimers and prevents microtubule polymerization, resulting in mitotic arrest and apoptosis in endothelial cells. In addition, this agent disrupts the engagement of the endothelial cell-specific junctional molecule vascular endothelial-cadherin (VE-cadherin) and so the activity of the VE-cadherin/beta-catenin/Akt signaling pathway, which may result in the inhibition of endothelial cell migration and capillary tube formation. As a result of fosbretabulins dual mechanism of action, the tumor vasculature collapses, resulting in reduced tumor blood flow and ischemic necrosis of tumor tissue. Fosbretabulin disodium (CA 4DP) is a tubulin destabilizing agent. Fosbretabulin disodium is the Combretastatin A4 proagent that selectively targets endothelial cells, induces regression of nascent tumour neovessels, reduces tumour blood flow and causes central tumour necrosis[1][3].

   

(E)-3,5,4-Trimethoxystilbene

Benzene,1,3-dimethoxy-5-[(1E)-2-(4-methoxyphenyl)ethenyl]-

C17H18O3 (270.1255878)


(E)-3,5,4-Trimethoxystilbene is a natural product found in Dalea versicolor, Streptomyces avermitilis, and other organisms with data available. Trans-Trimethoxyresveratrol is a derivative of Resveratrol (RSV),and it may be a more potent anti-inflammatory, antiangiogenic and vascular-disrupting agent when compared with resveratrol. In vitro: The in vitro study of resveratrol and trans-Trimethoxyresveratrol showed rather weak cytotoxic effects on three cancer cell lines (HepG2, MCF-7, and MDA-MB-231), which contradicted a previous study reporting that resveratrol inhibited MCF-7 cells with an IC50 of about 10 μM. This discrepancy might be explained by the fact that the measurements were made 24 h after drug treatment, whereas the measurements of the previous study were taken 6 days after. The fact that the cytotoxic effect of trans-Trimethoxyresveratrol was lower than that of resveratrol is surprising, because in many studies, trans-Trimethoxyresveratrol is the most active analogue of resveratrol , although resveratrol shows much stronger antioxidant effects than that of trans-Trimethoxyresveratrol.[1] In vivo: Zebrafish embryos offer great advantage over their adults as well as other in vivo models because of the external development and optical transparency during their first few days, making them invaluable in the inspection of developmental processes. These unique advantages can even be made more useful when specific cell types are labeled with fluorescent probes. Zebrafish embryo in vivo, suggests that trans-Trimethoxyresveratrol has both more potent antiangiogenic activity and more importantly, stronger specific cytotoxic effects on endothelial cells than does resveratrol.[1] Trans-Trimethoxyresveratrol is a derivative of Resveratrol (RSV),and it may be a more potent anti-inflammatory, antiangiogenic and vascular-disrupting agent when compared with resveratrol. In vitro: The in vitro study of resveratrol and trans-Trimethoxyresveratrol showed rather weak cytotoxic effects on three cancer cell lines (HepG2, MCF-7, and MDA-MB-231), which contradicted a previous study reporting that resveratrol inhibited MCF-7 cells with an IC50 of about 10 μM. This discrepancy might be explained by the fact that the measurements were made 24 h after drug treatment, whereas the measurements of the previous study were taken 6 days after. The fact that the cytotoxic effect of trans-Trimethoxyresveratrol was lower than that of resveratrol is surprising, because in many studies, trans-Trimethoxyresveratrol is the most active analogue of resveratrol , although resveratrol shows much stronger antioxidant effects than that of trans-Trimethoxyresveratrol.[1] In vivo: Zebrafish embryos offer great advantage over their adults as well as other in vivo models because of the external development and optical transparency during their first few days, making them invaluable in the inspection of developmental processes. These unique advantages can even be made more useful when specific cell types are labeled with fluorescent probes. Zebrafish embryo in vivo, suggests that trans-Trimethoxyresveratrol has both more potent antiangiogenic activity and more importantly, stronger specific cytotoxic effects on endothelial cells than does resveratrol.[1]

   

Acetyl Resveratrol

ACETIC ACID 3-ACETOXY-5-[2-(4-ACETOXY-PHENYL)-VINYL]-PHENYL ESTER 95+\\%

C20H18O6 (354.1103328)


Acetic acid [4-[2-(3,5-diacetyloxyphenyl)ethenyl]phenyl] ester is a stilbenoid. Triacetylresveratrol, an acetylated analog of Resveratrol. Triacetylresveratrol decreases the phosphorylation of STAT3 and NF-κB in a dose- and time- dependent manner in PANC-1 and BxPC-3 cells. Anticancer effects[1]. Triacetylresveratrol, an acetylated analog of Resveratrol. Triacetylresveratrol decreases the phosphorylation of STAT3 and NF-κB in a dose- and time- dependent manner in PANC-1 and BxPC-3 cells. Anticancer effects[1].

   

Oxyresveratrol 2-O-β-D-glucopyranoside

(2S,3R,4S,5S,6R)-2-[2-[(E)-2-(3,5-dihydroxyphenyl)ethenyl]-5-hydroxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O9 (406.1263762)


Oxyresveratrol 2-O-beta-D-glucopyranoside is a natural product found in Schoenocaulon officinale, Morus alba, and Morus nigra with data available. Oxyresveratrol 2-O-β-D-glucopyranoside is a phenolic compound isolated from Morus nigra root and is an effective tyrosinase inhibitor with an IC50 of 29.75 μM[1].

   

Oxypalmatine

2,3,9,10-tetramethoxy-5,6-dihydroisoquinolino[2,1-b]isoquinolin-8-one

C21H21NO5 (367.14196560000005)


8-Oxypalmatine is a natural product found in Berberis actinacantha, Limaciopsis loangensis, and other organisms with data available. Oxypalmatine is isolated from Phellodendron amurense[1].

   

(E)-Astringin

E-3,4,5-Trihydroxy-3-glucopyranosylstilbene

C20H22O9 (406.1263762)


Astringin (trans-Astringin) is a natural glycoside found in the bark of Picea sitchensis and Picea abies (Norway spruce), in Vitis vinifera cell cultures and in wine. Astringin has potent antioxidant capacity and cancer-chemopreventive activity[1]. Astringin (trans-Astringin) is a natural glycoside found in the bark of Picea sitchensis and Picea abies (Norway spruce), in Vitis vinifera cell cultures and in wine. Astringin has potent antioxidant capacity and cancer-chemopreventive activity[1].

   

Polydatin

trans-Resveratrol 3-O-b-glucoside

C20H22O8 (390.1314612)


Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

Piceatannol

1,2-Benzenediol, {4-[2-(3,} 5-dihydroxyphenyl)ethenyl]-, (E)-

C14H12O4 (244.0735552)


C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4]. Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].

   

piceid

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1314612)


Origin: Plant, Glucosides, Stilbenes (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

Triacetylresveratrol

resveratrol triacetate

C20H18O6 (354.1103328)


Triacetylresveratrol, an acetylated analog of Resveratrol. Triacetylresveratrol decreases the phosphorylation of STAT3 and NF-κB in a dose- and time- dependent manner in PANC-1 and BxPC-3 cells. Anticancer effects[1]. Triacetylresveratrol, an acetylated analog of Resveratrol. Triacetylresveratrol decreases the phosphorylation of STAT3 and NF-κB in a dose- and time- dependent manner in PANC-1 and BxPC-3 cells. Anticancer effects[1].

   

Rhapontin

Rhapontin

C21H24O9 (420.14202539999997)


Rhapontin is a member of the class of compounds known as stilbene glycosides. Stilbene glycosides are compounds structurally characterized by the presence of a carbohydrate moiety glycosidically linked to the stilbene skeleton. Rhapontin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Rhapontin can be found in garden rhubarb, which makes rhapontin a potential biomarker for the consumption of this food product. Rhapontin has beneficial effects on diabetic mice, and in vitro results suggest it may be relevant to Alzheimers disease with an action on beta amyloid . Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1]. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].

   

Combrestatin A4

2-methoxy-5-[(1Z)-2-(3,4,5-trimethoxyphenyl)ethenyl]-phenol

C18H20O5 (316.13106700000003)


Combretastatin A4 is a microtubule-targeting agent that binds β-tubulin with Kd of 0.4 μM.

   

Fosbretabulin disodium

Combretastatin A4 disodium phosphate

C18H19Na2O8P (440.0612904)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D000970 - Antineoplastic Agents Fosbretabulin disodium (CA 4DP) is a tubulin destabilizing agent. Fosbretabulin disodium is the Combretastatin A4 proagent that selectively targets endothelial cells, induces regression of nascent tumour neovessels, reduces tumour blood flow and causes central tumour necrosis[1][3].

   

96574-01-5

Benzenepropanoic acid, alpha-((3-(2-(2-(3,4-dihydroxyphenyl)ethenyl)-3,4-dihydroxyphenyl)-1-oxo-2-propenyl)oxy)-3,4-dihydroxy-, (R-(E,E))-

C26H22O10 (494.1212912)


D004791 - Enzyme Inhibitors > D054328 - Proton Pump Inhibitors D000970 - Antineoplastic Agents Salvianolic acid A could protect the blood brain barrier through matrix metallopeptidase 9 (MMP-9) inhibition and anti-inflammation. Salvianolic acid A could protect the blood brain barrier through matrix metallopeptidase 9 (MMP-9) inhibition and anti-inflammation.

   

Cudranin

1,3-Benzenediol, 4-(2-(3,5-dihydroxyphenyl)ethenyl)-, (E)-

C14H12O4 (244.0735552)


Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4]. Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4].