Protocatechuic acid (BioDeep_00000000138)

 

Secondary id: BioDeep_00000400089, BioDeep_00000859384

natural product human metabolite PANOMIX_OTCML-2023 blood metabolite Chemicals and Drugs BioNovoGene_Lab2019


代谢物信息卡片


3,4-dihydroxybenzoic acid

化学式: C7H6O4 (154.0266)
中文名称: 3,4-二羟基苯甲酸, 原儿茶酸
谱图信息: 最多检出来源 Homo sapiens(feces) 30.82%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

Protocatechuic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/protocatechuic_acid (retrieved 2025-01-07) (BioDeep RN: BioDeep_00000000138). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: c1(c(cc(cc1)C(=O)O)O)O
InChI: InChI=1S/C7H6O4/c8-5-2-1-4(7(10)11)3-6(5)9/h1-3,8-9H,(H,10,11)

描述信息

Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment.
3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies .
3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate.
3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available.
Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae.
See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ...
A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4.

Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.
Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

同义名列表

62 个代谢物同义名

Protocatechuic acid, United States Pharmacopeia (USP) Reference Standard; Protocatechuic acid, primary pharmaceutical reference standard; InChI=1/C7H6O4/c8-5-2-1-4(7(10)11)3-6(5)9/h1-3,8-9H,(H,10,11; 3,4-Dihydroxybenzoic acid, Vetec(TM) reagent grade, 97\\%; PROTOCATECHOIC ACID (CONSTITUENT OF MARITIME PINE) [DSC]; PROTOCATECHOIC ACID (CONSTITUENT OF MARITIME PINE); 3,4-dihydroxybenzoate;3,4-Dihydroxybenzoic acid; 3,4-Dihydroxybenzoic acid, analytical standard; DROXIDOPA METABOLITE (PROTOCATECHOIC ACID); protocatechuic acid, carboxy-14C-labeled; 3,4-Dihydroxybenzoic acid, >=97.0\\% (T); 1,2-Dihydroxybenzene-4-carboxylic acid; protocatechuic acid, monosodium salt; 3,4-DIHYDROXYBENZOIC ACID [INCI]; Pyrocatechol-4-carboxylic Acid; 4-Carboxy-1,2-dihydroxybenzene; Benzoic acid, 3,4-dihydroxy-; DIHYDROXYBENZOIC ACID, 3,4-; 3,4-Dihydroxybenzoate, VIII; 3, 4-Dihydroxybenzoic acid; Catechol-4-carboxylic Acid; 3,4-Dihydroxy Benzoic Acid; 3,4-dihydroxy-benzoic acid; 4,5-Dihydroxybenzoic acid; 3,4-Dihydroxybenzoic acid; PROTOCATECHUIC ACID (PCA); 2,4-dihydroxybenzoic acid; Protocatechuic acid (M1); PROTOCATECHUIC ACID [MI]; Protocatechuic Acid,(S); Carbohydroquinonic acid; 4,5-Dihydroxybenzoate; 3,4-dihydroxybenzoate; 2,4-Dihydroxybenzoate; beta-Resorcylic acid; Proto-catechuic acid; Protacatechuic Acid; protocatechuic acid; PROTOCATECHOIC ACID; protocatechuicacid; Protocatehuic acid; ProtocatechicAcid; b-resorcylic acid; beta-Resorcylate; protocatechuate; Hypogallic acid; UNII-36R5QJ8L4B; Protocatehuate; Protocatechuic; b-Resorcylate; ZINCSELENITE; Tox21_200167; CAS-99-50-3; KSC-10-128; 36R5QJ8L4B; 3,4-DHBA; cid_72; 1ykp; 4fht; Protocatechuic acid; 3,4-Dihydroxybenzoate; 3,4-Dihydroxybenzoic acid



数据库引用编号

29 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(4)

BioCyc(0)

PlantCyc(0)

代谢反应

46 个相关的代谢反应过程信息。

Reactome(44)

BioCyc(0)

WikiPathways(2)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1482 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 AKT1, APOE, BCL2, HPGDS, MAPK14, MAPK8, NFE2L2, PIK3CA, PTGS2, RELA, SYK, TLR4, TYR, VEGFA
Peripheral membrane protein 3 ACHE, HSD17B6, PTGS2
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 2 BCL2, PTGS2
Nucleus 10 ACHE, AKT1, APOE, BCL2, MAPK14, MAPK8, NFE2L2, RELA, SYK, VEGFA
cytosol 10 AKT1, BCL2, GPT, HPGDS, MAPK14, MAPK8, NFE2L2, PIK3CA, RELA, SYK
dendrite 1 APOE
centrosome 1 NFE2L2
nucleoplasm 6 AKT1, HPGDS, MAPK14, MAPK8, NFE2L2, RELA
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 4 ACHE, AKT1, SYK, TLR4
lamellipodium 2 AKT1, PIK3CA
Early endosome membrane 1 HSD17B6
Synapse 2 ACHE, MAPK8
cell cortex 1 AKT1
cell surface 3 ACHE, TLR4, VEGFA
glutamatergic synapse 4 AKT1, APOE, MAPK14, RELA
Golgi apparatus 4 ACHE, APOE, NFE2L2, VEGFA
neuromuscular junction 1 ACHE
neuronal cell body 1 APOE
postsynapse 1 AKT1
Cytoplasm, cytosol 2 NFE2L2, SYK
Lysosome 1 TYR
plasma membrane 7 ACHE, AKT1, APOE, NFE2L2, PIK3CA, SYK, TLR4
Membrane 6 ACHE, AKT1, APOE, BCL2, TLR4, VEGFA
axon 2 CCK, MAPK8
caveola 1 PTGS2
extracellular exosome 2 APOE, GPT
Lumenal side 1 HSD17B6
endoplasmic reticulum 5 APOE, BCL2, HSD17B6, PTGS2, VEGFA
extracellular space 6 ACHE, APOE, CCK, CCL2, CXCL8, VEGFA
perinuclear region of cytoplasm 4 ACHE, PIK3CA, TLR4, TYR
adherens junction 1 VEGFA
intercalated disc 1 PIK3CA
mitochondrion 2 BCL2, MAPK14
protein-containing complex 4 AKT1, BCL2, PTGS2, SYK
intracellular membrane-bounded organelle 3 HPGDS, HSD17B6, TYR
Microsome membrane 2 HSD17B6, PTGS2
Single-pass type I membrane protein 2 TLR4, TYR
Secreted 6 ACHE, APOE, CCK, CCL2, CXCL8, VEGFA
extracellular region 7 ACHE, APOE, CCK, CCL2, CXCL8, MAPK14, VEGFA
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
Extracellular side 1 ACHE
transcription regulator complex 1 RELA
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TLR4
Endosome, multivesicular body 1 APOE
Extracellular vesicle 1 APOE
Secreted, extracellular space, extracellular matrix 2 APOE, VEGFA
chylomicron 1 APOE
high-density lipoprotein particle 1 APOE
low-density lipoprotein particle 1 APOE
multivesicular body 1 APOE
very-low-density lipoprotein particle 1 APOE
microtubule cytoskeleton 1 AKT1
Melanosome membrane 1 TYR
Early endosome 2 APOE, TLR4
cell-cell junction 1 AKT1
Golgi-associated vesicle 1 TYR
vesicle 1 AKT1
pore complex 1 BCL2
spindle 1 AKT1
extracellular matrix 2 APOE, VEGFA
basement membrane 1 ACHE
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 APOE
secretory granule 1 VEGFA
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 1 TLR4
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 2 NFE2L2, RELA
mediator complex 1 NFE2L2
phagocytic cup 1 TLR4
Secreted, extracellular space 1 APOE
spindle pole 1 MAPK14
blood microparticle 1 APOE
Lipid-anchor, GPI-anchor 1 ACHE
Melanosome 2 APOE, TYR
side of membrane 1 ACHE
myelin sheath 1 BCL2
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 2 APOE, PTGS2
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
clathrin-coated endocytic vesicle membrane 1 APOE
synaptic cleft 2 ACHE, APOE
protein-DNA complex 1 NFE2L2
basal dendrite 1 MAPK8
early phagosome 1 SYK
discoidal high-density lipoprotein particle 1 APOE
endocytic vesicle lumen 1 APOE
T cell receptor complex 1 SYK
chylomicron remnant 1 APOE
intermediate-density lipoprotein particle 1 APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
BAD-BCL-2 complex 1 BCL2
B cell receptor complex 1 SYK
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
NF-kappaB p50/p65 complex 1 RELA
[Isoform H]: Cell membrane 1 ACHE
NF-kappaB complex 1 RELA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA


文献列表

  • Teresa Deuchande, Joana F Fundo, Manuela E Pintado, Ana L Amaro. Protocatechuic acid as an inhibitor of lipid oxidation in meat. Meat science. 2024 Jul; 213(?):109519. doi: 10.1016/j.meatsci.2024.109519. [PMID: 38663116]
  • Karolina Jafernik, Paweł Kubica, Marta Sharafan, Aleksandra Kruk, Magdalena Anna Malinowska, Sebastian Granica, Agnieszka Szopa. Phenolic compound profiling and antioxidant potential of different types of Schisandra henryi in vitro cultures. Applied microbiology and biotechnology. 2024 May; 108(1):322. doi: 10.1007/s00253-024-13159-6. [PMID: 38713216]
  • Cem Baltacıoğlu, Hande Baltacıoğlu, İlhami Okur, Mehmet Yetişen, Hami Alpas. Recovery of phenolic compounds from peach pomace using conventional solvent extraction and different emerging techniques. Journal of food science. 2024 Mar; 89(3):1672-1683. doi: 10.1111/1750-3841.16972. [PMID: 38343298]
  • Jasmin Bayer, Petra Högger. Development and validation of a LC-MS/MS method for the quantification of phenolic compounds in human saliva after intake of a procyanidin-rich pine bark extract. Journal of pharmaceutical and biomedical analysis. 2024 Feb; 239(?):115914. doi: 10.1016/j.jpba.2023.115914. [PMID: 38101241]
  • Avery C Vilbert, Wayne S Kontur, Derek Gille, Daniel R Noguera, Timothy J Donohue. Engineering Novosphingobium aromaticivorans to produce cis,cis-muconic acid from biomass aromatics. Applied and environmental microbiology. 2024 Jan; 90(1):e0166023. doi: 10.1128/aem.01660-23. [PMID: 38117061]
  • Huafang Ding, Jianhui Liu, Zixing Chen, Shouhe Huang, Chi Yan, Erika Kwek, Zouyan He, Hanyue Zhu, Zhen-Yu Chen. Protocatechuic acid alleviates TMAO-aggravated atherosclerosis via mitigating inflammation, regulating lipid metabolism, and reshaping gut microbiota. Food & function. 2024 Jan; 15(2):881-893. doi: 10.1039/d3fo04396g. [PMID: 38165856]
  • Ning Li, Xia Du, Tong Qu, Hui Ren, Wenjing Lu, Xiaomin Cui, Jing Hu, Zhiyong Chen, Hongxun Tao. Pharmacodynamic material basis and pharmacological mechanisms of Cortex Mori against diabetes mellitus. Journal of ethnopharmacology. 2024 Jan; 324(?):117781. doi: 10.1016/j.jep.2024.117781. [PMID: 38253278]
  • Emad Hamdy Khedr, Nagwa Khedr. Enhancing productivity, modifying biochemical parameters, and regulating the phenylpropanoid pathway in 'Le-Conte' pears through optimal protocatechuic acid treatments. BMC plant biology. 2024 Jan; 24(1):50. doi: 10.1186/s12870-023-04715-9. [PMID: 38221634]
  • Inés Domínguez-López, Polina Galkina, Isabella Parilli-Moser, Camila Arancibia-Riveros, Miguel Ángel Martínez-González, Jordi Salas-Salvadó, Dolores Corella, Mireia Malcampo, J Alfredo Martínez, Lucas Tojal-Sierra, Julia Wärnberg, Jesús Vioque, Dora Romaguera, José López-Miranda, Ramon Estruch, Francisco J Tinahones, José Manuel Santos-Lozano, Lluís Serra-Majem, Aurora Bueno-Cavanillas, Josep A Tur, María Rubín-García, Xavier Pintó, Fernando Fernández-Aranda, Miguel Delgado-Rodríguez, Ana Barabash-Bustelo, Josep Vidal, Clotilde Vázquez, Lidia Daimiel, Emilio Ros, Estefania Toledo, Alessandro Atzeni, Eva M Asensio, Natàlia Vera, Antonio Garcia-Rios, Laura Torres-Collado, Napoleón Pérez-Farinós, Marian Zulet, Alice Chaplin, Rosa Casas, Sandra Martín-Peláez, Jessica Vaquero-Luna, Ana Maria Gómez-Pérez, Zenaida Vázquez-Ruiz, Sangeetha Shyam, Carolina Ortega-Azorín, Natàlia Talens, Patricia J Peña-Orihuela, Alejandro Oncina-Canovas, Javier Diez-Espino, Nancy Babio, Montserrat Fitó, Rosa M Lamuela-Raventós. Microbial Phenolic Metabolites Are Associated with Improved Cognitive Health. Molecular nutrition & food research. 2024 Jan; 68(2):e2300183. doi: 10.1002/mnfr.202300183. [PMID: 38062915]
  • Folake Asejeje, Sylvia Etim, Gbolahan Asejeje, Benneth Chukwudi Iwuoh, Sanmi Ibukunoluwa Akintade, Isaac Adedara, Ebenezer Olatunde Farombi. Protocatechuic acid modulates hepatic oxidative stress and inflammation linked to DMN exposure in rat. Nigerian journal of physiological sciences : official publication of the Physiological Society of Nigeria. 2023 Dec; 38(2):145-155. doi: 10.54548/njps.v38i2.4. [PMID: 38696681]
  • Kaixia Xu, Guang Lu, Qianjin Feng, Shuangchao Chen, Yonghui Wang. Hepatoprotective effect of protocatechuic acid against type 2 diabetes-induced liver injury. Pharmaceutical biology. 2023 Dec; 61(1):737-745. doi: 10.1080/13880209.2023.2181359. [PMID: 37129023]
  • Huiqing Piao, Wanchen Xie, Shiqi Li, Jiaqi Wang, Chao Liu, Peng Quan, Liang Fang. Ternary Deep Eutectic Solvents System of Colchicine, 4-Hydroxyacetophenone, and Protocatechuic Acid and Characterization of Transdermal Enhancement Mechanism. AAPS PharmSciTech. 2023 Nov; 24(8):229. doi: 10.1208/s12249-023-02681-x. [PMID: 37964102]
  • Chun-Yan Yin, Yuan-Pei Lian, Jian-Da Xu, Chan-Ming Liu, Jia-Li Cai, Li Zhu, Di-Jun Wang, Li-Bo Luo, Xiao-Jing Yan. Study on network pharmacology of Ginkgo biloba extract against ischaemic stroke mechanism and establishment of UPLC-MS/MS methods for simultaneous determination of 19 main active components. Phytochemical analysis : PCA. 2023 Sep; ?(?):. doi: 10.1002/pca.3286. [PMID: 37758241]
  • Nozomi Katsuki, Shunsuke Masuo, Noriyuki Nukui, Hajime Minakawa, Naoki Takaya. Gallic acid fermentation by metabolically engineered Escherichia coli producing p-hydroxybenzoate hydroxylase from Hylemonella gracilis NS1. The Journal of general and applied microbiology. 2023 Aug; ?(?):. doi: 10.2323/jgam.2023.08.004. [PMID: 37648467]
  • Tongjie Xiao, Mingyu Pan, Yuanxiao Wang, Yanjiao Huang, Makoto Tsunoda, Yingxia Zhang, Rong Wang, Wenting Hu, Haimei Yang, Lu-Shuang Li, Yanting Song. In vitro bloodbrain barrier permeability study of four main active ingredients from Alpiniae oxyphyllae fructus. Journal of pharmaceutical and biomedical analysis. 2023 Aug; 235(?):115637. doi: 10.1016/j.jpba.2023.115637. [PMID: 37634356]
  • Michael Sgro, Nicholas Chow, Farnaz Olyaie, Mark Arentshorst, Nicholas Geoffrion, Arthur F J Ram, Justin Powlowski, Adrian Tsang. Functional analysis of the protocatechuate branch of the β-ketoadipate pathway in Aspergillus niger. The Journal of biological chemistry. 2023 Jul; ?(?):105003. doi: 10.1016/j.jbc.2023.105003. [PMID: 37399977]
  • Chunliu Wang, Jie Zhou, Shixiang Wang, Yang Liu, Kaihua Long, Tingting Sun, Wenbing Zhi, Yang Yang, Hong Zhang, Ye Zhao, Xiaopu Zheng, Xiaohui Zheng, Ye Li, Pu Jia. Guanxining injection alleviates fibrosis in heart failure mice and regulates SLC7A11/GPX4 axis. Journal of ethnopharmacology. 2023 Jun; 310(?):116367. doi: 10.1016/j.jep.2023.116367. [PMID: 36914037]
  • Jin Li, Jianli Fu, Cheng Yue, Yanzhe Shang, Bang-Ce Ye. Highly Efficient Biosynthesis of Protocatechuic Acid via Recombinant Pseudomonas putida KT2440. Journal of agricultural and food chemistry. 2023 Jun; ?(?):. doi: 10.1021/acs.jafc.3c01511. [PMID: 37365996]
  • Qiaoli Zhao, Liuping Fan, Jinwei Li. High internal phase emulsion gels stabilized by phosphorylated perilla protein isolate for protecting hydrophobic nutrients: Adjusting emulsion performance by incorporating chitosan-protocatechuic acid conjugate. International journal of biological macromolecules. 2023 Jun; 239(?):124101. doi: 10.1016/j.ijbiomac.2023.124101. [PMID: 36958452]
  • Sen Shi, Jiabo Cheng, Naveed Ahmad, Wenyan Zhao, Mengfei Tian, Zhanyu Yuan, Chunying Li, Chunjian Zhao. Effects of potential allelochemicals in a water extract of Abutilon theophrasti Medik. on germination and growth of Glycine max L., Triticum aestivum L., and Zea mays L. Journal of the science of food and agriculture. 2023 Mar; 103(4):2155-2165. doi: 10.1002/jsfa.12315. [PMID: 36369956]
  • Qiaoli Zhao, Liuping Fan, Yulin Zhou, Jinwei Li. Effect of chitosan-protocatechuic acid conjugate on stability and encapsulation capacity of polysaccharide-based high internal phase emulsion. Carbohydrate polymers. 2023 Mar; 304(?):120487. doi: 10.1016/j.carbpol.2022.120487. [PMID: 36641160]
  • Abeer Salama, Rania Elgohary, Mohamed M Amin, Sahar Abd Elwahab. Impact of protocatechuic acid on alleviation of pulmonary damage induced by cyclophosphamide targeting peroxisome proliferator activator receptor, silent information regulator type-1, and fork head box protein in rats. Inflammopharmacology. 2023 Mar; ?(?):. doi: 10.1007/s10787-023-01156-6. [PMID: 36877411]
  • Yuyao Xiang, Ruolan Huang, Yongliang Wang, Shanshan Han, Xiaochen Qin, Zhenzhen Li, Xu Wang, Yuqing Han, Tao Wang, Bo Xia, Jiangwei Wu, Gongshe Yang. Protocatechuic Acid Ameliorates High Fat Diet-Induced Obesity and Insulin Resistance in Mice. Molecular nutrition & food research. 2023 Feb; 67(3):e2200244. doi: 10.1002/mnfr.202200244. [PMID: 36285395]
  • Yan Liu, Yucheng Zhang, Keke Zhang, Yue Wang. Protocatechuic acid reduces H2O2-induced migration and oxidative stress of fibroblast-like synoviocytes in rheumatoid arthritis by activating Nrf2-Keap1 signaling pathway. The Chinese journal of physiology. 2023 Jan; 66(1):28-35. doi: 10.4103/cjop.cjop-d-22-00087. [PMID: 36814154]
  • Jijun Tan, Ruizhi Hu, Jiatai Gong, Chengkun Fang, Yanli Li, Ming Liu, Ziyu He, De-Xing Hou, Hongfu Zhang, Jianhua He, Shusong Wu. Protection against Metabolic Associated Fatty Liver Disease by Protocatechuic Acid. Gut microbes. 2023 Jan; 15(1):2238959. doi: 10.1080/19490976.2023.2238959. [PMID: 37505920]
  • Qian Zhang, Meixuan Li, Guiyan Yang, Xiaoqiang Liu, Zhongdong Yu, Shaobing Peng. Protocatechuic acid, ferulic acid and relevant defense enzymes correlate closely with walnut resistance to Xanthomonas arboricola pv. juglandis. BMC plant biology. 2022 Dec; 22(1):598. doi: 10.1186/s12870-022-03997-9. [PMID: 36539704]
  • Yajun Shen, Hengyang Li, Ding Xiaoying, Zhilai Zhan, Qi An, Yuguang Zheng, Dan Zhang. Optimization of Extraction and Quality Evaluation of Abri Herba by Response Surface Methodology Combined with Quantitative Analysis of Multi-Components by Single Marker. Journal of AOAC International. 2022 Nov; ?(?):. doi: 10.1093/jaoacint/qsac149. [PMID: 36383190]
  • Kendal Erdem Duman, Abdulahad Dogan, Burak Kaptaner. Ameliorative role of Cyanus depressus (M.Bieb.) Soják plant extract against diabetes-associated oxidative-stress-induced liver, kidney, and pancreas damage in rats. Journal of food biochemistry. 2022 10; 46(10):e14314. doi: 10.1111/jfbc.14314. [PMID: 35802765]
  • Qiaoli Zhao, Liuping Fan, Yuanfa Liu, Jinwei Li. Fabrication of chitosan-protocatechuic acid conjugates to inhibit lipid oxidation and improve the stability of β-carotene in Pickering emulsions: Effect of molecular weight of chitosan. International journal of biological macromolecules. 2022 Sep; 217(?):1012-1026. doi: 10.1016/j.ijbiomac.2022.07.222. [PMID: 35926669]
  • Solomon E Owumi, Samuel A Bello, Temitope B Idowu, Uche O Arunsi, Adegboyega K Oyelere. Protocatechuic acid protects against hepatorenal toxicities in rats exposed to Furan. Drug and chemical toxicology. 2022 Jul; 45(4):1840-1850. doi: 10.1080/01480545.2021.1890109. [PMID: 33645375]
  • Ruiyang Sun, Ying Zhang, Weiwei Tang, Bin Li. Submicron 3,4-dihydroxybenzoic acid-TiO2 composite particles for enhanced MALDI MS imaging of secondary metabolites in the root of differently aged baical skullcap. The Analyst. 2022 Jun; 147(13):3017-3024. doi: 10.1039/d2an00710j. [PMID: 35639347]
  • Charatda Punvittayagul, Theerapat Luangsuphabool, Rawiwan Wongpoomchai. Protocatechuic acid as a potent anticarcinogenic compound in purple rice bran against diethylnitrosamine-initiated rat hepatocarcinogenesis. Scientific reports. 2022 06; 12(1):10548. doi: 10.1038/s41598-022-14888-2. [PMID: 35732709]
  • Heena Khan, Amarjot Kaur Grewal, Manish Kumar, Thakur Gurjeet Singh. Pharmacological Postconditioning by Protocatechuic Acid Attenuates Brain Injury in Ischemia-Reperfusion (I/R) Mice Model: Implications of Nuclear Factor Erythroid-2-Related Factor Pathway. Neuroscience. 2022 05; 491(?):23-31. doi: 10.1016/j.neuroscience.2022.03.016. [PMID: 35314251]
  • Rehab S Abdelrahman, Ghada S El-Tanbouly. Protocatechuic acid protects against thioacetamide-induced chronic liver injury and encephalopathy in mice via modulating mTOR, p53 and the IL-6/ IL-17/ IL-23 immunoinflammatory pathway. Toxicology and applied pharmacology. 2022 04; 440(?):115931. doi: 10.1016/j.taap.2022.115931. [PMID: 35202709]
  • Rami B Kassab, Abdulrahman Theyab, Ali O Al-Ghamdy, Mohammad Algahtani, Ahmad H Mufti, Khalaf F Alsharif, Ehab M Abdella, Ola A Habotta, Mohamed M Omran, Maha S Lokman, Amira A Bauomy, Ashraf Albrakati, Roua S Baty, Khalid E Hassan, Maha A Alshiekheid, Ahmed E Abdel Moneim, Heba A Elmasry. Protocatechuic acid abrogates oxidative insults, inflammation, and apoptosis in liver and kidney associated with monosodium glutamate intoxication in rats. Environmental science and pollution research international. 2022 Feb; 29(8):12208-12221. doi: 10.1007/s11356-021-16578-4. [PMID: 34562213]
  • Hui Li, Tingting Zheng, Fuzhi Lian, Tong Xu, Wenya Yin, Yugang Jiang. Anthocyanin-rich blueberry extracts and anthocyanin metabolite protocatechuic acid promote autophagy-lysosomal pathway and alleviate neurons damage in in vivo and in vitro models of Alzheimer's disease. Nutrition (Burbank, Los Angeles County, Calif.). 2022 Jan; 93(?):111473. doi: 10.1016/j.nut.2021.111473. [PMID: 34739938]
  • Yunxiao Gao, Rongrong Tian, Haiyue Liu, Huimin Xue, Ruizhe Zhang, Suping Han, Lin Ji, Weidong Huang, Jicheng Zhan, Yilin You. Research progress on intervention effect and mechanism of protocatechuic acid on nonalcoholic fatty liver disease. Critical reviews in food science and nutrition. 2022; 62(32):9053-9075. doi: 10.1080/10408398.2021.1939265. [PMID: 34142875]
  • Ziqiang Li, Xi Du, Yanfen Li, Ruihua Wang, Changxiao Liu, Yanguang Cao, Weidang Wu, Jinxia Sun, Baohe Wang, Yuhong Huang. Pharmacokinetics of gallic acid and protocatechuic acid in humans after dosing with Relinqing (RLQ) and the potential for RLQ-perpetrated drug-drug interactions on organic anion transporter (OAT) 1/3. Pharmaceutical biology. 2021 Dec; 59(1):757-768. doi: 10.1080/13880209.2021.1934039. [PMID: 34144662]
  • Hyun-Kyung Song, Sun Haeng Park, Hye Jin Kim, Seol Jang, Taesoo Kim. Alpinia officinarum water extract inhibits the atopic dermatitis-like responses in NC/Nga mice by regulation of inflammatory chemokine production. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Dec; 144(?):112322. doi: 10.1016/j.biopha.2021.112322. [PMID: 34656059]
  • Yimin Zhao, Zouyan He, Wangjun Hao, Hanyue Zhu, Jianhui Liu, Ka Ying Ma, Wen-Sen He, Zhen-Yu Chen. Cholesterol-lowering activity of protocatechuic acid is mediated by increasing the excretion of bile acids and modulating gut microbiota and producing short-chain fatty acids. Food & function. 2021 Nov; 12(22):11557-11567. doi: 10.1039/d1fo02906a. [PMID: 34709262]
  • Lulu Meng, Cuicui Sun, Liyong Gao, Muhammad Saleem, Baohua Li, Caixia Wang. Hydroxybenzoate hydroxylase genes underlying protocatechuic acid production in Valsa mali are required for full pathogenicity in apple trees. Molecular plant pathology. 2021 11; 22(11):1370-1382. doi: 10.1111/mpp.13119. [PMID: 34390112]
  • Rosaria Acquaviva, Barbara Tomasello, Claudia Di Giacomo, Rosa Santangelo, Alfonsina La Mantia, Irina Naletova, Maria Grazia Sarpietro, Francesco Castelli, Giuseppe Antonio Malfa. Protocatechuic Acid, a Simple Plant Secondary Metabolite, Induced Apoptosis by Promoting Oxidative Stress through HO-1 Downregulation and p21 Upregulation in Colon Cancer Cells. Biomolecules. 2021 10; 11(10):. doi: 10.3390/biom11101485. [PMID: 34680118]
  • Marwa E Abdelmageed, Manar A Nader, Marwa S Zaghloul. Targeting HMGB1/TLR4/NF-κB signaling pathway by protocatechuic acid protects against l-arginine induced acute pancreatitis and multiple organs injury in rats. European journal of pharmacology. 2021 Sep; 906(?):174279. doi: 10.1016/j.ejphar.2021.174279. [PMID: 34197778]
  • Beatrice Scazzocchio, Tiziana Filardi, Rosaria Varì, Roberto Brunelli, Paola Galoppi, Susanna Morano, Roberta Masella, Carmela Santangelo. Protocatechuic acid influences immune-metabolic changes in the adipose tissue of pregnant women with gestational diabetes mellitus. Food & function. 2021 Aug; 12(16):7490-7500. doi: 10.1039/d1fo00267h. [PMID: 34213517]
  • Joel B Johnson, Daniel J Skylas, Janice S Mani, Jinle Xiang, Kerry B Walsh, Mani Naiker. Phenolic Profiles of Ten Australian Faba Bean Varieties. Molecules (Basel, Switzerland). 2021 Jul; 26(15):. doi: 10.3390/molecules26154642. [PMID: 34361795]
  • Sally A Habib, Ghada M Suddek, Mona Abdel Rahim, Rehab S Abdelrahman. The protective effect of protocatechuic acid on hepatotoxicity induced by cisplatin in mice. Life sciences. 2021 Jul; 277(?):119485. doi: 10.1016/j.lfs.2021.119485. [PMID: 33864821]
  • Fuli Ya, Kongyao Li, Hong Chen, Zezhong Tian, Die Fan, Yilin Shi, Fenglin Song, Xiping Xu, Wenhua Ling, Reheman Adili, Yan Yang. Protocatechuic Acid Protects Platelets from Apoptosis via Inhibiting Oxidative Stress-Mediated PI3K/Akt/GSK3β Signaling. Thrombosis and haemostasis. 2021 Jul; 121(7):931-943. doi: 10.1055/s-0040-1722621. [PMID: 33545736]
  • Ronnie J M Lubbers, Ronald P de Vries. Production of Protocatechuic Acid from p-Hydroxyphenyl (H) Units and Related Aromatic Compounds Using an Aspergillus niger Cell Factory. mBio. 2021 06; 12(3):e0039121. doi: 10.1128/mbio.00391-21. [PMID: 34154420]
  • Sunday O Oyedemi, Kingsley Eze, Olayinka A Aiyegoro, Raymond C Ibeh, Gavin C Ikechukwu, Shasank S Swain, Emmanuel Ejiofor, Blessing O Oyedemi. Computational, chemical profiling and biochemical evaluation of antidiabetic potential of Parkia biglobosa stem bark extract in type 2 model of rats. Journal of biomolecular structure & dynamics. 2021 Jun; ?(?):1-14. doi: 10.1080/07391102.2021.1938228. [PMID: 34180357]
  • Tiago Ferreira, Elisabete Nascimento-Gonçalves, Sara Macedo, Inês Borges, Adelina Gama, Rui M Gil da Costa, Maria J Neuparth, Germano Lanzarin, Carlos Venâncio, Luís Félix, Isabel Gaivão, Antonieta Alvarado, Maria J Pires, Margarida M S M Bastos, Rui Medeiros, António Nogueira, Lillian Barros, Isabel C F R Ferreira, Eduardo Rosa, Paula A Oliveira. Toxicological and anti-tumor effects of a linden extract (Tilia platyphyllos Scop.) in a HPV16-transgenic mouse model. Food & function. 2021 May; 12(9):4005-4014. doi: 10.1039/d1fo00225b. [PMID: 33978005]
  • Vishnu N Thakare, Sameer H Lakade, Moreshwar P Mahajan, Yogesh P Kulkarni, Valmik D Dhakane, Minal T Harde, Bhoomika M Patel. Protocatechuic acid attenuates chronic unpredictable mild stress induced-behavioral and biochemical alterations in mice. European journal of pharmacology. 2021 May; 898(?):173992. doi: 10.1016/j.ejphar.2021.173992. [PMID: 33675783]
  • Jigang Zhang, Maoye Li, Jianghua Cheng, Xinhong Zhang, Kexin Li, Bin Li, Chuyan Wang, Xinmin Liu. Viscozyme L hydrolysis and Lactobacillus fermentation increase the phenolic compound content and antioxidant properties of aqueous solutions of quinoa pretreated by steaming with α-amylase. Journal of food science. 2021 May; 86(5):1726-1736. doi: 10.1111/1750-3841.15680. [PMID: 33844283]
  • Bo Cui, Zhe Yang, Shuning Wang, Mengnan Guo, Qianqian Li, Qiuhua Zhang, Xiuli Bi. The protective role of protocatechuic acid against chemically induced liver fibrosis in vitro and in vivo. Die Pharmazie. 2021 05; 76(5):232-238. doi: 10.1691/ph.2021.0909. [PMID: 33964998]
  • Fahad Y Al-Juhaimi, Kashif Ghafoor, Mehmet Musa Özcan, Nurhan Uslu, Elfadıl E Babiker, Isam A Mohamed Ahmed, Omer N Alsawmahi. Phenolic Compounds, Antioxidant Activity and Fatty Acid Composition of Roasted Alyanak Apricot Kernel. Journal of oleo science. 2021 May; 70(5):607-613. doi: 10.5650/jos.ess20294. [PMID: 33840664]
  • Paul Thomas, Emmanuel Essien, Anwanabasi Udoh, Bright Archibong, Ofonasaha Akpan, Emediong Etukudo, Marinella De Leo, Olorunfemi Eseyin, Guido Flamini, Kola' Ajibesin. Isolation and characterization of anti-inflammatory and analgesic compounds from Uapaca staudtii Pax (Phyllanthaceae) stem bark. Journal of ethnopharmacology. 2021 Apr; 269(?):113737. doi: 10.1016/j.jep.2020.113737. [PMID: 33359855]
  • Marwa E Abdelmageed, George S G Shehatou, Ghada M Suddek, Hatem A Salem. Protocatechuic acid improves hepatic insulin resistance and restores vascular oxidative status in type-2 diabetic rats. Environmental toxicology and pharmacology. 2021 Apr; 83(?):103577. doi: 10.1016/j.etap.2020.103577. [PMID: 33383195]
  • Anne A Adeyanju, Folake O Asejeje, Olorunfemi R Molehin, Olatunde Owoeye, Esther O Olatoye, Emmanuel N Ekpo. Protective role of protocatechuic acid in carbon tetrachloride-induced oxidative stress via modulation of proinflammatory cytokines levels in brain and liver of Wistar rats. Journal of basic and clinical physiology and pharmacology. 2021 Mar; 33(2):143-154. doi: 10.1515/jbcpp-2020-0202. [PMID: 33735948]
  • Dimas Rahadian Aji Muhammad, Emmy Tuenter, Graha Darma Patria, Kenn Foubert, Luc Pieters, Koen Dewettinck. Phytochemical composition and antioxidant activity of Cinnamomum burmannii Blume extracts and their potential application in white chocolate. Food chemistry. 2021 Mar; 340(?):127983. doi: 10.1016/j.foodchem.2020.127983. [PMID: 32919354]
  • Zhaoxia Li, Yujuan Liu, Fang Wang, Zhuanglei Gao, Mohamed A Elhefny, Ola A Habotta, Ahmed E Abdel Moneim, Rami B Kassab. Neuroprotective effects of protocatechuic acid on sodium arsenate induced toxicity in mice: Role of oxidative stress, inflammation, and apoptosis. Chemico-biological interactions. 2021 Mar; 337(?):109392. doi: 10.1016/j.cbi.2021.109392. [PMID: 33497687]
  • Jiao Song, Yanan He, Chuanhong Luo, Bi Feng, Fei Ran, Hong Xu, Zhimin Ci, Runchun Xu, Li Han, Dingkun Zhang. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacological research. 2020 11; 161(?):105109. doi: 10.1016/j.phrs.2020.105109. [PMID: 32738494]
  • O B Ibitoye, T O Ajiboye. Protocatechuic acid protects against menadione-induced liver damage by up-regulating nuclear erythroid-related factor 2. Drug and chemical toxicology. 2020 Nov; 43(6):567-573. doi: 10.1080/01480545.2018.1523187. [PMID: 30585516]
  • Young Hye Seo, Tuy An Trinh, Seung Mok Ryu, Hyo Seon Kim, Goya Choi, Byeong Cheol Moon, Sang Hee Shim, Dae Sik Jang, Dongho Lee, Ki Sung Kang, Jun Lee. Chemical Constituents from the Aerial Parts of Elsholtzia ciliata and Their Protective Activities on Glutamate-Induced HT22 Cell Death. Journal of natural products. 2020 10; 83(10):3149-3155. doi: 10.1021/acs.jnatprod.0c00756. [PMID: 32991171]
  • Liang Li, Shuo Liu, Hanbo Tang, Shiqiu Song, Lin Lu, Peng Zhang, Xiaoling Li. Effects of protocatechuic acid on ameliorating lipid profiles and cardio-protection against coronary artery disease in high fat and fructose diet fed in rats. The Journal of veterinary medical science. 2020 Oct; 82(9):1387-1394. doi: 10.1292/jvms.20-0245. [PMID: 32669485]
  • Jing Zhang, Danni Wang, Xiaoyu Zhang, Jing Yang, Xin Chai, Yuefei Wang. Application of 'spider-web' mode in discovery and identification of Q-markers from Xuefu Zhuyu capsule. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Oct; 77(?):153273. doi: 10.1016/j.phymed.2020.153273. [PMID: 32663710]
  • Jung Ran Choi, Ji Hyun Kim, Sanghyun Lee, Eun Ju Cho, Hyun Young Kim. Protective effects of protocatechuic acid against cognitive impairment in an amyloid beta-induced Alzheimer's disease mouse model. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2020 Oct; 144(?):111571. doi: 10.1016/j.fct.2020.111571. [PMID: 32679284]
  • Francesca Danesi, Bjørk D Larsen, Mattia Di Nunzio, Ronni Nielsen, Dario de Biase, Veronica Valli, Susanne Mandrup, Alessandra Bordoni. Co-Administration of Propionate or Protocatechuic Acid Does Not Affect DHA-Specific Transcriptional Effects on Lipid Metabolism in Cultured Hepatic Cells. Nutrients. 2020 Sep; 12(10):. doi: 10.3390/nu12102952. [PMID: 32993128]
  • Natthaporn Phonsatta, Claudia Grajeda-Iglesias, Maria Cruz Figueroa-Espinoza, Bruno Baréa, Jérôme Lecomte, Wonnop Visessanguan, Erwann Durand, Pierre Villeneuve, Wanaporn Tapingkae, Atikorn Panya. Investigation on the Double CutOff Phenomenon Observed in Protocatechuic Acid and Its Alkyl Esters under Various CAT-Based Assays. Journal of agricultural and food chemistry. 2020 Sep; 68(35):9568-9575. doi: 10.1021/acs.jafc.0c03825. [PMID: 32786852]
  • Fiona Mary Antony, Kailas Wasewar. Reactive extraction: a promising approach to separate protocatechuic acid. Environmental science and pollution research international. 2020 Aug; 27(22):27345-27357. doi: 10.1007/s11356-019-06094-x. [PMID: 31388958]
  • Olubukola O Akanni, Solomon E Owumi, Olusegun G Olowofela, Adebukola A Adeyanju, Olusoji J Abiola, Oluwatosin A Adaramoye. Protocatechuic acid ameliorates testosterone-induced benign prostatic hyperplasia through the regulation of inflammation and oxidative stress in castrated rats. Journal of biochemical and molecular toxicology. 2020 Aug; 34(8):e22502. doi: 10.1002/jbt.22502. [PMID: 32227675]
  • Gustavo Heinrich Lang, Dianini Hüttner Kringel, Tanize Dos Santos Acunha, Cristiano Dietrich Ferreira, Álvaro Renato Guerra Dias, Elessandra da Rosa Zavareze, Maurício de Oliveira. Cake of brown, black and red rice: Influence of transglutaminase on technological properties, in vitro starch digestibility and phenolic compounds. Food chemistry. 2020 Jul; 318(?):126480. doi: 10.1016/j.foodchem.2020.126480. [PMID: 32143133]
  • Yuting Li, Haiping Qi, Meiqi Fan, Zixing Zhu, Shijie Zhan, Lin Li, Bing Li, Xia Zhang, Xianglong Zhao, Jingjing Ma, Lifeng Wang. Quantifying the efficiency of o-benzoquinones reaction with amino acids and related nucleophiles by cyclic voltammetry. Food chemistry. 2020 Jul; 317(?):126454. doi: 10.1016/j.foodchem.2020.126454. [PMID: 32113140]
  • Gabriela Boscariol Rasera, Marina Hermenegildo Hilkner, Ruann Janser Soares de Castro. Free and insoluble-bound phenolics: How does the variation of these compounds affect the antioxidant properties of mustard grains during germination?. Food research international (Ottawa, Ont.). 2020 07; 133(?):109115. doi: 10.1016/j.foodres.2020.109115. [PMID: 32466905]
  • Ebtesam M Al Olayan, Abeer S Aloufi, Ohoud D AlAmri, Ola H El-Habit, Ahmed E Abdel Moneim. Protocatechuic acid mitigates cadmium-induced neurotoxicity in rats: Role of oxidative stress, inflammation and apoptosis. The Science of the total environment. 2020 Jun; 723(?):137969. doi: 10.1016/j.scitotenv.2020.137969. [PMID: 32392679]
  • Kelvin Anderson, Nathan Ryan, Arham Siddiqui, Travis Pero, Greta Volpedo, Jessica L Cooperstone, Steve Oghumu. Black Raspberries and Protocatechuic Acid Mitigate DNFB-Induced Contact Hypersensitivity by Down-Regulating Dendritic Cell Activation and Inhibiting Mediators of Effector Responses. Nutrients. 2020 Jun; 12(6):. doi: 10.3390/nu12061701. [PMID: 32517233]
  • Shan Chen, Ruiyu Lin, Haoliang Lu, Qiang Wang, Jinjin Yang, Jingchun Liu, Chongling Yan. Effects of phenolic acids on free radical scavenging and heavy metal bioavailability in kandelia obovata under cadmium and zinc stress. Chemosphere. 2020 Jun; 249(?):126341. doi: 10.1016/j.chemosphere.2020.126341. [PMID: 32213393]
  • Regina G Daré, Ana Costa, Celso V Nakamura, Maria C T Truiti, Valdecir F Ximenes, Sueli O S Lautenschlager, Bruno Sarmento. Evaluation of lipid nanoparticles for topical delivery of protocatechuic acid and ethyl protocatechuate as a new photoprotection strategy. International journal of pharmaceutics. 2020 May; 582(?):119336. doi: 10.1016/j.ijpharm.2020.119336. [PMID: 32304728]
  • Yazhen Chen, Hetong Lin, Mengshi Lin, Yongzhan Zheng, Jicheng Chen. Effect of roasting and in vitro digestion on phenolic profiles and antioxidant activity of water-soluble extracts from sesame. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2020 May; 139(?):111239. doi: 10.1016/j.fct.2020.111239. [PMID: 32145351]
  • Jiakun Zheng, Qing Li, Luanying He, Hui Weng, Dongfang Su, Xiuping Liu, Wenhua Ling, Dongliang Wang. Protocatechuic Acid Inhibits Vulnerable Atherosclerotic Lesion Progression in Older Apoe-/- Mice. The Journal of nutrition. 2020 05; 150(5):1167-1177. doi: 10.1093/jn/nxaa017. [PMID: 32047914]
  • Serene Hilary, Francisco A Tomás-Barberán, J Alberto Martinez-Blazquez, Jaleel Kizhakkayil, Usama Souka, Suleiman Al-Hammadi, Hosam Habib, Wissam Ibrahim, Carine Platat. Polyphenol characterisation of Phoenix dactylifera L. (date) seeds using HPLC-mass spectrometry and its bioaccessibility using simulated in-vitro digestion/Caco-2 culture model. Food chemistry. 2020 May; 311(?):125969. doi: 10.1016/j.foodchem.2019.125969. [PMID: 31864186]
  • Katarzyna Grzelak-Błaszczyk, Joanna Milala, Krzysztof Kołodziejczyk, Michał Sójka, Andrzej Czarnecki, Monika Kosmala, Robert Klewicki, Bartosz Fotschki, Adam Jurgoński, Jerzy Juśkiewicz. Protocatechuic acid and quercetin glucosides in onions attenuate changes induced by high fat diet in rats. Food & function. 2020 Apr; 11(4):3585-3597. doi: 10.1039/c9fo02633a. [PMID: 32285077]
  • Rhitu Kotoky, Piyush Pandey. Rhizosphere assisted biodegradation of benzo(a)pyrene by cadmium resistant plant-probiotic Serratia marcescens S2I7, and its genomic traits. Scientific reports. 2020 03; 10(1):5279. doi: 10.1038/s41598-020-62285-4. [PMID: 32210346]
  • Ding-Tao Wu, Xi-Rui Nie, Dan-Dan Shen, Hong-Yi Li, Li Zhao, Qing Zhang, De-Rong Lin, Wen Qin. Phenolic Compounds, Antioxidant Activities, and Inhibitory Effects on Digestive Enzymes of Different Cultivars of Okra (Abelmoschus esculentus). Molecules (Basel, Switzerland). 2020 Mar; 25(6):. doi: 10.3390/molecules25061276. [PMID: 32168896]
  • Saber Jedidi, Houcine Selmi, Foued Aloui, Kais Rtibi, Mourad Jridi, Chaâbane Abbes, Hichem Sebai. Comparative Studies of Phytochemical Screening, HPLC-PDA-ESI-MS/MS-LC/HR-ESI-MS Analysis, Antioxidant Capacity and in Vitro Fermentation of Officinal Sage (Salvia officinalis L.) Cultivated in Different Biotopes of Northwestern Tunisia. Chemistry & biodiversity. 2020 Jan; 17(1):e1900394. doi: 10.1002/cbdv.201900394. [PMID: 31618522]
  • Regina G Daré, Mariana M Oliveira, Maria C T Truiti, Celso V Nakamura, Valdecir F Ximenes, Sueli O S Lautenschlager. Abilities of protocatechuic acid and its alkyl esters, ethyl and heptyl protocatechuates, to counteract UVB-induced oxidative injuries and photoaging in fibroblasts L929 cell line. Journal of photochemistry and photobiology. B, Biology. 2020 Jan; 203(?):111771. doi: 10.1016/j.jphotobiol.2019.111771. [PMID: 31911399]
  • Hejia Hu, Linlin Wu, Mei Li, Cun Xue, Guangcheng Wang, Siying Chen, Yong Huang, Lin Zheng, Aimin Wang, Yueting Li, Zipeng Gong. Comparative absorption kinetics of seven active ingredients of Eucommia ulmoides extracts by intestinal in situ circulatory perfusion in normal and spontaneous hypertensive rats. Biomedical chromatography : BMC. 2020 Jan; 34(1):e4714. doi: 10.1002/bmc.4714. [PMID: 31633806]
  • Jillian N Eskra, Alaina Dodge, Michael J Schlicht, Maarten C Bosland. Effects of Black Raspberries and Their Constituents on Rat Prostate Carcinogenesis and Human Prostate Cancer Cell Growth In Vitro. Nutrition and cancer. 2020; 72(4):672-685. doi: 10.1080/01635581.2019.1650943. [PMID: 31402717]
  • Yuqi Mei, Lifang Wei, Chuan Chai, Lisi Zou, Xunhong Liu, Jiali Chen, Mengxia Tan, Chengcheng Wang, Zhichen Cai, Furong Zhang, Shengxin Yin. A Method to Study the Distribution Patterns for Metabolites in Xylem and Phloem of Spatholobi Caulis. Molecules (Basel, Switzerland). 2019 Dec; 25(1):. doi: 10.3390/molecules25010167. [PMID: 31906156]
  • Yomna A El-Sonbaty, Ghada M Suddek, Nirmeen Megahed, Nariman M Gameil. Protocatechuic acid exhibits hepatoprotective, vasculoprotective, antioxidant and insulin-like effects in dexamethasone-induced insulin-resistant rats. Biochimie. 2019 Dec; 167(?):119-134. doi: 10.1016/j.biochi.2019.09.011. [PMID: 31557503]
  • S E Owumi, I J Ajijola, O M Agbeti. Hepatorenal protective effects of protocatechuic acid in rats administered with anticancer drug methotrexate. Human & experimental toxicology. 2019 Nov; 38(11):1254-1265. doi: 10.1177/0960327119871095. [PMID: 31431087]
  • Hyun-Dong Cho, Jeong-Ho Kim, Yeong-Seon Won, Kwang-Deok Moon, Kwon-Il Seo. Inhibitory Effects of Pectinase-Treated Prunus Mume Fruit Concentrate on Colorectal Cancer Proliferation and Angiogenesis of Endothelial Cells. Journal of food science. 2019 Nov; 84(11):3284-3295. doi: 10.1111/1750-3841.14824. [PMID: 31618463]
  • Yong Huang, Zuying Zhou, Wu Yang, Zipeng Gong, Yueting Li, Siying Chen, Yonglin Wang, Aimin Wang, Yanyu Lan, Ting Liu, Lin Zheng. Comparative Pharmacokinetics of Gallic Acid, Protocatechuic Acid, and Quercitrin in Normal and Pyelonephritis Rats after Oral Administration of a Polygonum capitatum Extract. Molecules (Basel, Switzerland). 2019 Oct; 24(21):. doi: 10.3390/molecules24213873. [PMID: 31717895]
  • Lvkeng Luo, Shuling Wu, Xiaoxiao Zhu, Weiwei Su. The profiling and identification of the absorbed constituents and metabolites of Naoshuantong capsule in mice biofluids and brain by ultra- fast liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2019 Oct; 1129(?):121791. doi: 10.1016/j.jchromb.2019.121791. [PMID: 31610480]
  • Miguel Rebollo-Hernanz, Qiaozhi Zhang, Yolanda Aguilera, Maria A Martín-Cabrejas, Elvira Gonzalez de Mejia. Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation, mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling pathways. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2019 Oct; 132(?):110672. doi: 10.1016/j.fct.2019.110672. [PMID: 31306686]
  • Solomon E Owumi, Samuel E Ochaoga, Oyeronke A Odunola, Ebenezer O Farombi. Protocatechuic acid inhibits testicular and epididymal toxicity associated with methotrexate in rats. Andrologia. 2019 Oct; 51(9):e13350. doi: 10.1111/and.13350. [PMID: 31206774]
  • Jolanta Orzelska-Górka, Katarzyna Szewczyk, Monika Gawrońska-Grzywacz, Ewa Kędzierska, Ewelina Głowacka, Mariola Herbet, Jarosław Dudka, Grażyna Biała. Monoaminergic system is implicated in the antidepressant-like effect of hyperoside and protocatechuic acid isolated from Impatiens glandulifera Royle in mice. Neurochemistry international. 2019 09; 128(?):206-214. doi: 10.1016/j.neuint.2019.05.006. [PMID: 31077758]
  • Yibing Wang, Yuanyuan Wang, Baikui Wang, Xiaoqiang Mei, Shouqun Jiang, Weifen Li. Protocatechuic acid improved growth performance, meat quality, and intestinal health of Chinese yellow-feathered broilers. Poultry science. 2019 Aug; 98(8):3138-3149. doi: 10.3382/ps/pez124. [PMID: 30938807]
  • Davide Tagliazucchi, Serena Martini, Angela Conte. Protocatechuic and 3,4-Dihydroxyphenylacetic Acids Inhibit Protein Glycation by Binding Lysine through a Metal-Catalyzed Oxidative Mechanism. Journal of agricultural and food chemistry. 2019 Jul; 67(28):7821-7831. doi: 10.1021/acs.jafc.9b02357. [PMID: 31260293]
  • Olorunfemi R Molehin, Anne A Adeyanju, Stephen A Adefegha, Ajibade O Oyeyemi, Kehinde A Idowu. Protective mechanisms of protocatechuic acid against doxorubicin-induced nephrotoxicity in rat model. Journal of basic and clinical physiology and pharmacology. 2019 Jul; 30(4):. doi: 10.1515/jbcpp-2018-0191. [PMID: 31280244]
  • Paulina Dróżdż, Aleksandra Sentkowska, Krystyna Pyrzynska. Potentilla erecta (L.) rhizomes as a source of phenolic acids. Natural product research. 2019 Jul; 33(14):2128-2131. doi: 10.1080/14786419.2018.1488704. [PMID: 30247073]