NCBI Taxonomy: 118357

Rhododendron simsii (ncbi_taxid: 118357)

found 77 associated metabolites at species taxonomy rank level.

Ancestor: Rhododendron

Child Taxonomies: none taxonomy data.

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Protocatechuic acid

3,4-dihydroxybenzoic acid

C7H6O4 (154.0266)


Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Astilbin

(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O11 (450.1162)


Astilbin is a flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as a radical scavenger, an anti-inflammatory agent and a plant metabolite. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a flavanone glycoside, a monosaccharide derivative and a member of 4-hydroxyflavanones. It is functionally related to a (+)-taxifolin. It is an enantiomer of a neoastilbin. Astilbin is a natural product found in Smilax corbularia, Rhododendron simsii, and other organisms with data available. Astilbin is a metabolite found in or produced by Saccharomyces cerevisiae. Astilbin is found in alcoholic beverages. Astilbin is a constituent of Vitis vinifera (wine grape).Astilbin is a flavanonol, a type of flavonoid. It can be found in St Johns wort (Hypericum perforatum, Clusiaceae, subfamily Hypericoideae, formerly often considered a full family Hypericaceae), in Dimorphandra mollis (Fava danta, Fabaceae), in the the leaves of Harungana madagascariensis (Hypericaceae), in the rhizome of Astilbe thunbergii, in the root of Astilbe odontophylla(Saxifragaceae) and in the rhizone of Smilax glabra (Chinaroot, Smilacaceae). A flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Constituent of Vitis vinifera (wine grape) Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3].

   

Astilbin

(2S,3S)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3-dihydrochromen-4-one

C21H22O11 (450.1162)


Neoastilbin is a flavanone glycoside that is (-)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a monosaccharide derivative, a flavanone glycoside and a member of 4-hydroxyflavanones. It is functionally related to a (-)-taxifolin. It is an enantiomer of an astilbin. Neoastilbin is a natural product found in Neolitsea sericea, Dimorphandra mollis, and other organisms with data available. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neosmitilbin is?isolated from?Garcinia?mangostana. Neosmitilbin is?isolated from?Garcinia?mangostana.

   

Myricitrin

5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one

C21H20O12 (464.0955)


Myricitrin is a chemical compound. It can be isolated from the root bark of Myrica cerifera (Bayberry, a small tree native to North America). Myricetin 3-rhamnoside is found in many foods, some of which are common grape, black walnut, highbush blueberry, and lentils. Myricitrin is found in black walnut. Myricitrin is a chemical compound. It can be isolated from the root bark of Myrica cerifera (Bayberry, a small tree native to North America) Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB067_Myricitrin_pos_30eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_40eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_10eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_50eV_CB000029.txt [Raw Data] CB067_Myricitrin_pos_20eV_CB000029.txt [Raw Data] CB067_Myricitrin_neg_40eV_000020.txt [Raw Data] CB067_Myricitrin_neg_30eV_000020.txt [Raw Data] CB067_Myricitrin_neg_50eV_000020.txt [Raw Data] CB067_Myricitrin_neg_10eV_000020.txt [Raw Data] CB067_Myricitrin_neg_20eV_000020.txt Myricitrin is a major antioxidant flavonoid[1]. Myricitrin is a major antioxidant flavonoid[1].

   

Cyanidin-3,5-diglucoside

2-(3,4-dihydroxyphenyl)-7-hydroxy-3,5-bis({[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-1λ⁴-chromen-1-ylium

[C27H31O16]+ (611.1612)


Cyanidin-3,5-diglucoside is a member of the class of compounds known as anthocyanidin-5-o-glycosides. Anthocyanidin-5-o-glycosides are phenolic compounds containing one anthocyanidin moiety which is O-glycosidically linked to a carbohydrate moiety at the C5-position. Cyanidin-3,5-diglucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Cyanidin-3,5-diglucoside can be found in a number of food items such as winged bean, evening primrose, durian, and peppermint, which makes cyanidin-3,5-diglucoside a potential biomarker for the consumption of these food products. Cyanidin 3,5-diglucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2611-67-8 (retrieved 2024-09-27) (CAS RN: 2611-67-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cyanidin 3-glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

[C21H21O11]+ (449.1084)


Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-​glucoside is a product of cyanidin 3-​sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Acquisition and generation of the data is financially supported in part by CREST/JST. Found in many plants and fruits, e.g. cherries, olives and grapes

   

Delphinidin 3,5-diglucoside

7-hydroxy-3,5-bis({[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-2-(3,4,5-trihydroxyphenyl)-1lambda4-chromen-1-ylium

C27H31O17+ (627.1561)


Isolated from pomegranate. Delphinidin 3,5-diglucoside is found in many foods, some of which are alfalfa, common bean, yellow wax bean, and mung bean. Delphinidin 3,5-diglucoside is found in alfalfa. Delphinidin 3,5-diglucoside is isolated from pomegranat

   

Rhodojaponin IV

Rhodojaponin IV

C24H38O8 (454.2567)


   

Rhodojaponin I

Rhodojaponin I; Grayanotoxane-5,6,10,14,16-pentol, 2,3-epoxy-, 6,14-diacetate, (2beta,3beta,6beta,14R)-

C24H36O8 (452.241)


   

Quercetin 3-galactoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 3-O-beta-D-galactopyranoside is a quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. It has a role as a hepatoprotective agent and a plant metabolite. It is a tetrahydroxyflavone, a monosaccharide derivative, a beta-D-galactoside and a quercetin O-glycoside. Hyperoside is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. See also: Bilberry (part of); Menyanthes trifoliata leaf (part of); Crataegus monogyna flowering top (part of). Quercetin 3-galactoside is found in alcoholic beverages. Quercetin 3-galactoside occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort).Hyperoside is the 3-O-galactoside of quercetin. It is a medicinally active compound that can be isolated from Drosera rotundifolia, from the Stachys plant, from Prunella vulgaris, from Rumex acetosella and from St Johns wort. (Wikipedia A quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. Occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort) Acquisition and generation of the data is financially supported in part by CREST/JST. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Azaleatin 3-rutinoside

2-(3,4-dihydroxyphenyl)-7-hydroxy-5-methoxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C28H32O16 (624.169)


Azaleatin 3-rutinoside is found in nuts. Azaleatin 3-rutinoside is isolated from pecan nuts Carya pecan. Isolated from pecan nuts Carya pecan. Azaleatin 3-rutinoside is found in pecan nut and nuts.

   

Neoisoastilbin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O11 (450.1162)


Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1].

   

Rhodojaponin V

(3,4,10,15-Tetrahydroxy-5,5,10,15-tetramethyl-7-oxapentacyclo[12.2.1.01,11.04,9.06,8]heptadecan-17-yl) acetate

C22H34O7 (410.2304)


5,6,10,16-Tetrahydroxy-2,3-epoxygrayanotoxan-14-yl acetate is a natural product found in Rhododendron japonicum with data available.

   

Myricitrin

5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one

C21H20O12 (464.0955)


Myricitrin is a glycosyloxyflavone that consists of myricetin attached to a alpha-L-rhamnopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Myrica cerifera, it exhibits anti-allergic activity. It has a role as an anti-allergic agent, an EC 1.14.13.39 (nitric oxide synthase) inhibitor, an EC 2.7.11.13 (protein kinase C) inhibitor and a plant metabolite. It is a pentahydroxyflavone, a glycosyloxyflavone, an alpha-L-rhamnoside and a monosaccharide derivative. It is functionally related to a myricetin. It is a conjugate acid of a myricitrin(1-). Myricitrin is a natural product found in Syzygium levinei, Limonium aureum, and other organisms with data available. A glycosyloxyflavone that consists of myricetin attached to a alpha-L-rhamnopyranosyl residue at position 3 via a glycosidic linkage. Isolated from Myrica cerifera, it exhibits anti-allergic activity. Myricitrin is a major antioxidant flavonoid[1]. Myricitrin is a major antioxidant flavonoid[1].

   

Cyanin

Cyanidin 3,5-diglucoside

C27H31O16 (611.1612)


   

Rhodojaponin II

(4,10,15,17-tetrahydroxy-5,5,10,15-tetramethyl-7-oxapentacyclo[12.2.1.01,11.04,9.06,8]heptadecan-3-yl) acetate

C22H34O7 (410.2304)


   

Grayanotoxin II

Grayanotoxin II

C20H32O5 (352.225)


   

Azaleatin 3-rhamnoside

2-(3,4-dihydroxyphenyl)-7-hydroxy-5-methoxy-3-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxychromen-4-one

C22H22O11 (462.1162)


   

Delphin

Delphinidin 3,5-di-O-beta-D-glucoside

C27H31O17+ (627.1561)


   

Matteucinol

(S) -2,3-Dihydro-5,7-dihydroxy-2- (4-methoxyphenyl) -6,8-dimethyl-4H-1-benzopyran-4-one

C18H18O5 (314.1154)


A dihydroxyflavanone that is (2S)-flavanone with hydroxy groups at positions 5 and 7, methyl groups at positions 6 and 8 and a methoxy group at position 4.

   

Astilbin

(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-chroman-4-one

C21H22O11 (450.1162)


Neoisoastilbin is a natural product found in Smilax corbularia, Neolitsea sericea, and other organisms with data available. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1].

   

Azaleatin 3-galactoside

3,7,3,4-Tetrahydroxy-5-methoxyflavone 3-galactoside

C22H22O12 (478.1111)


   

Delphin

3,5-Bis (beta-D-glucopyranosyloxy) -7-hydroxy-2- (3,4,5-trihydroxyphenyl) -1-benzopyrylium

C27H31O17 (627.1561)


   

hyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O12 (464.0955)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Delphin

delphinidin 3,5-diglucoside

C27H30O17 (626.1483)


   

Methyl 3,4-dihydroxybenzoate

Methyl 3,4-dihydroxybenzoate

C8H8O4 (168.0423)


   

Rhodojaponin III

(1S,3R,4R,6R,8S,9S,10R,11R,14R,15R,17R)-5,5,10,15-tetramethyl-7-oxapentacyclo[12.2.1.01,11.04,9.06,8]heptadecane-3,4,10,15,17-pentol

C20H32O6 (368.2199)


Rhodojaponin III is a diterpenoid from the leaves of Rhododendron molle with anti-inflammatory activity[1]. Rhodojaponin III is a diterpenoid from the leaves of Rhododendron molle with anti-inflammatory activity[1].

   

Hyperoside

Quercetin 3-beta-D-galactopyranoside

C21H20O12 (464.0955)


[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

3,4-Dihydroxybenzoic acid

3,4-Dihydroxybenzoic acid

C7H6O4 (154.0266)


   

Cyanin

Cyanidin 3,5-di-O-glucoside

C27H30O16 (610.1534)


   

Jyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.0955)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Chrysanthemin

cyanidin 3-O-glucoside

C21H21O11 (449.1084)


   

Cyanin

Cyanidin 3,5-diglucoside

C27H31O16+ (611.1612)


An anthocyanin cation that is cyanidin(1+) carrying two beta-D-glucosyl residues at positions 3 and 5.

   

99-50-3

InChI=1\C7H6O4\c8-5-2-1-4(7(10)11)3-6(5)9\h1-3,8-9H,(H,10,11

C7H6O4 (154.0266)


D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Cyanidin 3-glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

C21H21O11+ (449.1084)


Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-​glucoside is a product of cyanidin 3-​sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Found in many plants and fruits, e.g. cherries, olives and grapes

   

Kuromanin

(2S,3R,4S,5S,6R)-2-[2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromenylium-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C21H21O11+ (449.1084)


   

cyanin betaine

cyanin betaine

C27H30O16 (610.1534)


An oxonium betaine that is the conjugate base of cyanin, arising from regioselective deprotonation of the 7-hydroxy group. Major structure at pH 7.3

   

(1s,3r,4r,6r,7s,8r,10s,13r,14r,16r)-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecane-3,4,6,7,14,16-hexol

(1s,3r,4r,6r,7s,8r,10s,13r,14r,16r)-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecane-3,4,6,7,14,16-hexol

C20H32O6 (368.2199)


   

(3r,4r,8s,9r,10r,14r,16s)-3,4,9,14,16-pentahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-6-one

(3r,4r,8s,9r,10r,14r,16s)-3,4,9,14,16-pentahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-6-one

C20H32O6 (368.2199)


   

5,7-dihydroxy-2-(4-hydroxy-3-oxidophenyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1λ⁴-chromen-1-ylium

5,7-dihydroxy-2-(4-hydroxy-3-oxidophenyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1λ⁴-chromen-1-ylium

C20H18O10 (418.09)


   

2-(3,4-dihydroxyphenyl)-7-hydroxy-3-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

2-(3,4-dihydroxyphenyl)-7-hydroxy-3-{[(2s,3r,4s,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

[C27H31O16]+ (611.1612)


   

(3r,4r,6s,8s,10s,16s)-5,5-dimethyl-9,14-dimethylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecane-3,4,6,16-tetrol

(3r,4r,6s,8s,10s,16s)-5,5-dimethyl-9,14-dimethylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecane-3,4,6,16-tetrol

C20H30O4 (334.2144)


   

5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecane-3,4,6,7,9,14,16-heptol

5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecane-3,4,6,7,9,14,16-heptol

C20H34O7 (386.2304)


   

(3r,4r,6s,8s,10s)-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadec-14-ene-3,4,6,16-tetrol

(3r,4r,6s,8s,10s)-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadec-14-ene-3,4,6,16-tetrol

C20H30O4 (334.2144)


   

5,7-dihydroxy-2-(4-hydroxy-3-oxidophenyl)-3-{[(3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

5,7-dihydroxy-2-(4-hydroxy-3-oxidophenyl)-3-{[(3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

C21H20O11 (448.1006)


   

(1s,3r,4r,6r,7s,8r,10s,13r,14r,16r)-3,4,6,7,14-pentahydroxy-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl acetate

(1s,3r,4r,6r,7s,8r,10s,13r,14r,16r)-3,4,6,7,14-pentahydroxy-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl acetate

C22H34O7 (410.2304)


   

1-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-10-oxo-3,4,5,6,7,8,8a,11,12,12b,13,14b-dodecahydro-2h-picene-4a-carboxylic acid

1-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-10-oxo-3,4,5,6,7,8,8a,11,12,12b,13,14b-dodecahydro-2h-picene-4a-carboxylic acid

C30H46O5 (486.3345)


   

(1s,3r,4r,6r,8s,9s,10r,11r,15r,17s)-5,5,10,15-tetramethyl-7-oxapentacyclo[12.2.1.0¹,¹¹.0⁴,⁹.0⁶,⁸]heptadecane-3,4,10,15,17-pentol

(1s,3r,4r,6r,8s,9s,10r,11r,15r,17s)-5,5,10,15-tetramethyl-7-oxapentacyclo[12.2.1.0¹,¹¹.0⁴,⁹.0⁶,⁸]heptadecane-3,4,10,15,17-pentol

C20H32O6 (368.2199)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.0955)


   

[(2r,3s,4s,5r,6r)-3,4,5-trihydroxy-6-[2-(4-hydroxyphenyl)ethoxy]oxan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3s,4s,5r,6r)-3,4,5-trihydroxy-6-[2-(4-hydroxyphenyl)ethoxy]oxan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C24H28O10 (476.1682)


   

7-{[6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5-hydroxy-2-(4-methoxyphenyl)-6,8-dimethyl-2,3-dihydro-1-benzopyran-4-one

7-{[6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5-hydroxy-2-(4-methoxyphenyl)-6,8-dimethyl-2,3-dihydro-1-benzopyran-4-one

C29H36O14 (608.2105)


   

2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[(2s,4s,5s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,5r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[(2s,4s,5s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2s,5r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

[C27H31O16]+ (611.1612)


   

3,4,10,15-tetrahydroxy-5,5,10,15-tetramethyl-7-oxapentacyclo[12.2.1.0¹,¹¹.0⁴,⁹.0⁶,⁸]heptadecan-17-yl acetate

3,4,10,15-tetrahydroxy-5,5,10,15-tetramethyl-7-oxapentacyclo[12.2.1.0¹,¹¹.0⁴,⁹.0⁶,⁸]heptadecan-17-yl acetate

C22H34O7 (410.2304)


   

(3r,4r,6s,8s,9r,10r,16s)-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadec-14-ene-3,4,6,9,16-pentol

(3r,4r,6s,8s,9r,10r,16s)-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadec-14-ene-3,4,6,9,16-pentol

C20H32O5 (352.225)


   

5,7-dihydroxy-2-(4-hydroxy-3-oxidophenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

5,7-dihydroxy-2-(4-hydroxy-3-oxidophenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

C21H20O11 (448.1006)


   

(2s)-7-{[(2r,3s,4r,5r,6s)-6-({[(2s,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5-hydroxy-2-(4-methoxyphenyl)-6,8-dimethyl-2,3-dihydro-1-benzopyran-4-one

(2s)-7-{[(2r,3s,4r,5r,6s)-6-({[(2s,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5-hydroxy-2-(4-methoxyphenyl)-6,8-dimethyl-2,3-dihydro-1-benzopyran-4-one

C29H36O14 (608.2105)


   

(1s,3r,4r,6s,8s,10s,13s,16r)-3,4,6-trihydroxy-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadec-14-en-16-yl acetate

(1s,3r,4r,6s,8s,10s,13s,16r)-3,4,6-trihydroxy-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadec-14-en-16-yl acetate

C22H32O5 (376.225)


   

(1s,3r,4r,6r,7s,8r,10s,13r,14r,16r)-7-methoxy-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecane-3,4,6,14,16-pentol

(1s,3r,4r,6r,7s,8r,10s,13r,14r,16r)-7-methoxy-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecane-3,4,6,14,16-pentol

C21H34O6 (382.2355)


   

2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1λ⁴-chromen-1-ylium

2-(3,4-dihydroxyphenyl)-7-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1λ⁴-chromen-1-ylium

[C26H29O15]+ (581.1506)


   

(2r)-5,7-dihydroxy-2-(4-methoxyphenyl)-6,8-dimethyl-2,3-dihydro-1-benzopyran-4-one

(2r)-5,7-dihydroxy-2-(4-methoxyphenyl)-6,8-dimethyl-2,3-dihydro-1-benzopyran-4-one

C18H18O5 (314.1154)


   

(1s,3r,4r,6s,8s,10s,13r,14r,16r)-3,4,6,14-tetrahydroxy-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl acetate

(1s,3r,4r,6s,8s,10s,13r,14r,16r)-3,4,6,14-tetrahydroxy-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl acetate

C22H34O6 (394.2355)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C20H20O11 (436.1006)


   

7-hydroxy-5-methoxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2-(3,4,5-trihydroxyphenyl)chromen-4-one

7-hydroxy-5-methoxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2-(3,4,5-trihydroxyphenyl)chromen-4-one

C22H22O12 (478.1111)


   

(1r,2r,4as,6as,6br,8ar,9r,12ar,12br,14bs)-1-hydroxy-9-methoxy-1,2,6a,6b,9,12a-hexamethyl-10-oxo-3,4,5,6,7,8,8a,11,12,12b,13,14b-dodecahydro-2h-picene-4a-carboxylic acid

(1r,2r,4as,6as,6br,8ar,9r,12ar,12br,14bs)-1-hydroxy-9-methoxy-1,2,6a,6b,9,12a-hexamethyl-10-oxo-3,4,5,6,7,8,8a,11,12,12b,13,14b-dodecahydro-2h-picene-4a-carboxylic acid

C30H46O5 (486.3345)


   

grayanotoxin vii

grayanotoxin vii

C20H30O4 (334.2144)


   

(3r,4r,6s,8s,10s,14r,16s)-3,4,6,14-tetrahydroxy-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl acetate

(3r,4r,6s,8s,10s,14r,16s)-3,4,6,14-tetrahydroxy-5,5,14-trimethyl-9-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl acetate

C22H34O6 (394.2355)


   

7-hydroxy-5-methoxy-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2-(3,4,5-trihydroxyphenyl)chromen-4-one

7-hydroxy-5-methoxy-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2-(3,4,5-trihydroxyphenyl)chromen-4-one

C22H22O12 (478.1111)


   

(1s,3r,4r,6r,7r,8s,9r,10r,13r,14r,16r)-3-(acetyloxy)-4,6,7,9,14-pentahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl acetate

(1s,3r,4r,6r,7r,8s,9r,10r,13r,14r,16r)-3-(acetyloxy)-4,6,7,9,14-pentahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl acetate

C24H38O9 (470.2516)


   

(2s)-7-{[(2s,3s,4s,5s,6r)-6-({[(2r,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5-hydroxy-2-(4-methoxyphenyl)-6,8-dimethyl-2,3-dihydro-1-benzopyran-4-one

(2s)-7-{[(2s,3s,4s,5s,6r)-6-({[(2r,3s,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5-hydroxy-2-(4-methoxyphenyl)-6,8-dimethyl-2,3-dihydro-1-benzopyran-4-one

C29H36O14 (608.2105)


   

4,10,15,17-tetrahydroxy-5,5,10,15-tetramethyl-7-oxapentacyclo[12.2.1.0¹,¹¹.0⁴,⁹.0⁶,⁸]heptadecan-3-yl acetate

4,10,15,17-tetrahydroxy-5,5,10,15-tetramethyl-7-oxapentacyclo[12.2.1.0¹,¹¹.0⁴,⁹.0⁶,⁸]heptadecan-3-yl acetate

C22H34O7 (410.2304)


   

(2s)-7-{[(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5-hydroxy-2-(4-methoxyphenyl)-6,8-dimethyl-2,3-dihydro-1-benzopyran-4-one

(2s)-7-{[(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-5-hydroxy-2-(4-methoxyphenyl)-6,8-dimethyl-2,3-dihydro-1-benzopyran-4-one

C29H36O14 (608.2105)


   

(3r,4r,6r,8s,9s,10r,11r,14s,15r)-17-(acetyloxy)-4,10,15-trihydroxy-5,5,10,15-tetramethyl-7-oxapentacyclo[12.2.1.0¹,¹¹.0⁴,⁹.0⁶,⁸]heptadecan-3-yl acetate

(3r,4r,6r,8s,9s,10r,11r,14s,15r)-17-(acetyloxy)-4,10,15-trihydroxy-5,5,10,15-tetramethyl-7-oxapentacyclo[12.2.1.0¹,¹¹.0⁴,⁹.0⁶,⁸]heptadecan-3-yl acetate

C24H36O8 (452.241)


   

1-hydroxy-9-methoxy-1,2,6a,6b,9,12a-hexamethyl-10-oxo-3,4,5,6,7,8,8a,11,12,12b,13,14b-dodecahydro-2h-picene-4a-carboxylic acid

1-hydroxy-9-methoxy-1,2,6a,6b,9,12a-hexamethyl-10-oxo-3,4,5,6,7,8,8a,11,12,12b,13,14b-dodecahydro-2h-picene-4a-carboxylic acid

C30H46O5 (486.3345)


   

rhodojaponin vi

rhodojaponin vi

C20H34O7 (386.2304)


   

(1r,2r,4as,6as,6br,8ar,9s,12ar,12br,14bs)-1-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-10-oxo-3,4,5,6,7,8,8a,11,12,12b,13,14b-dodecahydro-2h-picene-4a-carboxylic acid

(1r,2r,4as,6as,6br,8ar,9s,12ar,12br,14bs)-1-hydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-10-oxo-3,4,5,6,7,8,8a,11,12,12b,13,14b-dodecahydro-2h-picene-4a-carboxylic acid

C30H46O5 (486.3345)