NCBI Taxonomy: 13215

Piper (ncbi_taxid: 13215)

found 30 associated metabolites at genus taxonomy rank level.

Ancestor: Piperaceae

Child Taxonomies: Piper betle, Piper longum, Piper nigrum, Piper kadsura, Piper acre, Piper bonii, Piper uhdei, Piper lolot, Piper tenue, Piper gigas, Piper velae, Piper anisum, Piper densum, Piper cubeba, Piper melula, Piper amplum, Piper bradei, Piper goesii, Piper grande, Piper aereum, Piper mexiae, Piper mourai, Piper medium, Piper blumei, Piper nobile, Piper ovatum, Piper bowiei, Piper kurzii, Piper rusbyi, Piper hancei, Piper hapnium, Piper venosum, Piper hookeri, Piper sanctum, Piper aequale, Piper kraense, Piper aduncum, Piper amalago, Piper amoenum, Piper archeri, Piper auritum, Piper bavinum, Piper montium, Piper caninum, Piper barberi, Piper ossanum, Piper duartei, Piper pierrei, Piper capense, Piper dryadum, Piper dumosum, Piper terryae, Piper trianae, Piper fallens, Piper ornatum, Piper bicolor, Piper imberbe, Piper cernuum, Piper massiei, Piper mosenii, Piper maxonii, Piper nitidum, Piper tardans, Piper fragile, Piper oviedoi, Piper wightii, Piper rugosum, Piper sternii, Piper vitaceum, Piper crocatum, Piper recessum, Piper relictum, Piper recurvum, Piper diffusum, Piper galeatum, Piper melchior, Piper arboreum, Piper graeffei, Piper augustum, Piper mutabile, Piper cinereum, Piper hispidum, Piper tricolor, Piper vitiense, Piper peltatum, Piper pulchrum, Piper laosanum, Piper excelsum, Piper artanthe, Piper baccatum, Piper biolleyi, Piper bullosum, Piper caldense, Piper callosum, Piper confusum, Piper costatum, Piper obovatum, Piper schuppii, Piper eustylum, Piper tricuspe, Piper baezense, Piper flavidum, Piper villosum, Piper haughtii, Piper mullesua, Piper lepturum, Piper campanum, Piper cogolloi, Piper daguanum, Piper gibbosum, Piper muelleri, Piper arcuatum, Piper obliquum, Piper bojonyum, Piper buruanum, Piper curtisii, Piper pittieri, Piper fragrans, Piper mestonii, Piper coactile, Piper malamiri, Piper sampaioi, Piper chinense, Piper sulcatum, Piper thomasii, Piper tonduzii, Piper trigonum, Piper vellosoi, Piper vicosanum, Piper protrusum, Piper avellanum, Piper lonchites, Piper nepalense, Piper colonense, Piper guineense, Piper comptonii, Piper puberulum, Piper rothianum, Piper blattarum, Piper regnellii, Piper dilatatum, Piper glabratum, Piper sylvestre, Piper arieianum, Piper khasianum, Piper ponapense, Piper muricatum, Piper decumanum, Piper stipulare, Piper subulatum, Piper thomsonii, Piper imperiale, Piper munchanum, Piper toppingii, Piper spoliatum, Piper polygynum, Piper subpedale, Piper brachypus, Piper cararense, Piper chuarense, Piper abajoense, Piper claseanum, Piper betloides, Piper argyrites, Piper umbricola, Piper flavicans, Piper epigynium, Piper lagoaense, Piper guayranum, Piper zacatense, Piper immutatum, Piper inaequale, Piper insipiens, Piper lacunosum, Piper littorale, Piper candollei, Piper neesianum, Piper nicoyanum, Piper borneense, Piper nudicaule, Piper celebicum, Piper otophorum, Piper truncatum, Piper decipiens, Piper riparense, Piper schmidtii, Piper samanense, Piper ramipilum, Piper rostratum, Piper indiwasii, Piper schwackei, Piper wallichii, Piper subflavum, Piper terrabanum, Piper macropiper, Piper borbonense, Piper guahamense, Piper nudifolium, Piper hederaceum, Piper urophyllum, Piper hooglandii, Piper cordulatum, Piper magnificum, Piper morelianum, Piper macropodum, Piper phuwuaense, Piper darienense, Piper filistilum, Piper sylvaticum, Piper korthalsii, Piper wichmannii, Piper albispicum, Piper atrospicum, Piper arboricola, Piper sorsogonum, Piper brevicuspe, Piper penninerve, Piper adenandrum, Piper umbellatum, Piper bullulatum, Piper attenuatum, Piper puraceanum, Piper cocornanum, Piper calanyanum, Piper marginatum, Piper cathayanum, Piper cubataonum, Piper sintenense, Piper cenocladum, Piper entradense, Piper boquetense, Piper frutescens, Piper fuligineum, Piper culebranum, Piper griffithii, Piper silvivagum, Piper ilheusense, Piper juliflorum, Piper laevigatum, Piper biseriatum, Piper commutatum, Piper majusculum, Piper mollicomum, Piper arfakianum, Piper bantamense, Piper sasaimanum, Piper yunnanense, Piper colubrinum, Piper perlasense, Piper piscatorum, Piper febrifugum, Piper praesagium, Piper montivagum, Piper oreophilum, Piper pentandrum, Piper sarcopodum, Piper hainanense, Piper solmsianum, Piper stileferum, Piper versteegii, Piper rio-docense, Piper alatabaccum, Piper ungaramense, Piper mollissimum, Piper chaudocanum, Piper flaviflorum, Piper humistratum, Piper sarmentosum, Piper yucatanense, Piper divaricatum, Piper arborescens, Piper glabrescens, Piper longifolium, Piper magnibaccum, Piper peepuloides, Piper ribesioides, Piper carautensei, Piper swartzianum, Piper garagaranum, Piper methysticum, Piper michelianum, Piper oxystachyum, Piper reticulatum, Piper abalienatum, Piper abbreviatum, Piper urdanetanum, Piper anonifolium, Piper albozonatum, Piper basilobatum, Piper brachypodon, Piper cajambrense, Piper glabricaule, Piper longispicum, Piper curtifolium, Piper curtirachis, Piper perpusillum, Piper curtispicum, Piper erectipilum, Piper unispicatum, Piper flavoviride, Piper bredemeyeri, Piper lucigaudens, Piper polytrichum, Piper caracasanum, Piper decorticans, Piper euryphyllum, Piper fonteboanum, Piper malgassicum, Piper tsarasotrae, Piper brevifolium, Piper squamulosum, Piper piluliferum, Piper pterocladum, Piper chamissonis, Piper pullibaccum, Piper schiedeanum, Piper scutifolium, Piper scutilimbum, Piper laetispicum, Piper gibbilimbum, Piper stipulaceum, Piper subscutatum, Piper uncinulatum, Piper urostachyum, Piper villiramulum, Piper wachenheimii, Piper xylosteoides, Piper obtusissimum, Piper pseudonigrum, unclassified Piper, Piper concepcionis, Piper pingbienense, Piper pedicellatum, Piper polysyphonum, Piper hongkongense, Piper quinchasense, Piper leucophyllum, Piper lingshuiense, Piper celtidiforme, Piper yinkiangense, Piper retrofractum, Piper bisasperatum, Piper breviamentum, Piper carrilloanum, Piper gesnerioides, Piper hartwegianum, Piper corcovadense, Piper marequitense, Piper senporeiense, Piper pedunculatum, Piper tuberculatum, Piper morisonianum, Piper cyphophyllum, Piper auritifolium, Piper begoniicolor, Piper lanceifolium, Piper insectifugum, Piper macrotrichum, Piper maranyonense, Piper martensianum, Piper fimbriulatum, Piper hebetifolium, Piper longepilosum, Piper melanocladum, Piper obtusilimbum, Piper perareolatum, Piper pseudonobile, Piper nudibaccatum, Piper cilibracteum, Piper cyrtostachys, Piper premnospicum, Piper lessertianum, Piper psilorhachis, Piper pubistipulum, Piper pedicellosum, Piper philodendron, Piper nokaidoyitau, Piper pilibracteum, Piper schizonephos, Piper subcaniramum, Piper trichoneuron, Piper tuerckheimii, Piper holdridgeanum, Piper strictifolium, Piper rhytidocarpum, Piper hostmannianum, Piper pogonioneuron, Piper submultinerve, Piper argyrophyllum, Piper subpenninerve, Piper hispidinervum, Piper bartlingianum, Piper cihuatlanense, Piper pendulispicum, Piper flagellicuspe, Piper cordatilimbum, Piper gymnostachyum, Piper hymenophyllum, Piper myrmecophilum, Piper confertinodum, Piper aulacospermum, Piper bambusifolium, Piper consanguineum, Piper corintoananum, Piper crassinervium, Piper ottoniifolium, Piper sabaletasanum, Piper yanaconasense, Piper glanduligerum, Piper malacophyllum, Piper peracuminatum, Piper via-chicoense, Piper klotzschianum, Piper bellidifolium, Piper lapathifolium, Piper calcariformis, Piper longestylosum, Piper longicaudatum, Piper longivaginans, Piper coccoloboides, Piper longivillosum, Piper melastomoides, Piper gigantifolium, Piper marsupiiferum, Piper sagittifolium, Piper paramaribense, Piper setebarraense, Piper novoguineense, Piper hoyoscardozii, Piper sanctifelicis, Piper rubro-venosum, Piper austrosinense, Piper semi-immersum, Piper sphaerocarpum, Piper sprengelianum, Piper xanthostachyum, Piper brachystachyum, Piper guazacapanense, Piper pilobracteatum, Piper trichostachyon, Piper appendiculatum, Piper brownsbergense, Piper puberulilimbum, Piper diospyrifolium, Piper dolichotrichum, Piper tomas-albertoi, Piper chrysostachyum, Piper napopastazanum, Piper novogalicianum, Piper novogranatense, Piper caducibracteum, Piper chlorostachyum, Piper pseudolindenii, Piper puberulirameum, Piper tectoniifolium, Piper truncatibaccum, Piper medinillifolium, Piper porphyrophyllum, Piper jacquemontianum, Piper boehmeriifolium, Piper infossibaccatum, Piper cavendishioides, Piper multiplinervium, Piper hernandiifolium, Piper colligatispicum, Piper dolichostachyum, Piper eucalyptifolium, Piper arcteacuminatum, Piper gaudichaudianum, Piper semitransparens, Piper flavimarginatum, Piper richardiifolium, Piper pseudofuligineum, Piper carniconnectivum, Piper dominantinervium, Piper jianfenglingense, Piper friedrichsthalii, Piper phytolaccifolium, Piper eucalyptiphyllum, Piper hirtellipetiolum, Piper lunulibracteatum, Piper quinqueangulatum, Piper novae-hollandiae, Piper subsessilifolium, Piper austrocaledonicum, Piper brevipedicellatum, Piper chimonanthifolium, Piper pseudogaragaranum, Piper hoffmannseggianum, Piper pseudopothifolium, Piper robustipedunculum, Piper schlechtendalianum, Piper pseudolanceifolium, Piper subglabribracteatum, Piper cf. fragile RA-2018, Piper cf. bantamense KR2495, Piper cf. bantamense KR2494, Piper cf. boucheanum PEEA135, Piper cf. obliquum Tepe 1022, Piper aff. macropiper RA-2018, Piper cf. dumiformans RA-2018, Piper cf. cajambrense Lugo 210, Piper cf. longum Neinhuis s.n., Piper aff. anonifolium MAJ-2008, Piper cf. pulchrum Gentry 65422, Piper cf. obliquum Dominguez s.n., Piper cf. cabellense Fonnegra 2697, Piper cf. cernuum Hatschbach 46665, Piper cf. gigantifolium Mori 12866, Piper cf. subglabribracteatum Boom 2608

Rosmarinic acid

(2R)-3-(3,4-dihydroxyphenyl)-2-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxypropanoic acid

C18H16O8 (360.0845136)


Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. It is commonly found in species of the Boraginaceae and the subfamily Nepetoideae of the Lamiaceae. It is a red-orange powder that is slightly soluble in water, but well soluble is most organic solvents. Rosmarinic acid is one of the polyphenolic substances contained in culinary herbs such as perilla (Perilla frutescens L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), mint (Mentha arvense L.), and basil (Ocimum basilicum L.). These herbs are commonly grown in the garden as kitchen herbs, and while used to add flavor in cooking, are also known to have several potent physiological effects (PMID: 12482446, 15120569). BioTransformer predicts that rosmarinic acid is a product of methylrosmarinic acid metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in humans and human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). (R)-rosmarinic acid is a stereoisomer of rosmarinic acid having (R)-configuration. It has a role as a plant metabolite and a geroprotector. It is a conjugate acid of a (R)-rosmarinate. It is an enantiomer of a (S)-rosmarinic acid. Rosmarinic acid is a natural product found in Dimetia scandens, Scrophularia scorodonia, and other organisms with data available. See also: Rosemary Oil (part of); Comfrey Root (part of); Holy basil leaf (part of) ... View More ... D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors Isolated from rosemary, mint, sage, thyme, lemon balm and other plants D002491 - Central Nervous System Agents > D000700 - Analgesics A stereoisomer of rosmarinic acid having (R)-configuration. D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.

   

Catechin

(2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.0790344)


Catechin, also known as cyanidanol or catechuic acid, belongs to the class of organic compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Catechin also belongs to the group of compounds known as flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids. Catechin is one of the 4 catechin known diastereoisomers. Two of the isomers are in trans configuration and are called catechin and the other two are in cis configuration and are called epicatechin. The most common catechin isomer is the (+)-catechin. The other stereoisomer is (-)-catechin or ent-catechin. The most common epicatechin isomer is (-)-epicatechin. Catechin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Catechin is a bitter tasting compound and is associated with the bitterness in tea. Catechin is a plant secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Catechin is an antioxidant flavonoid, occurring especially in woody plants as both Catechin and (-)-Catechin (cis) forms. Outside of the human body, Catechin is found, on average, in the highest concentration in foods, such as blackcurrants (Ribes nigrum), evergreen blackberries (Rubus laciniatus), and blackberries (Rubus) and in a lower concentration in dills (Anethum graveolens), hot chocolates, and medlars (Mespilus germanica). Catechin has also been detected, but not quantified in, several different foods, such as rice (Oryza sativa), apple ciders, peanuts (Arachis hypogaea), fruit juices, and red teas. This could make catechin a potential biomarker for the consumption of these foods. Based on a literature review a significant number of articles have been published on Catechin. (+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Cianidanol is a natural product found in Visnea mocanera, Salacia chinensis, and other organisms with data available. Catechin is a metabolite found in or produced by Saccharomyces cerevisiae. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Gallocatechin (related); Crofelemer (monomer of); Bilberry (part of) ... View More ... Present in red wine. Widespread in plants; found in a variety of foodstuffs especies apricots, broad beans, cherries, chocolate, grapes, nectarines, red wine, rhubarb, strawberries and tea The (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. Catechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=154-23-4 (retrieved 2024-07-12) (CAS RN: 154-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one

2H-Pyran-2-one, 4-methoxy-6-(2-phenylethenyl)-, (E)- (9CI)

C14H12O3 (228.0786402)


5,6-Dehydrokawain is an aromatic ether and a member of 2-pyranones. Desmethoxyyangonin is a natural product found in Alpinia blepharocalyx, Alpinia rafflesiana, and other organisms with data available. See also: Piper methysticum root (part of). 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in beverages. 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damag Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.

   

Dihydromethysticin

2H-Pyran-2-one, 6-[2-(1,3-benzodioxol-5-yl)ethyl]-5,6-dihydro-4-methoxy-, (6S)-

C15H16O5 (276.0997686)


Dihydromethysticin is found in beverages. Dihydromethysticin is isolated from Piper methysticum (kava). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Dihydromethysticin is one of the six major kavalactones found in the kava plant Dihydromethysticin is a member of 2-pyranones and an aromatic ether. Dihydromethysticin is a natural product found in Piper methysticum, Piper majusculum, and Aniba hostmanniana with data available. Dihydromethysticin is one of the six major kavalactones found in the kava plant; has marked activity on the induction of CYP3A23. Dihydromethysticin is one of the six major kavalactones found in the kava plant; has marked activity on the induction of CYP3A23.

   

(R)-Kawain

2H-PYRAN-2-ONE, 5,6-DIHYDRO-4-METHOXY-6-((1E)-2-PHENYLETHENYL)-, (6R)-

C14H14O3 (230.0942894)


Kawain is a member of 2-pyranones and an aromatic ether. Kavain is a natural product found in Piper methysticum, Alnus sieboldiana, and Piper majusculum with data available. See also: Piper methysticum root (part of). (R)-Kawain is found in beverages. (R)-Kawain is found in the roots of kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Found in the roots of kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. (+)-Kavain, a main kavalactone extracted from Piper methysticum, has anticonvulsive properties, attenuating vascular smooth muscle contraction through interactions with voltage-dependent Na+ and Ca2+ channels[1]. (+)-Kavain is shown to bind at the α4β2δ GABAA receptor and potentiate GABA efficacy[2]. (+)-Kavain is used as a treatment for inflammatory diseases, its anti-inflammatory action has been widely studied[4]. Kavain is a class of kavalactone isolated from Piper methysticum, which has anxiolytic properties in animals and humans. Kavain positively modulated γ-Aminobutyric acid type A (GABAA) receptor[1]. Kavain is a class of kavalactone isolated from Piper methysticum, which has anxiolytic properties in animals and humans. Kavain positively modulated γ-Aminobutyric acid type A (GABAA) receptor[1]. Kavain is a class of kavalactone isolated from Piper methysticum, which has anxiolytic properties in animals and humans. Kavain positively modulated γ-Aminobutyric acid type A (GABAA) receptor[1].

   

Naringenin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0684702)


Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs. Naringenin has the skeleton structure of a flavanone with three hydroxy groups at the 4, 5, and 7 carbons. It may be found both in the aglycol form, naringenin, or in its glycosidic form, naringin, which has the addition of the disaccharide neohesperidose attached via a glycosidic linkage at carbon 7. Naringenin (not to be confused with naringin) is a flavanone that is considered to have a bioactive effect on human health as antioxidant, free radical scavenger, antiinflammatory, carbohydrate metabolism promoter, immunity system modulater. This substance has also been shown to repair DNA. Scientists exposed cells to 80 micomoles of naringenin per liter, for 24 hours, and found that the amount of hydroxyl damage to the DNA was reduced by 24 percent in that very short period of time. Unfortunately, this bioflavonoid is difficult to absorb on oral ingestion. Only 15\\\\\\\% of ingested naringenin will get absorbed, in the human gastrointestinal tract, in the best case scenario. A full glass of orange juice will supply about enough naringenin to achieve a concentration of about 0.5 micromoles per liter. Naringenin is a biomarker for the consumption of citrus fruits. (S)-naringenin is the (S)-enantiomer of naringenin. It has a role as an expectorant and a plant metabolite. It is a naringenin and a (2S)-flavan-4-one. It is a conjugate acid of a (S)-naringenin(1-). It is an enantiomer of a (R)-naringenin. Naringenin is a natural product found in Elaeodendron croceum, Garcinia multiflora, and other organisms with data available. See also: Naringin (related). Most widely distributed flavanone. Citrus fruits (grapefruit, oranges and pummelos) are especially good sources. Glycosides also widely distributed The (S)-enantiomer of naringenin. [Raw Data] CB070_Naringenin_pos_20eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_10eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_40eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_30eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_50eV_CB000030.txt [Raw Data] CB070_Naringenin_neg_10eV_000021.txt [Raw Data] CB070_Naringenin_neg_30eV_000021.txt [Raw Data] CB070_Naringenin_neg_50eV_000021.txt [Raw Data] CB070_Naringenin_neg_20eV_000021.txt [Raw Data] CB070_Naringenin_neg_40eV_000021.txt (±)-Naringenin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67604-48-2 (retrieved 2024-07-09) (CAS RN: 67604-48-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Vanillic acid

4-hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

trans-Isoasarone

17-(1,5-Dimethyl-hexyl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol; compound with 1,2,4-trimethoxy-5-propenyl-benzene (Alphaasarone and cholesterol)

C12H16O3 (208.1099386)


Alpha-asarone is the trans-isomer of asarone. It has a role as an anticonvulsant and a GABA modulator. alpha-Asarone is a natural product found in Sphallerocarpus gracilis, Asarum hypogynum, and other organisms with data available. trans-Isoasarone is found in carrot. trans-Isoasarone is a constituent of Asarum species and carrot seed (Daucus carota) (CCD) Constituent of Asarum subspecies and carrot seed (Daucus carota) (CCD). trans-Isoasarone is found in wild carrot and carrot. D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D009676 - Noxae > D002273 - Carcinogens D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents The trans-isomer of asarone. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. alpha-Asarone (α-Asarone) is one of the main psychoactive compounds, and possesses an antidepressant-like activity in mice. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1]. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1].

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215226)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

4-Hydroxycinnamic acid

(E)-3-(4-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473418)


4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Camphor

Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (.+/-.)-

C10H16O (152.12010859999998)


Camphor appears as a colorless or white colored crystalline powder with a strong mothball-like odor. About the same density as water. Emits flammable vapors above 150 °F. Used to make moth proofings, pharmaceuticals, and flavorings. Camphor is a cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. It has a role as a plant metabolite. It is a bornane monoterpenoid and a cyclic monoterpene ketone. Camphor is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A bicyclic monoterpene ketone found widely in plants, especially CINNAMOMUM CAMPHORA. It is used topically as a skin antipruritic and as an anti-infective agent. A cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.986 Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

L-Tryptophan

L-Tryptophan, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0\\%

C11H12N2O2 (204.0898732)


Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnups disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnups disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnups disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed th... L-tryptophan is a white powder with a flat taste. An essential amino acid; occurs in isomeric forms. (NTP, 1992) L-tryptophan is the L-enantiomer of tryptophan. It has a role as an antidepressant, a nutraceutical, a micronutrient, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tryptophan and a L-alpha-amino acid. It is a conjugate base of a L-tryptophanium. It is a conjugate acid of a L-tryptophanate. It is an enantiomer of a D-tryptophan. It is a tautomer of a L-tryptophan zwitterion. An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals. L-Tryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Tryptophan is the least plentiful of all 22 amino acids and an essential amino acid in humans (provided by food), Tryptophan is found in most proteins and a precursor of serotonin. Tryptophan is converted to 5-hydroxy-tryptophan (5-HTP), converted in turn to serotonin, a neurotransmitter essential in regulating appetite, sleep, mood, and pain. Tryptophan is a natural sedative and present in dairy products, meats, brown rice, fish, and soybeans. (NCI04) Tryptophan is an essential amino acid which is the precursor of serotonin. Serotonin is a brain neurotransmitter, platelet clotting factor and neurohormone found in organs throughout the body. Metabolism of tryptophan to serotonin requires nutrients such as vitamin B6, niacin and glutathione. Niacin is an important metabolite of tryptophan. High corn or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea and dementia. Inborn errors of tryptophan metabolism exist where a tumor (carcinoid) makes excess serotonin. Hartnups disease is a disease where tryptophan and other amino acids are not absorbed properly. Tryptophan supplements may be useful in each condition, in carcinoid replacing the over-metabolized nutrient and in Hartnups supplementing a malabsorbed nutrient. Some disorders of excess tryptophan in the blood may contribute to mental retardation. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan fragments correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension and anxiety states. The requirement for tryptophan and protein decreases with age. Adults minimum daily requirement is 3 mg/kg/day or about 200 mg a day. This may be an underestimation, for there are 400 mg of tryptophan in just a cup of wheat germ. A cup of low fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg per pound. An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. See also: Serotonin; tryptophan (component of); Chamomile; ginger; melatonin; thiamine; tryptophan (component of) ... View More ... Constituent of many plants. Enzymatic hydrolysis production of most plant and animal proteins. Dietary supplement, nutrient D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants COVID info from PDB, Protein Data Bank The L-enantiomer of tryptophan. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA09_Tryptophan_pos_30eV_1-1_01_662.txt [Raw Data] CBA09_Tryptophan_pos_20eV_1-1_01_661.txt [Raw Data] CBA09_Tryptophan_neg_30eV_1-1_01_716.txt [Raw Data] CBA09_Tryptophan_pos_10eV_1-1_01_660.txt [Raw Data] CBA09_Tryptophan_neg_10eV_1-1_01_714.txt [Raw Data] CBA09_Tryptophan_neg_40eV_1-1_01_717.txt [Raw Data] CBA09_Tryptophan_neg_20eV_1-1_01_715.txt [Raw Data] CBA09_Tryptophan_pos_50eV_1-1_01_664.txt [Raw Data] CBA09_Tryptophan_neg_50eV_1-1_01_718.txt [Raw Data] CBA09_Tryptophan_pos_40eV_1-1_01_663.txt IPB_RECORD: 253; CONFIDENCE confident structure KEIO_ID T003 DL-Tryptophan is an endogenous metabolite. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].

   

Protocatechuic acid

3,4-dihydroxybenzoic acid

C7H6O4 (154.0266076)


Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Pinocembrin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-phenyl-, (S)-(-)-

C15H12O4 (256.0735552)


Pinocembrin is a dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. It has a role as an antioxidant, an antineoplastic agent, a vasodilator agent, a neuroprotective agent and a metabolite. It is a dihydroxyflavanone and a (2S)-flavan-4-one. Pinocembrin is a natural product found in Prunus leveilleana, Alpinia rafflesiana, and other organisms with data available. Pinocembrin is found in mexican oregano and is isolated from many plants including food plants. Pinocembrin belongs to the family of flavanones. These are compounds containing a flavan-3-one moiety, which structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. A dihydroxyflavanone in which the two hydroxy groups are located at positions 5 and 7. A natural product found in Piper sarmentosum and Cryptocarya chartacea. Isolated from many plants including food plants. (S)-Pinocembrin is found in mexican oregano and pine nut. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. (±)-Pinocembrin ((±)-5,7-Dihydroxyflavanone) is a GPR120 ligand able to promote wound healing in HaCaT cell line[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1]. Pinocembrin ((+)-Pinocoembrin) is a flavonoid found in propolis, acts as a competitive inhibitor of histidine decarboxylase, and is an effective anti-allergic agent, with antioxidant, antimicrobial and anti-inflammatory properties[1].

   

Nicotine

(S)-(-)-NICOTINE; 3-[(2S)-1-METHYL-2-PYRROLIDINYL] PYRIDINE

C10H14N2 (162.1156924)


Nicotine is an alkaloid found in the nightshade family of plants (Solanaceae), predominantly in tobacco and in lower quantities in tomato, potato, eggplant (aubergine), and green pepper. Nicotine alkaloids are also found in the leaves of the coca plant. Nicotine constitutes 0.3 to 5\\\% of the tobacco plant by dry weight, with biosynthesis taking place in the root and accumulation in the leaves. It is a potent neurotoxin with particular specificity to insects; therefore nicotine was widely used as an insecticide in the past and nicotine derivatives such as imidacloprid continue to be widely used. It has been noted that the majority of people diagnosed with schizophrenia smoke tobacco. Estimates for the number of schizophrenics that smoke range from 75\\\% to 90\\\%. It was recently argued that the increased level of smoking in schizophrenia may be due to a desire to self-medicate with nicotine. More recent research has found the reverse: it is a risk factor without long-term benefit, used only for its short-term effects. However, research on nicotine as administered through a patch or gum is ongoing. As nicotine enters the body, it is distributed quickly through the bloodstream and can cross the blood-brain barrier. On average, it takes about seven seconds for the substance to reach the brain. The half-life of nicotine in the body is around 2 hours. The amount of nicotine inhaled with tobacco smoke is a fraction of the amount contained in the tobacco leaves (most of the substance is destroyed by the heat). The amount of nicotine absorbed by the body from smoking depends on many factors, including the type of tobacco, whether the smoke is inhaled, and whether a filter is used. For chewing tobacco, often called dip, snuff, or sinus, which is held in the mouth between the lip and gum, the amount released into the body tends to be much greater than smoked tobacco. The currently available literature indicates that nicotine, on its own, does not promote the development of cancer in healthy tissue and has no mutagenic properties. Its teratogenic properties have not yet been adequately researched, and while the likelihood of birth defects caused by nicotine is believed to be very small or nonexistent, nicotine replacement product manufacturers recommend consultation with a physician before using a nicotine patch or nicotine gum while pregnant or nursing. However, nicotine and the increased acetylcholinic activity it causes have been shown to impede apoptosis, which is one of the methods by which the body destroys unwanted cells (programmed cell death). Since apoptosis helps to remove mutated or damaged cells that may eventually become cancerous, the inhibitory actions of nicotine create a more favourable environment for cancer to develop. Thus, nicotine plays an indirect role in carcinogenesis. It is also important to note that its addictive properties are often the primary motivating factor for tobacco smoking, contributing to the proliferation of cancer. Nicotine is a highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a hygroscopic, oily liquid that is miscible with water in its base form. As a nitrogenous base, nicotine forms salts with acids that are usually solid and water soluble. Nicotine easily penetrates the skin. As shown by the physical data, free base nicotine will burn at a temperature below its boiling point, and its vapours will combust at 95 °C in the air despite a low vapour pressure. Because of this, most nicotine is burned when a cigarette is smoked; however, enough is inhaled to provide the desired effects. Nicotine is a stimulant drug that acts as an agonist at nicotinic acetylcholine receptors. These are ionotropic receptors composed of five homomeric or heteromeric subunits. In the brain, nicotine binds to nic... Nicotine appears as a colorless to light yellow or brown liquid. Combustible. Toxic by inhalation and by skin absorption. Produces toxic oxides of nitrogen during combustion. (S)-nicotine is a 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum. It has a role as a phytogenic insecticide, a teratogenic agent, a neurotoxin, an anxiolytic drug, a nicotinic acetylcholine receptor agonist, a biomarker, an immunomodulator, a mitogen, a peripheral nervous system drug, a psychotropic drug, a plant metabolite and a xenobiotic. It is a conjugate base of a (S)-nicotinium(1+). It is an enantiomer of a (R)-nicotine. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a Cholinergic Nicotinic Agonist. Nicotine is a natural alkyloid that is a major component of cigarettes and is used therapeutically to help with smoking cessation. Nicotine has not been associated with liver test abnormalities or with clinically apparent hepatotoxicity. Nicotine is a natural product found in Cyphanthera tasmanica, Nicotiana cavicola, and other organisms with data available. Nicotine is a plant alkaloid, found in the tobacco plant, and addictive central nervous system (CNS) stimulant that causes either ganglionic stimulation in low doses or ganglionic blockage in high doses. Nicotine acts as an agonist at the nicotinic cholinergic receptors in the autonomic ganglia, at neuromuscular junctions, and in the adrenal medulla and the brain. Nicotines CNS-stimulating activities may be mediated through the release of several neurotransmitters, including acetylcholine, beta-endorphin, dopamine, norepinephrine, serotonin, and ACTH. As a result, peripheral vasoconstriction, tachycardia, and elevated blood pressure may be observed with nicotine intake. This agent may also stimulate the chemoreceptor trigger zone, thereby inducing nausea and vomiting. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. See also: Tobacco Leaf (part of); Nicotine Polacrilex (related); Menthol; nicotine (component of) ... View More ... Alkaloid from Nicotiana tabacum and other Nicotiana subspecies, Asclepias syriaca, Lycopodium subspecies, and other subspecies (Solanaceae, Asclepiadaceae, Crassulaceae). Rare spread of occurrence between angiosperms and cryptogametes (CCD) A 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum.

   

Isopimpinellin

InChI=1/C13H10O5/c1-15-10-7-3-4-9(14)18-12(7)13(16-2)11-8(10)5-6-17-11/h3-6H,1-2H3

C13H10O5 (246.052821)


Isopimpinellin is a member of psoralens. Isopimpinellin is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip) Isopimpinellin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica keiskei top (part of). Present in the seeds of Pastinaca sativa (parsnip). Isopimpinellin is found in many foods, some of which are carrot, anise, celery stalks, and fennel. Isopimpinellin is found in angelica. Isopimpinellin is present in the seeds of Pastinaca sativa (parsnip D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1]. Isopimpinellin, an orally active compound isolated from Glomerella cingulata. Isopimpinellin blocks DNA adduct formation and skin tumor initiation by 7,12-dimethylbenz[a]anthracene. Isopimpinellin possesses anti-leishmania effect[1].

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.153378)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

Gingerol

3-Decanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (5S)-, 5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone

C17H26O4 (294.1830996)


Gingerol is a beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. It has a role as an antineoplastic agent and a plant metabolite. It is a beta-hydroxy ketone and a member of guaiacols. Gingerol is a natural product found in Illicium verum, Piper nigrum, and other organisms with data available. See also: Ginger (part of). Gingerol, a plant polyphenol, is the active constituent of fresh ginger. Chemically, gingerol is a relative of capsaicin, the compound that gives chile peppers their spiciness. It is normally found as a pungent yellow oil, but also can form a low-melting crystalline solid. Constituent of ginger Zingiber officinale. (S)-[6]-Gingerol is found in many foods, some of which are caraway, star anise, cumin, and ginger. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.

   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0684702)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

Caffeic acid

(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0422568)


Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Kaempferol

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O6 (286.047736)


Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Syringin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-(4-((E)-3-hydroxyprop-1-en-1-yl)-2,6-dimethoxyphenoxy)tetrahydro-2H-pyran-3,4,5-triol

C17H24O9 (372.14202539999997)


Syringin is a monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. It has a role as a hepatoprotective agent and a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a primary alcohol and a dimethoxybenzene. It is functionally related to a trans-sinapyl alcohol. Syringin is a natural product found in Salacia chinensis, Codonopsis lanceolata, and other organisms with data available. See also: Codonopsis pilosula root (part of). A monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2]. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2].

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Orientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.100557)


Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). Orientin is found in barley. Orientin is isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops).Orientin is a flavone, a chemical flavonoid-like compound found in the passion flower, the palm and Anadenanthera peregrina. Orientin is also reported in millets and in the Phyllostachys nigra bamboo leaves Isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops) [Raw Data] CBA20_Orientin_pos_40eV_1-2_01_1380.txt [Raw Data] CBA20_Orientin_neg_20eV_1-2_01_1405.txt [Raw Data] CBA20_Orientin_neg_50eV_1-2_01_1408.txt [Raw Data] CBA20_Orientin_neg_40eV_1-2_01_1407.txt [Raw Data] CBA20_Orientin_pos_50eV_1-2_01_1381.txt [Raw Data] CBA20_Orientin_neg_30eV_1-2_01_1406.txt [Raw Data] CBA20_Orientin_pos_20eV_1-2_01_1378.txt [Raw Data] CBA20_Orientin_pos_30eV_1-2_01_1379.txt [Raw Data] CBA20_Orientin_pos_10eV_1-2_01_1353.txt [Raw Data] CBA20_Orientin_neg_10eV_1-2_01_1364.txt Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

Piperine

(2E,4E)-5-(2H-1,3-benzodioxol-5-yl)-1-(piperidin-1-yl)penta-2,4-dien-1-one

C17H19NO3 (285.1364864)


Piperine, also known as fema 2909, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. Piperine is a pepper tasting compound. Piperine is found in the highest concentration within pepper (Piper nigrum) and many other Piper species. Piperine has also been detected, but not quantified, in dills and herbs and spices. Piperine is responsible for the hot taste of pepper. Piperine has been used in trials studying the treatment of Multiple Myeloma and Deglutition Disorders. It is used to impart pungent taste to brandy. Piperine is a N-acylpiperidine that is piperidine substituted by a (1E,3E)-1-(1,3-benzodioxol-5-yl)-5-oxopenta-1,3-dien-5-yl group at the nitrogen atom. It is an alkaloid isolated from the plant Piper nigrum. It has a role as a NF-kappaB inhibitor, a plant metabolite, a food component and a human blood serum metabolite. It is a member of benzodioxoles, a N-acylpiperidine, a piperidine alkaloid and a tertiary carboxamide. It is functionally related to an (E,E)-piperic acid. Bioperine has been used in trials studying the treatment of Multiple Myeloma and Deglutition Disorders. Piperine is a natural product found in Macropiper, Piper boehmeriifolium, and other organisms with data available. See also: Black Pepper (part of) ... View More ... Constituent of pepper (Piper nigrum) and many other Piper subspecies (Piperaceae). It is used to impart pungent taste to brandy. Responsible for the hot taste of pepper. Flavour ingredient. Piperine is found in dill, herbs and spices, and pepper (spice). A N-acylpiperidine that is piperidine substituted by a (1E,3E)-1-(1,3-benzodioxol-5-yl)-5-oxopenta-1,3-dien-5-yl group at the nitrogen atom. It is an alkaloid isolated from the plant Piper nigrum. Piperine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=94-62-2 (retrieved 2024-07-01) (CAS RN: 94-62-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell. Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell.

   

Isosakuranetin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-methoxyphenyl)-, (2S)-

C16H14O5 (286.0841194)


4-methoxy-5,7-dihydroxyflavanone is a dihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5 and 7 and a methoxy group at position 4 (the 2S stereoisomer). It has a role as a plant metabolite. It is a dihydroxyflavanone, a monomethoxyflavanone, a member of 4-methoxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Isosakuranetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Isosakuranetin is a flavanone flavonoid which can be found in the fruit of Citrus bergamia. Isosakuranetin is a flavanone flavonoid which can be found in the fruit of Citrus bergamia.

   

(R)-Methysticin

5-Hydroxy-3-methoxy-7-(3,4-(methylenedioxy)phenyl)-2,6-heptadienoic acid gamma-lactone

C15H14O5 (274.0841194)


Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). (R)-Methysticin is found in beverages. (R)-Methysticin is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].

   

Yangonin

5-Hydroxy-3-methoxy-7-(p-methoxyphenyl)-2,4,6-heptatrienoic acid .gamma.-lactone

C15H14O4 (258.0892044)


Yangonin is a member of 2-pyranones and an aromatic ether. Yangonin is a natural product found in Piper methysticum, Ranunculus silerifolius, and Piper majusculum with data available. See also: Piper methysticum root (part of). Yangonin is found in beverages. Yangonin is found in kava root (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Found in kava root (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Yangonin exhibits affinity for the human recombinant cannabinoid CB1 receptor with an IC50 and a Ki of 1.79 μM and 0.72 μM, respectively. Yangonin exhibits affinity for the human recombinant cannabinoid CB1 receptor with an IC50 and a Ki of 1.79 μM and 0.72 μM, respectively.

   

galbelgin

Furan, 2,4-bis(3,4-dimethoxyphenyl)tetrahydro-3,4-dimethyl-, (2alpha,3beta,4beta,5alpha)-

C22H28O5 (372.1936638)


Galgravin is a member of the class of aryltetrahydrofurans carrying two 3,4-dimethoxyphenyl substituents at positions 2 and 5 as well as two methyl groups at positions 3 and 4. It has a role as a bone density conservation agent, a neuroprotective agent, a platelet aggregation inhibitor and a plant metabolite. It is an aryltetrahydrofuran, a dimethoxybenzene, a ring assembly and a lignan. Galgravin is a natural product found in Schisandra propinqua, Piper mullesua, and other organisms with data available. A member of the class of aryltetrahydrofurans carrying two 3,4-dimethoxyphenyl substituents at positions 2 and 5 as well as two methyl groups at positions 3 and 4. Veraguensin is a lignan. It has a role as a metabolite. Veraguensin is a natural product found in Ocotea foetens, Illicium floridanum, and other organisms with data available. A natural product found in Acorus gramineus. Veraguensin is a lignan compound derived from Magnolia sp.. Veraguensin can inhibit bone resorption[1] Veraguensin is a lignan compound derived from Magnolia sp.. Veraguensin can inhibit bone resorption[1]

   

3,7-Dimethyl-1,6-octadien-3-ol

Linalool, certified reference material, TraceCERT(R)

C10H18O (154.1357578)


3,7-Dimethyl-1,6-octadien-3-ol, also known simply as linalool is a naturally occurring terpene alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Linalool has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. There are two stereoisomers of Linalool ‚Äö√Ñ√¨ (S)-linalool and (R)-linalool. Linalool is used as a scent in 60\\\\\% to 80\\\\\% of perfumed hygiene products and cleaning agents including soaps, detergents, shampoos, and lotions. Linalool is also used by pest professionals as a flea, fruit fly, and cockroach insecticide. Linalool is found in more than 200 different species of plants, including many flowers and spice plants. (S)-linalool is found, for example, as a major constituent of the essential oils of coriander (Coriandrum sativum L.), cymbopogon (Cymbopogon martini var. martinii), and sweet orange (Citrus sinensis) flowers. (R)-linalool is present in lavender (Lavandula officinalis), bay laurel (Laurus nobilis), and sweet basil (Ocimum basilicum), among others. Linalool is also found in plants from the Lamiaceae family (mint and other herbs), Lauraceae (laurels, cinnamon, rosewood), Cinnamomum tamala, Solidago Meyen, Artemisia vulgaris (mugwort), Humulus lupulus. Linalool is also one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Like the majority of monoterpenes, linalool starts with the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl pyrophosphate (GPP) (PMID:7640522 ). Linalool is then synthesized with the aid of linalool synthase (LIS) (PMID:12572612 ). Linalool has a citrus, floral, rose, woody aroma and a citrus, orange, waxy taste. Linalool is found in a few different foods and spices, such as spearmints, corianders, common thymes, limes, grapes, lemons, grapefruit, oranges, pineapples, blackcurrants, basil, and common oregano. This could make, Linalool a potential biomarker for the consumption of these foods. Linalool is also synthesized, de novo, by yeast (C. cerevisiae) and may contribute to the floral tones found in some wines (PMID:15668008 ). Linalool is a monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. It has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. It is a tertiary alcohol and a monoterpenoid. Linalool is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. 3,7-Dimethyl-1,6-octadien-3-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon Leaf Oil (part of); Clary Sage Oil (part of); Cannabis sativa subsp. indica top (part of) ... View More ... A monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. Flavouring agent. Widespread natural occurrence as the optically active and racemic forms in over 200 essential oilsand is) also present in numerous fruits. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2]. Linalool is a natural monoterpene which is a competitive NMDA receptor antagonist. Linalool is orally active and crosses the blood-brain barrier. Linalool has anticancer, antibacterial, anti-inflammatory, neuroprotective, anxiolytic, antidepressant, anti-stress, cardioprotective, hepatoprotective, nephroprotective and pulmonary protective activities[1][2][3][4][5]. Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2].