NCBI Taxonomy: 4650

Zingiber (ncbi_taxid: 4650)

found 265 associated metabolites at genus taxonomy rank level.

Ancestor: Zingiberaceae

Child Taxonomies: Zingiber gramineum, Zingiber mioga, Zingiber teres, Zingiber wrayi, Zingiber roseum, Zingiber niveum, Zingiber rubens, Zingiber kerrii, Zingiber kawagoi, Zingiber cernuum, Zingiber junceum, Zingiber fragile, Zingiber neesanum, Zingiber thorelii, Zingiber zerumbet, Zingiber nimmonii, Zingiber papuanum, Zingiber pellitum, Zingiber newmanii, Zingiber parishii, Zingiber barbatum, Zingiber montanum, Zingiber isanense, Zingiber ottensii, Zingiber ligulatum, Zingiber simaoense, Zingiber coloratum, Zingiber purpureum, Zingiber perenense, Zingiber puberulum, Zingiber capitatum, Zingiber striolatum, Zingiber wightianum, Zingiber koshunense, Zingiber stipitatum, Zingiber yunnanense, Zingiber cassumunar, Zingiber acuminatum, Zingiber loerzingii, Zingiber nudicarpum, Zingiber spectabile, Zingiber officinale, Zingiber recurvatum, Zingiber corallinum, Zingiber odoriferum, Zingiber cornigerum, Zingiber bipinianum, Zingiber ellipticum, Zingiber sulphureum, Zingiber smilesianum, Zingiber cylindricum, Zingiber guangxiense, Zingiber longiglande, Zingiber pherimaense, Zingiber chrysanthum, Zingiber malaysianum, Zingiber densissimum, Zingiber bulusanense, Zingiber engganoense, Zingiber wandingense, Zingiber orbiculatum, Zingiber bradleyanum, Zingiber citriodorum, Zingiber mizoramense, Zingiber callianthum, Zingiber pyroglossum, Zingiber oligophyllum, Zingiber leptorrhizum, Zingiber singapurense, unclassified Zingiber, Zingiber campanulatum, Zingiber neotruncatum, Zingiber meghalayense, Zingiber liangshanense, Zingiber yingjiangense, Zingiber ultralimitale, Zingiber arunachalense, Zingiber shuanglongense, Zingiber cochleariforme, Zingiber flavomaculosum, Zingiber kangleipakense, Zingiber longipedunculatum, Zingiber xishuangbannaense, Zingiber singapurense x Zingiber puberulum

Rosmarinic acid

BENZENEPROPANOIC ACID, .ALPHA.-(((2E)-3-(3,4-DIHYDROXYPHENYL)-1-OXO-2-PROPEN-1-YL)OXY)-3,4-DIHYDROXY-, (.ALPHA.R)-

C18H16O8 (360.0845136)


Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. It is commonly found in species of the Boraginaceae and the subfamily Nepetoideae of the Lamiaceae. It is a red-orange powder that is slightly soluble in water, but well soluble is most organic solvents. Rosmarinic acid is one of the polyphenolic substances contained in culinary herbs such as perilla (Perilla frutescens L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), mint (Mentha arvense L.), and basil (Ocimum basilicum L.). These herbs are commonly grown in the garden as kitchen herbs, and while used to add flavor in cooking, are also known to have several potent physiological effects (PMID: 12482446, 15120569). BioTransformer predicts that rosmarinic acid is a product of methylrosmarinic acid metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in humans and human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). (R)-rosmarinic acid is a stereoisomer of rosmarinic acid having (R)-configuration. It has a role as a plant metabolite and a geroprotector. It is a conjugate acid of a (R)-rosmarinate. It is an enantiomer of a (S)-rosmarinic acid. Rosmarinic acid is a natural product found in Dimetia scandens, Scrophularia scorodonia, and other organisms with data available. See also: Rosemary Oil (part of); Comfrey Root (part of); Holy basil leaf (part of) ... View More ... D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors Isolated from rosemary, mint, sage, thyme, lemon balm and other plants D002491 - Central Nervous System Agents > D000700 - Analgesics A stereoisomer of rosmarinic acid having (R)-configuration. D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.

   

Catechin

(2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.0790344)


Catechin, also known as cyanidanol or catechuic acid, belongs to the class of organic compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Catechin also belongs to the group of compounds known as flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids. Catechin is one of the 4 catechin known diastereoisomers. Two of the isomers are in trans configuration and are called catechin and the other two are in cis configuration and are called epicatechin. The most common catechin isomer is the (+)-catechin. The other stereoisomer is (-)-catechin or ent-catechin. The most common epicatechin isomer is (-)-epicatechin. Catechin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Catechin is a bitter tasting compound and is associated with the bitterness in tea. Catechin is a plant secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Catechin is an antioxidant flavonoid, occurring especially in woody plants as both Catechin and (-)-Catechin (cis) forms. Outside of the human body, Catechin is found, on average, in the highest concentration in foods, such as blackcurrants (Ribes nigrum), evergreen blackberries (Rubus laciniatus), and blackberries (Rubus) and in a lower concentration in dills (Anethum graveolens), hot chocolates, and medlars (Mespilus germanica). Catechin has also been detected, but not quantified in, several different foods, such as rice (Oryza sativa), apple ciders, peanuts (Arachis hypogaea), fruit juices, and red teas. This could make catechin a potential biomarker for the consumption of these foods. Based on a literature review a significant number of articles have been published on Catechin. (+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Cianidanol is a natural product found in Visnea mocanera, Salacia chinensis, and other organisms with data available. Catechin is a metabolite found in or produced by Saccharomyces cerevisiae. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Gallocatechin (related); Crofelemer (monomer of); Bilberry (part of) ... View More ... Present in red wine. Widespread in plants; found in a variety of foodstuffs especies apricots, broad beans, cherries, chocolate, grapes, nectarines, red wine, rhubarb, strawberries and tea The (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. Catechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=154-23-4 (retrieved 2024-07-12) (CAS RN: 154-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

Vanillic acid

4-hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215226)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

4-Hydroxycinnamic acid

(E)-3-(4-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473418)


4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Protocatechuic acid

3,4-dihydroxybenzoic acid

C7H6O4 (154.0266076)


Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Gingerol

3-Decanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (5S)-, 5-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone

C17H26O4 (294.1830996)


Gingerol is a beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. It has a role as an antineoplastic agent and a plant metabolite. It is a beta-hydroxy ketone and a member of guaiacols. Gingerol is a natural product found in Illicium verum, Piper nigrum, and other organisms with data available. See also: Ginger (part of). Gingerol, a plant polyphenol, is the active constituent of fresh ginger. Chemically, gingerol is a relative of capsaicin, the compound that gives chile peppers their spiciness. It is normally found as a pungent yellow oil, but also can form a low-melting crystalline solid. Constituent of ginger Zingiber officinale. (S)-[6]-Gingerol is found in many foods, some of which are caraway, star anise, cumin, and ginger. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.

   

Caffeic acid

(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0422568)


Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Kaempferol

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O6 (286.047736)


Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

(S)-[8]-Gingerol

3-Dodecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C19H30O4 (322.214398)


(8)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (8)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). (S)-[8]-Gingerol is found in ginger. (S)-[8]-Gingerol is a constituent of ginger, the rhizome of Zingiber officinale. Constituent of ginger, the rhizome of Zingiber officinale. (S)-[8]-Gingerol is found in herbs and spices and ginger. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2]. 8-Gingerol, found in the rhizomes of ginger (Z. officinale) with oral bioavailability, activates TRPV1, with an EC50 of 5.0 μM. 8-Gingerol inhibits COX-2, and inhibits the growth of H. pylori in vitro[1][2].

   

Carnosic_acid

4a(2H)-Phenanthrenecarboxylic acid, 1,3,4,9,10,10a-hexahydro-5,6-dihydroxy-1,1-dimethyl-7-(1-methylethyl)-, (4aR,10aS)-rel-

C20H28O4 (332.19874880000003)


Carnosic acid is an abietane diterpenoid that is abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12 and a carboxy group at position 20. It is isolated from rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis) and exhibits anti-angiogenic, antineoplastic, antioxidant and anti-HIV activity. It has a role as an antineoplastic agent, an antioxidant, a HIV protease inhibitor, an angiogenesis modulating agent, an apoptosis inducer, a plant metabolite, an anti-inflammatory agent and a food preservative. It is an abietane diterpenoid, a carbotricyclic compound, a member of catechols and a monocarboxylic acid. It is a conjugate acid of a carnosate. Carnosic acid is a natural product found in Salvia tomentosa, Illicium verum, and other organisms with data available. See also: Rosemary (part of). An abietane diterpenoid that is abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12 and a carboxy group at position 20. It is isolated from rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis) and exhibits anti-angiogenic, antineoplastic, antioxidant and anti-HIV activity. D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents

   

(S)-[10]-Gingerol

3-Tetradecanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (5S)-

C21H34O4 (350.24569640000004)


(10)-Gingerol is a beta-hydroxy ketone, a member of phenols and a monomethoxybenzene. (10)-Gingerol is a natural product found in Zingiber officinale with data available. See also: Ginger (part of). (S)-[10]-Gingerol is found in ginger. (S)-[10]-Gingerol is a constituent of ginger, the rhizome of Zingiber officinale. Constituent of ginger, the rhizome of Zingiber officinale. (S)-[10]-Gingerol is found in herbs and spices and ginger. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2]. 10-Gingerol is a major pungent constituent in the ginger oleoresin from fresh rhizome, with anti-inflammatory, antioxidant and anti-proliferative activities. 10-Gingerol inhibits the proliferation of MDA-MB-231 tumor cell line with an IC50 of 12.1 μM[1][2].

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.105642)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

5-Isopropyl-2-methylphenol

InChI=1/C10H14O/c1-7(2)9-5-4-8(3)10(11)6-9/h4-7,11H,1-3H

C10H14O (150.1044594)


5-Isopropyl-2-methylphenol, also known as 2-hydroxy-p-cymene or 2-p-cymenol, belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. 5-Isopropyl-2-methylphenol is a very hydrophobic molecule, practically insoluble in water, but fairly soluble in organic solvents. Thus, 5-Isopropyl-2-methylphenol is considered to be an isoprenoid lipid molecule. Thymol is found in the essential oil of thyme and in the essential oils of several different plants. It can be extracted from Thymus vulgaris (common thyme), Ajwain and various other kinds of plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol has also been identified as a volatile compound found in cannabis samples obtained from police seizures (PMID:26657499 ). Carvacrol is a phenol that is a natural monoterpene derivative of cymene. An inhibitor of bacterial growth, it is used as a food additive. Potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1). It has a role as a volatile oil component, a flavouring agent, an antimicrobial agent, an agrochemical and a TRPA1 channel agonist. It is a member of phenols, a p-menthane monoterpenoid and a botanical anti-fungal agent. It derives from a hydride of a p-cymene. Carvacrol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. Carvacrol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Oregano Leaf Oil (part of). A phenol that is a natural monoterpene derivative of cymene. An inhibitor of bacterial growth, it is used as a food additive. Potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1). Constituent of many essential oils. Especies found in the Labiatae. Thyme oil (=70\\\\%) and Origanum oil (=80\\\\%) are rich sources. Flavouring ingredient COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1]. Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1].

   

Hexahydrocurcumin

(RS)-5-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-3-heptanone

C21H26O6 (374.17292960000003)


Hexahydrocurcumin is a member of the class of compounds known as curcuminoids. Curcuminoids are aromatic compounds containing a curcumin moiety, which is composed of two aryl buten-2-one (feruloyl) chromophores joined by a methylene group. Hexahydrocurcumin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Hexahydrocurcumin can be found in ginger, which makes hexahydrocurcumin a potential biomarker for the consumption of this food product. Hexahydrocurcumin is a diarylheptanoid. Hexahydrocurcumin is a natural product found in Zingiber officinale with data available. [Raw Data] CBA88_Hexahydrocurcum_pos_40eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_20eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_10eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_10eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_20eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_50eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_40eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_30eV.txt [Raw Data] CBA88_Hexahydrocurcum_neg_50eV.txt [Raw Data] CBA88_Hexahydrocurcum_pos_30eV.txt Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2]. Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2].

   

Secoisolariciresinol

1,4-Butanediol, 2,3-bis((4-hydroxy-3-methoxyphenyl)methyl)-, (R-(R*,R*))-

C20H26O6 (362.17292960000003)


Secoisolariciresinol, also known as knotolan or secoisolariciresinol, (r*,s*)-isomer, is a member of the class of compounds known as dibenzylbutanediol lignans. Dibenzylbutanediol lignans are lignan compounds containing a 2,3-dibenzylbutane-1,4-diol moiety. Secoisolariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Secoisolariciresinol can be found in a number of food items such as grape, saskatoon berry, asparagus, and sweet potato, which makes secoisolariciresinol a potential biomarker for the consumption of these food products. Secoisolariciresinol can be found primarily in urine. Secoisolariciresinol is a lignan, a type of phenylpropanoid. It is present in the water extract of silver fir wood, where its content is more than 5 \\\\% . (-)-secoisolariciresinol is an enantiomer of secoisolariciresinol having (-)-(2R,3R)-configuration. It has a role as an antidepressant, a plant metabolite and a phytoestrogen. It is an enantiomer of a (+)-secoisolariciresinol. Secoisolariciresinol has been used in trials studying the prevention of Breast Cancer. Secoisolariciresinol is a natural product found in Fitzroya cupressoides, Crossosoma bigelovii, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.

   

Thymol

Thymol, Pharmaceutical Secondary Standard; Certified Reference Material

C10H14O (150.1044594)


Thymol is a phenol that is a natural monoterpene derivative of cymene. It has a role as a volatile oil component. It is a member of phenols and a monoterpenoid. It derives from a hydride of a p-cymene. A phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. (Dorland, 28th ed) Thymol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A phenol obtained from thyme oil or other volatile oils used as a stabilizer in pharmaceutical preparations, and as an antiseptic (antibacterial or antifungal) agent. See also: Paeonia lactiflora root (part of); Elymus repens root (part of); Eucalyptol; thymol (component of) ... View More ... Thymol is a phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. Thymol is a monoterpene phenol derivative of cymene, C10H13OH, isomeric with carvacrol, found in oil of thyme, and extracted as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. It is also called "hydroxy cymene". In a 1994 report released by five top cigarette companies, thymol is one of the 599 additives to cigarettes. Its use or purpose, however, is unknown, like most cigarette additives. Found in many essential oils. Especies found in the Labiatae. Rich sources are thyme oil, seed oil of Ptychotis ajowan and oils of horsemint (Monarda punctata) and Ocimum subspecies Flavouring ingredient C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents A phenol that is a natural monoterpene derivative of cymene. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].

   

Anethole

1-(methyloxy)-4-[(1E)-prop-1-en-1-yl]benzene

C10H12O (148.08881019999998)


Present in anise, fennel and other plant oils. Extensively used in flavour industry. Anethole is found in many foods, some of which are white mustard, fennel, allspice, and sweet basil. cis-Anethole is found in anise. Only a low level is permitted in flavours Anethole is a type of aromatic compound used as a flavoring. It is a derivative of Phenylpropene and widely exists in nature. Anethole is a type of aromatic compound used as a flavoring. It is a derivative of Phenylpropene and widely exists in nature. Trans-Anethole ((E)-Anethole), a phenylpropene derivative isolated from Foeniculum vulgare, shows estrogenic activity at lower concentrations and cytotoxic at higher concentrations in cancer cell lines[1][2]. Trans-Anethole ((E)-Anethole) contributes a large component of the odor and flavor of anise and fennel, anise myrtle, liquorice, camphor, magnolia blossoms, and star anise[3]. Trans-Anethole ((E)-Anethole), a phenylpropene derivative isolated from Foeniculum vulgare, shows estrogenic activity at lower concentrations and cytotoxic at higher concentrations in cancer cell lines[1][2]. Trans-Anethole ((E)-Anethole) contributes a large component of the odor and flavor of anise and fennel, anise myrtle, liquorice, camphor, magnolia blossoms, and star anise[3].

   

Eugenol

Eugenol, Pharmaceutical Secondary Standard; Certified Reference Material

C10H12O2 (164.0837252)


Eugenol appears as clear colorless pale yellow or amber-colored liquid. Odor of cloves. Spicy pungent taste. (NTP, 1992) Eugenol is a phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. It has a role as an allergen, a human blood serum metabolite, a sensitiser, a volatile oil component, a flavouring agent, an EC 1.4.3.4 (monoamine oxidase) inhibitor, a radical scavenger, an antibacterial agent, an antineoplastic agent, an apoptosis inducer, an anaesthetic, an analgesic, a voltage-gated sodium channel blocker, a NF-kappaB inhibitor and an anti-inflammatory agent. It is a phenylpropanoid, a monomethoxybenzene, a member of phenols and an alkenylbenzene. It is functionally related to a guaiacol. Eugenol is a naturally occurring phenolic molecule found in several plants such as cinnamon, clove, and bay leaves. It has been used as a topical antiseptic as a counter-irritant and in dental preparations with zinc oxide for root canal sealing and pain control. Although not currently available in any FDA-approved products (including OTC), eugenol has been found to have anti-inflammatory, neuroprotective, antipyretic, antioxidant, antifungal and analgesic properties. Its exact mechanism of action is unknown, however, it has been shown to interfere with action potential conduction. There are a number of unapproved OTC products available containing eugenol that advertise its use for the treatment of toothache. Eugenol is a Standardized Chemical Allergen. The physiologic effect of eugenol is by means of Increased Histamine Release, and Cell-mediated Immunity. Eugenol, also called clove oil, is an aromatic oil extracted from cloves that is used widely as a flavoring for foods and teas and as an herbal oil used topically to treat toothache and more rarely to be taken orally to treat gastrointestinal and respiratory complaints. Eugenol in therapeutic doses has not been implicated in causing serum enzyme elevations or clinically apparent liver injury, but ingestions of high doses, as with an overdose, can cause severe liver injury. Eugenol is a natural product found in Dahlia sherffii, Elettaria cardamomum, and other organisms with data available. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. Eugenol is a member of the allylbenzene class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like odor. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). 4-Allyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. A cinnamate derivative of the shikimate pathway found in CLOVE OIL and other PLANTS. See also: Cinnamon (part of); Clove Oil (part of); Cinnamon Leaf Oil (part of) ... View More ... Eugenol is an allyl chain-substituted guaiacol. Eugenol is a member of the phenylpropanoids class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like aroma. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. It is a key ingredient in Indonesian kretek (clove) cigarettes. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from phenol or from lignin. It is one of many compounds that is attractive to males of various species of orchid bees, who apparently gather the chemical to synthesize pheromones; it is commonly used as bait to attract and collect these bees for study. Eugenol has a very widespread occurrence in essential oils. Major component of clove oil. Also found in citrus and thyme oils. It is found in foods such as apple, apricot, banana and cherry fruits. Eugenol or 4-allyl-2-methoxyphenol is classified as a phenylpropanoid, formally derived from guaiacol, with an allyl chain positioned para to the hydroxy group. It is soluble in water, alcohol, chloroform, ether and oils. Eugenol is a neutral compound. It is biosynthesized from tyrosine. Eugenol is widely distributed in plants. It is a clear to pale yellow oily liquid extracted from clove oil, nutmeg, cinnamon, basil and bay leaf. It has a pleasant, spicy, clove-like odor with a spicy pungent taste. Eugenol is found in highest concentrations in cloves, allspices, and carrots and in lower concentrations in walnuts, ceylon cinnamons, and wild carrots. Eugenol has also been detected in shea tree, passion fruits, winged beans, fireweeds, and gingers, making it a potential biomarker for the consumption of these foods. Eugenol is used in perfumeries, flavorings and essential oils. It was first used for the manufacture of vanillin (https://doi.org/10.1021/ed054p776), though most vanillin is now produced from petrochemicals or from by-products of paper manufacture. Eugenol is hepatotoxic, meaning it may cause damage to the liver, if consumed in high doses. Eugenol has local antiseptic and anaesthetic properties (PMID:15089054 ; PMID:935250 ) and acts as positive allosteric modulators of the GABA-A receptor. It has high antioxidant, anti-proliferative, and anti-inflammatory activities with potential roles in alleviating and preventing cancer and inflammatory reactions (PMID:27771920 ). A phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents [Raw Data] CB226_Eugenol_pos_10eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_20eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_40eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_50eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_30eV_CB000079.txt Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

Dodecanoic acid

dodecanoic acid

C12H24O2 (200.1776204)


Dodecanoic acid, also known as dodecanoate or lauric acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Dodecanoic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Dodecanoic acid is the main fatty acid in coconut oil and in palm kernel oil, and is believed to have antimicrobial properties. It is a white, powdery solid with a faint odour of bay oil. Dodecanoic acid, although slightly irritating to mucous membranes, has a very low toxicity and so is used in many soaps and shampoos. Defoamer, lubricant. It is used in fruit coatings. Occurs as glyceride in coconut oil and palm kernel oil. Simple esters are flavour ingredients Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

Matairesinol

(3R,4R)-Dihydro-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]-2(3H)-furanone; (-)-Matairesinol; (8R,8R)-(-)-Matairesinol

C20H22O6 (358.1416312)


Matairesinol belongs to the class of organic compounds known as dibenzylbutyrolactone lignans. These are lignan compounds containing a 3,4-dibenzyloxolan-2-one moiety. Matairesinol is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, matairesinol is found, on average, in the highest concentration in a few different foods such as sesame, burdocks, and flaxseeds, and in a lower concentration in oats, asparagus, and poppies. Matairesinol has also been detected, but not quantified in, several different foods, such as silver lindens, tamarinds, cherry tomato, skunk currants, and fireweeds. This could make matairesinol a potential biomarker for the consumption of these foods. Matairesinol is composed of gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). (-)-matairesinol is a lignan that is gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). It has a role as a phytoestrogen, a plant metabolite, an angiogenesis inhibitor and an anti-asthmatic agent. It is a polyphenol, a lignan and a gamma-lactone. Matairesinol is a natural product found in Crossosoma bigelovii, Brassica oleracea var. sabauda, and other organisms with data available. See also: Arctium lappa fruit (part of); Pumpkin Seed (part of). Matairesinol is a plant lignan. It occurs with secoisolariciresinol in numerous foods such as oil seeds, whole grains, vegetables, and fruits. (-)-Matairesinol is found in many foods, some of which are caraway, pecan nut, cereals and cereal products, and longan. A lignan that is gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1]. Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1].

   

Phenol

Hydroxybenzene

C6H6O (94.0418626)


D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AE - Phenol and derivatives C - Cardiovascular system > C05 - Vasoprotectives > C05B - Antivaricose therapy > C05BB - Sclerosing agents for local injection An organic hydroxy compound that consists of benzene bearing a single hydroxy substituent. The parent of the class of phenols. R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics D019999 - Pharmaceutical Solutions > D012597 - Sclerosing Solutions N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local D000890 - Anti-Infective Agents D002317 - Cardiovascular Agents D004202 - Disinfectants CONFIDENCE standard compound; INTERNAL_ID 225

   

1-Methoxy-4-(2-propenyl)benzene

BENZENE,1-ALLYL,4-METHOXY METHYLCHAVICOL

C10H12O (148.08881019999998)


1-Methoxy-4-(2-propenyl)benzene, also known as methylchavicol or estragol, belongs to the class of organic compounds known as anisoles. These are organic compounds containing a methoxybenzene or a derivative thereof. 1-Methoxy-4-(2-propenyl)benzene is a sweet, alcohol, and anise tasting compound. 1-Methoxy-4-(2-propenyl)benzene is found, on average, in the highest concentration within a few different foods, such as anises, fennels, and sweet basils and in a lower concentration in cumins, tarragons, and parsley. 1-Methoxy-4-(2-propenyl)benzene has also been detected, but not quantified, in several different foods, such as citrus, chinese cinnamons, caraway, fats and oils, and cloves. This could make 1-methoxy-4-(2-propenyl)benzene a potential biomarker for the consumption of these foods. 1-Methoxy-4-(2-propenyl)benzene, with regard to humans, has been linked to the inborn metabolic disorder celiac disease. Constituent of many essential oils. Found in apple, bilberry and orange fruits and juices. Flavouring agent. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].

   

alpha-Copaene

TRICYCLO(4.4.0.02,7)DEC-3-ENE, 1,3-DIMETHYL-8-(1-METHYLETHYL)-, (1R,2S,6S,7S,8S)-

C15H24 (204.18779039999998)


alpha-Copaene, also known as aglaiene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. alpha-Copaene is possibly neutral. alpha-Copaene is a spice and woody tasting compound that can be found in several food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savoury, which makes alpha-copaene a potential biomarker for the consumption of these food products. alpha-Copaene can be found in feces and saliva. Alpha-copaene, also known as copaene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Alpha-copaene is a spice and woody tasting compound and can be found in a number of food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savory, which makes alpha-copaene a potential biomarker for the consumption of these food products. Alpha-copaene can be found primarily in feces and saliva. 8-Isopropyl-1,3-dimethyltricyclo(4.4.0.02,7)dec-3-ene is a natural product found in Pinus sylvestris var. hamata, Asarum gusk, and other organisms with data available.

   

Heptanal

Oenanthic aldehyde

C7H14O (114.10445940000001)


Heptanal, also known as enanthal or N-heptaldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, heptanal is considered to be a fatty aldehyde lipid molecule. It is a colourless liquid with a strong fruity odor, which is used as precursor to components in perfumes and lubricants. Heptanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heptanal exists in all eukaryotes, ranging from yeast to humans. Heptanal is an aldehydic, citrus, and fat tasting compound. heptanal is found, on average, in the highest concentration in a few different foods, such as corns, tea, and sweet oranges and in a lower concentration in lemons, wild carrots, and carrots. heptanal has also been detected, but not quantified, in several different foods, such as horned melons, common beets, dills, red bell peppers, and malus (crab apple). This could make heptanal a potential biomarker for the consumption of these foods. The formation of heptanal in the fractional distillation of castor oil was already described in 1878. The large-scale production is based on the pyrolytic cleavage of ricinoleic acid ester (Arkema method) and on the hydroformylation of 1-hexene with rhodium 2-ethylhexanoate as a catalyst upon addition of some 2-ethylhexanoic acid (Oxea method):Heptanal naturally occurs in the essential oils of ylang-ylang (Cananga odorata), clary sage (Salvia sclarea), lemon (Citrus x limon), bitter orange (Citrus x aurantium), rose (Rosa) and hyacinth (Hyacinthus). Heptanal is a potentially toxic compound. Heptanal has been found to be associated with several diseases such as ulcerative colitis, crohns disease, uremia, and nonalcoholic fatty liver disease; also heptanal has been linked to the inborn metabolic disorders including celiac disease. The compound has a flash point of 39.5 °C. The explosion range is between 1.1\\% by volume as the lower explosion limit (LEL) and 5.2\\% by volume as the upper explosion limit. Heptanal or heptanaldehyde is an alkyl aldehyde. Full hydrogenation provides the branched primary alcohol 2-pentylnonan-1-ol, also accessible from the Guerbet reaction from heptanol. A by-product of the given reaction is the unpleasant rancid smelling (Z)-2-pentyl-2-nonenal. Heptanal forms flammable vapor-air mixtures. Heptanal is a flammable, slightly volatile colorless liquid of pervasive fruity to oily-greasy odor, which is miscible with alcohols and practically insoluble in water. Heptanal reacts with benzaldehyde in a Knoevenagel reaction under basic catalysis with high yield and selectivity (> 90\\%) to alpha-pentylcinnamaldehyde (also called jasmine aldehyde because of the typical jasmine odor), which is mostly used in many fragrances as a cis/trans isomer mixture. Found in essential oils of ylang-ylang, clary sage, California orange, bitter orange and others. Flavouring agent

   

beta-Cadinene

(1S,4AR,8as)-4,7-dimethyl-1-(propan-2-yl)-1,2,4a,5,8,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


beta-Cadinene is found in common oregano. beta-Cadinene is a constituent of Pinus caribaea. Mixed cadinene isomers, with b-cadinene usually predominating, occur in several essential oils, especially ylang-ylang, citronella and cade oil from Juniper species Cadinene isomers are used as a flavouring agent and/or flavour modifier.

   

Cyclohexanone

Cyclohexanone homopolymer

C6H10O (98.07316100000001)


Cyclohexanone is a food flavourant. Present in various plant spp. e.g. Cistus ladaniferus (labdanum). Cyclohexanone is a colorless oily liquid with an odor resembling acetone and peppermint. Cyclohexanone is occasionally found as a volatile component of human urine. Biological fluids such as blood and urine have been shown to contain a large number of components, some of them volatiles (low boiling point) apparently present in all individuals, while others such are much more variable. In some cases differences up to an order of magnitude are observed. Although some of these changes may have dietary origins, others seem to be characteristic of the individual. Cyclohexanone is obtained through oxidation of cyclohexane or dehydrogenation of phenol. Approx. 95\\% of its manuf. is used for the production of nylon. Information on toxicity to human beings is fragmentary. Acute exposure is characterized by irritation of the eyes, nose, and throat. In two persons, drowsiness and renal impairment were found; Like cyclohexanol, cyclohexanone is not carcinogenic and is only moderately toxic, with a TLV of 25 ppm for the vapor. It is an irritant.; The great majority of cyclohexanone is consumed in the production of precursors to Nylon 66 and Nylon 6. About half of the worlds supply is converted to adipic acid, one of two precursors for nylon 66. For this application, the KA oil (see above) is oxidized with nitric acid. The other half of the cyclohexanone supply is converted to the oxime. In the presence of sulfuric acid catalyst, the oxime rearranges to caprolactam, a precursor to nylon 6:; however, there were embryotoxic effects and influence on reproduction Cyclohexanone is well absorbed through the skin, respiratory tract, and alimentary tract. The main metabolic pathway leads to cyclohexanol, which is excreted in urine coupled with glucuronic acid. A high correlation was found between the concentration of cyclohexanone in the working environment and its concentration in urine. Cyclohexanone is formed from the hydrocarbons cyclohexane and 1-, 2-, and 3-hexanol. A patients case report documents the development of anosmia (an olfactory disorder) and rhinitis caused by occupational exposure to organic solvents, including cyclohexanone (PMID: 10476412, 16925936, 16477465); however, these workers were also exposed to other compounds. Hepatic disorders were found in a group of workers exposed for over five years. In animals, cyclohexanone is characterized by relatively low acute toxicity (DL50 by intragastric administration is approx. 2 g/kg body wt.). Effects on the central nervous system (CNS) were found (narcosis), as well as irritation of the eyes and skin. Following multiple administration, effects were found in the CNS, liver, and kidneys as well as irritation of the conjunctiva. Mutagenic and genotoxic effects were found, but no teratogenic effects were detected Cyclohexanone is a colorless oily liquid with an odor resembling acetone and peppermint. Cyclohexanone is occasionally found as a volatile component of human urine. Biological fluids such as blood and urine have been shown to contain a large number of components, some of them volatiles (low boiling point) apparently present in all individuals, while others such are much more variable. In some cases differences up to an order of magnitude are observed. Although some of these changes may have dietary origins, others seem to be characteristic of the individual. Cyclohexanone is obtained through oxidation of cyclohexane or dehydrogenation of phenol. Approx. 95\\% of its manufacturing is used for the production of nylon. Information on toxicity to human beings is fragmentary. Acute exposure is characterized by irritation of the eyes, nose, and throat. In two persons, drowsiness and renal impairment were found; however, these workers were also exposed to other compounds. Hepatic disorders were found in a group of workers exposed for over five years. In animals, cyclohexanone is characterized by relatively low acute toxicity (DL50 by intragastric administration is approximately 2 g/kg body wt.). Effects on the central nervous system (CNS) were found (narcosis), as well as irritation of the eyes and skin. Following multiple administration, effects were found in the CNS, liver, and kidneys as well as irritation of the conjunctiva. Mutagenic and genotoxic effects were found, but no teratogenic effects were detected; however, there were embryotoxic effects and influence on reproduction Cyclohexanone is well absorbed through the skin, respiratory tract, and alimentary tract. The main metabolic pathway leads to cyclohexanol, which is excreted in urine coupled with glucuronic acid. A high correlation was found between the concentration of cyclohexanone in the working environment and its concentration in urine. Cyclohexanone is formed from the hydrocarbons cyclohexane and 1-, 2-, and 3-hexanol. A patients case report documents the development of anosmia (an olfactory disorder) and rhinitis caused by occupational exposure to organic solvents, including cyclohexanone (PMID:10476412, 16925936, 16477465).

   

(+)-alpha-Carene

(1R,6S)-3,7,7-trimethylbicyclo[4.1.0]hept-3-ene

C10H16 (136.1251936)


(+)-alpha-Carene is found in herbs and spices. (+)-alpha-Carene is widespread plant product, found especially in turpentine oils (from Pinus species) and oil of galbanu Isolated from root oil of Kaempferia galanga. (-)-alpha-Carene is found in many foods, some of which are pummelo, cumin, herbs and spices, and sweet orange.

   

fenchone

(1R,4S)-(+)-fenchone;(1R,4S)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-one

C10H16O (152.12010859999998)


A carbobicyclic compound that is fenchane in which the hydrogens at position 2 are replaced by an oxo group. It is a component of essential oil from fennel (Foeniculum vulgare). Fenchone is a natural organic compound classified as a monoterpene and a ketone. It is a colorless oily liquid. It has a structure and an odor similar to camphor. Fenchone is a constituent of absinthe and the essential oil of fennel. Fenchone is used as a flavor in foods and in perfumery. Only 2 stereoisomers are possible: D-fenchone (enantiomer 1S,4R is dextrogyre (+)) and L-fenchone (enantiomer 1R,4S is levogyre (-)). Due to the small size of the cycle, the 2 other diastereoisomers (1S4S and 1R4R) are not possible. [Wikipedia]. Fenchone is found in many foods, some of which are ceylon cinnamon, sweet basil, saffron, and dill. (-)-Fenchone, a bicyclic monoterpene, is widely distributed in plants and found in essential oils from Foeniculum vulgare. (-)-Fenchone is oxidized to 6-endo-hydroxyfenchone, 6-exo-hydroxyfenchone and 10-hydroxyfenchone derivatives by CYP2A6 and CYP2B6 in human liver microsomes with CYP2A6 playing a more important role than CYP2B6[1]. (-)-Fenchone, a bicyclic monoterpene, is widely distributed in plants and found in essential oils from Foeniculum vulgare. (-)-Fenchone is oxidized to 6-endo-hydroxyfenchone, 6-exo-hydroxyfenchone and 10-hydroxyfenchone derivatives by CYP2A6 and CYP2B6 in human liver microsomes with CYP2A6 playing a more important role than CYP2B6[1]. (-)-Fenchone, a bicyclic monoterpene, is widely distributed in plants and found in essential oils from Foeniculum vulgare. (-)-Fenchone is oxidized to 6-endo-hydroxyfenchone, 6-exo-hydroxyfenchone and 10-hydroxyfenchone derivatives by CYP2A6 and CYP2B6 in human liver microsomes with CYP2A6 playing a more important role than CYP2B6[1]. (-)-Fenchone, a bicyclic monoterpene, is widely distributed in plants and found in essential oils from Foeniculum vulgare. (-)-Fenchone is oxidized to 6-endo-hydroxyfenchone, 6-exo-hydroxyfenchone and 10-hydroxyfenchone derivatives by CYP2A6 and CYP2B6 in human liver microsomes with CYP2A6 playing a more important role than CYP2B6[1].

   

alpha-Terpineol

2-(4-Methylcyclohex-3-enyl)propan-2-ol (alpha-terpineol)

C10H18O (154.1357578)


alpha-Terpineol (CAS: 98-55-5) is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers of terpineol, alpha-, beta-, and gamma-terpineol, with the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. Terpineol has a pleasant odour similar to lilac and is a common ingredient in perfumes, cosmetics, and flavours. alpha-Terpineol is occasionally found as a volatile component in urine. It is a water-soluble component of Melaleuca alternifolia Cheel, the tea tree oil (TTO). alpha-Terpineol is a likely mediator of the in vitro and in vivo activity of the TTO as an agent that could control C. albicans vaginal infections. Purified alpha-terpineol can suppress pro-inflammatory mediator production by activated human monocytes. alpha-Terpineol is able to impair the growth of human M14 melanoma cells and appear to be more effective on their resistant variants, which express high levels of P-glycoprotein in the plasma membrane, overcoming resistance to caspase-dependent apoptosis exerted by P-glycoprotein-positive tumour cells (PMID:5556886, 17083732, 11131302, 15009716). Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. (R)-alpha-Terpineol is found in many foods, some of which are mentha (mint), sweet marjoram, lovage, and cardamom. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

Isoeugenol

Isoeugenol, predominantly trans, analytical standard

C10H12O2 (164.0837252)


Isoeugenol is a pale yellow oily liquid with a spice-clove odor. Freezes at 14 °F. Density 1.08 g / cm3. Occurs in ylang-ylang oil and other essential oils. Isoeugenol is a phenylpropanoid that is an isomer of eugenol in which the allyl substituent is replaced by a prop-1-enyl group. It has a role as an allergen and a sensitiser. It is a phenylpropanoid and an alkenylbenzene. It is functionally related to a guaiacol. Isoeugenol is a commonly used fragrance added to many commercially available products, and occurs naturally in the essential oils of plants such as ylang-ylang. It is also a significant dermatologic sensitizer and allergen, and as a result has been restricted to 200 p.p.m. since 1998 according to guidelines issued by the fragrance industry. Allergic reactivity to Isoeugenol may be identified with a patch test. Isoeugenol is a natural product found in Chaerophyllum macrospermum, Origanum sipyleum, and other organisms with data available. Isoeugenol is is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil and cinnamon. It is very slightly soluble in water and soluble in organic solvents. It has a spicy odor and taste of clove. Isoeugenol is prepared from eugenol by heating. Eugenol is used in perfumeries, flavorings, essential oils and in medicine (local antiseptic and analgesic). It is used in the production of isoeugenol for the manufacture of vanillin. Eugenol derivatives or methoxyphenol derivatives in wider classification are used in perfumery and flavoring. They are used in formulating insect attractants and UV absorbers, analgesics, biocides and antiseptics. They are also used in manufacturing stabilizers and antioxidants for plastics and rubbers. Isoeugenol is used in manufacturing perfumeries, flavorings, essential oils (odor description: Clove, spicy, sweet, woody) and in medicine (local antiseptic and analgesic) as well as vanillin. (A7915). E-4-Propenyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. Isoeugenol is an isomer of eugenol, wherein the double bond on the alkyl chain is shifted by one carbon. It also known as propenylgualacol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Isoeugenol is also classified as a phenylpropene, a propenyl-substituted guaiacol. Isoeugenol may occur as either the cis (Z) or trans (E) isomer. Trans (E) isoeugenol is crystalline while cis (Z) isoeugenol is a pale, yellow liquid. Isoeugenol is very slightly soluble in water and soluble in organic solvents. It has a spicy, sweet, carnation-like odour and tastes of sweet spice and clove. Isoeugenol is a widely used food flavoring agent and a perfuming agent. As a food flavoring agent, it is responsible for the flavor of nutmeg (in pumpkin pies), As a fragrance, it is extensively used as a scent agent in consumer products such as soaps, shampoos, perfumes, detergents and bath tissues (often labeled as ‚ÄúFragrance‚Äù rather than isoeugenol). However, some individuals can develop allergies to isoeugenol as it appears to be a strong contact allergen (PMID:10554062 ). Isoeugenol can be prepared from eugenol by heating. In addition to its industrial production via eugenol, isoeugenol can also be extracted from certain essential oils especially from clove oil and cinnamon. It is found naturally in a wide number of foods, spices and plants including allspice, basil, blueberries, cinnamon, cloves, coffee, dill, ginber, nutmeg, thyme and turmeric. Isoeugenol is also a component of wood smoke and liquid smoke. It is one of several phenolic compounds responsible for the mold-inhibiting effect of smoke on meats and cheeses. Isoeugenol (specifically the acetate ester) has also been used in the production of vanillin. Isoeugenol is one of several non-cannabinoid phenols found in cannabis plants (PMID:6991645 ). (e)-isoeugenol, also known as 2-methoxy-4-propenylphenol or propenylgualacol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety (e)-isoeugenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). (e)-isoeugenol is a sweet, carnation, and clove tasting compound and can be found in a number of food items such as corn salad, coconut, flaxseed, and winter squash, which makes (e)-isoeugenol a potential biomarker for the consumption of these food products (e)-isoeugenol can be found primarily in saliva (e)-isoeugenol exists in all eukaryotes, ranging from yeast to humans (e)-isoeugenol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Isoeugenol is an essential oil constituent of nutmeg, clove, and cinnamon. Isoeugenol inhibits growth of Escherichia coli and Listeria innocua with MICs of 0.6 mg/mL and 1 mg/mL, respectively[1]. Isoeugenol is an essential oil constituent of nutmeg, clove, and cinnamon. Isoeugenol inhibits growth of Escherichia coli and Listeria innocua with MICs of 0.6 mg/mL and 1 mg/mL, respectively[1].

   

Pinocarveol

6,6-Dimethyl-3-hydroxy-2-methylenebicyclo(3.1.1)heptane

C10H16O (152.12010859999998)


Flavouring ingredient. Pinocarveol is found in many foods, some of which are spearmint, wild celery, hyssop, and sweet bay. Pinocarveol is found in hyssop. Pinocarveol is a flavouring ingredien

   

Aceteugenol

Phenol, 2-methoxy-4-(2-propen-1-yl)-, 1-acetate

C12H14O3 (206.0942894)


Aceteugenol, also known as eugenol acetate, belongs to the class of organic compounds known as phenol esters. These are aromatic compounds containing a benzene ring substituted by a hydroxyl group and an ester group. Aceteugenol is an extremely weak basic (essentially neutral) compound (based on its pKa). Aceteugenol is a sweet-, carnation-, and clove-tasting compound. Outside of the human body, aceteugenol is found, on average, in the highest concentration in a few different foods, such as cloves, Ceylon cinnamons, and sweet bay. Aceteugenol has also been detected, but not quantified in, several different foods, such as nutmegs, herbs and spices, cumins, star anises, and lemon balms. This could make aceteugenol a potential biomarker for the consumption of these foods. Aceteugenol is a flavouring agent found in Caraway, oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum), and other essential oils. Flavouring agent. Found in oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum) and other essential oils Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata.

   

1,7,7-Trimethyltricyclo[2.2.1.02,6]heptane

1,7,7-Trimethyl-tricyclo[2.2.1.0(2,6)]heptane

C10H16 (136.1251936)


1,7,7-Trimethyltricyclo[2.2.1.02,6]heptane is found in caraway. 1,7,7-Trimethyltricyclo[2.2.1.02,6]heptane is found in essential oils, e.g. Juniperus communis (Juniper), Ferula galbaniflua (galbanum) and Picea species. Found in essential oils, e.g. Juniperus communis (Juniper), Ferula galbaniflua (galbanum) and Picea subspecies

   

Phenol

Phenolated water for disinfection

C6H6O (94.0418626)


Phenol, is a toxic, colourless crystalline solid with a sweet tarry odor that resembles a hospital smell. It is commonly used as an antiseptic and disinfectant. It is active against a wide range of micro-organisms including some fungi and viruses, but is only slowly effective against spores. It has been used to disinfect skin and to relieve itching. Phenol is also used in the preparation of cosmetics including sunscreens, hair dyes, and skin lightening preparations. It is also used in the production of drugs (it is the starting material in the industrial production of aspirin), weedkillers, and synthetic resins. Phenol can be found in areas with high levels of motor traffic, therefore, people living in crowded urban areas are frequently exposed to traffic-derived phenol vapor. The average (mean +/- SD) phenol concentration in urine among normal individuals living in urban areas is 7.4 +/- 2.2 mg/g of creatinine. Exposure of the skin to concentrated phenol solutions causes chemical burns which may be severe; in laboratories where it is used, it is usually recommended that polyethylene glycol solution is kept available for washing off splashes. Notwithstanding the effects of concentrated solutions, it is also used in cosmetic surgery as an exfoliant, to remove layers of dead skin (Wikipedia). In some bacteria phenol can be directly synthesized from tyrosine via the enzyme tyrosine phenol-lyase [EC:4.1.99.2]. It can be produced by Escherichia and Pseudomonas. Phenol has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). It is used as a flavouring agent in a few foods, at maximum levels below 10 ppm

   

Geranylacetone

trans-6,10-Dimethyl-5,9-undecadien-2-one

C13H22O (194.1670562)


Constituent of many essential oils including peppermint (Mentha piperita) and Carolina vanilla (Carphephorus odoratissimus). It is used in food flavouring. Geranylacetone is found in many foods, some of which are corn, pepper (c. frutescens), herbs and spices, and watermelon. Geranylacetone is found in carrot. Geranylacetone is a constituent of many essential oils including peppermint (Mentha piperita) and Carolina vanilla (Carphephorus odoratissimus). Geranylacetone is used in food flavouring

   

2-Nonanone

Methyl N-heptyl ketone

C9H18O (142.1357578)


2-Nonanone is found in alcoholic beverages. 2-Nonanone is present in banana, ginger, Brazil nut, attar of rose, clove oil, coconut oil, passionflower, sorghum, asparagus, tomato, corn, wine, cheese, beer, blackcurrant buds, melon, and strawberry jam. 2-Nonanone is a flavor and fragrance agent. It is a clear slightly yellow liquid. Ketones, such as 2-Nonanone, are reactive with many acids and bases liberating heat and flammable gases (e.g., H2). The amount of heat may be sufficient to start a fire in the unreacted portion of the ketone. Ketones react with reducing agents such as hydrides, alkali metals, and nitrides to produce flammable gas (H2) and heat. Present in banana, ginger, Brazil nut, attar of rose, clove oil, coconut oil, passionflower, sorghum, asparagus, tomato, corn, wine, cheese, beer, blackcurrant buds, melon, strawberry jam etc. Flavouring ingredient. 2-Nonanone is found in many foods, some of which are green vegetables, cereals and cereal products, watermelon, and cloves.

   

gamma-Muurolene

(1R,4aR,8aS)-7-methyl-4-methylidene-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.18779039999998)


gamma-Muurolene is found in carrot. gamma-Muurolene is a constituent of Pinus sylvestris (Scotch pine).

   

(+)-alpha-Muurolene

4,7-dimethyl-1-(propan-2-yl)-1,2,4a,5,6,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


(+)-alpha-Muurolene is isolated from various plant oils including Pinus mugo (dwarf mountain pine). Isolated from various plant oils including Pinus mugo (dwarf mountain pine)

   

[4]-Gingerdiol 3,5-diacetate

5-(Acetyloxy)-1-(4-hydroxy-3-methoxyphenyl)octan-3-yl acetic acid

C19H28O6 (352.1885788)


[4]-Gingerdiol 3,5-diacetate is found in herbs and spices. [4]-Gingerdiol 3,5-diacetate is a constituent of ginger (Zingiber officinale).

   

Rose oxide

4-Methyl-2-(2-methylprop-1-en-1-yl)tetrahydro-2H-pyran

C10H18O (154.1357578)


Flavouring ingredient. Rose oxide is found in many foods, some of which are peppermint, ginger, lemon balm, and black elderberry. Rose oxide is found in black elderberry. Rose oxide is a flavouring ingredien

   

6-Gingesulfonic acid

1-(4-Hydroxy-3-methoxyphenyl)-3-oxodecane-5-sulphonic acid

C17H26O6S (358.1450016)


6-Gingesulfonic acid is found in ginger. 6-Gingesulfonic acid is isolated from the rhizome of Zingiber officinale (ginger). Isolated from the rhizome of Zingiber officinale (ginger). 6-Gingesulfonic acid is found in herbs and spices and ginger.

   

Epirosmanol

3,4,8-trihydroxy-11,11-dimethyl-5-(propan-2-yl)-16-oxatetracyclo[7.5.2.0¹,¹⁰.0²,⁷]hexadeca-2(7),3,5-trien-15-one

C20H26O5 (346.17801460000004)


From rosemary leaves (Rosmarinus officinalis). Epirosmanol is found in many foods, some of which are cloves, pepper (spice), sweet bay, and caraway. Rosmanol is found in common sage. Rosmanol is isolated from rosemary leaves (Rosmarinus officinalis Epirosmanol is a nature diterpene lactone from S. officinalis. Epirosmanol shows anti-cancer activity and inhibits melanin biosynthesis against melanoma cells. Epirosmanol also exhibits DPPH radical scavenging activity[1][2].

   

Rosmadial

7-hydroxy-3,3-dimethyl-2-oxo-6-(propan-2-yl)-2H-spiro[1-benzofuran-3,1-cyclohexane]-2,4-dicarbaldehyde

C20H24O5 (344.1623654)


Constituent of Rosmarinus officinalis (rosemary). Rosmadial is found in many foods, some of which are herbs and spices, cloves, nutmeg, and common sage. Rosmadial is found in caraway. Rosmadial is a constituent of Rosmarinus officinalis (rosemary).

   

cis-Caffeic acid

(2Z)-3-(3,4-Dihydroxyphenyl)-2-propenoic acid

C9H8O4 (180.0422568)


Caffeic acid, also known as caffeate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Caffeic acid exists in all living species, ranging from bacteria to humans. It is the precursor to ferulic acid, coniferyl alcohol, and sinapyl alcohol, all of which are significant building blocks in lignin. Outside of the human body, caffeic acid has been detected, but not quantified in fats and oils and nuts. Caffeic acid is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Caffeic acid has a variety of potential pharmacological effects in in vitro studies and in animal models, and the inhibitory effect of caffeic acid on cancer cell proliferation by an oxidative mechanism in the human HT-1080 fibrosarcoma cell line has recently been established. It occurs at high levels in black chokeberry (141 mg per 100 g) and in fairly high level in lingonberry (6 mg per 100 g). D020011 - Protective Agents > D000975 - Antioxidants Found in olive oil, peanuts and other plant sources Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C21H20O10 (432.105642)


5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one can be found in a number of food items such as endive, linden, peach, and ginkgo nuts, which makes 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one a potential biomarker for the consumption of these food products. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

5-Hydroxy-1-(3-hydroxy-4-methoxyphenyl)decan-3-one

5-Hydroxy-1-(3-hydroxy-4-methoxyphenyl)decan-3-one

C17H26O4 (294.1830996)


   

[12]-Shogaol

(4E)-1-(4-hydroxy-3-methoxyphenyl)hexadec-4-en-3-one

C23H36O3 (360.26643060000004)


[12]-shogaol is a member of the class of compounds known as shogaols. Shogaols are ginger derivatives containing a shogaol moiety, which consists of a benzene ring bearing a dec-4-en-3-one moiety, a methoxyphenyl group, a hydroxyl group and at positions 1, 3, and 4, respectively. [12]-shogaol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). [12]-shogaol can be found in ginger, which makes [12]-shogaol a potential biomarker for the consumption of this food product.

   

[4]-Isogingerol

6-hydroxy-8-(4-hydroxy-3-methoxyphenyl)octan-4-one

C15H22O4 (266.1518012)


[4]-isogingerol is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. [4]-isogingerol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). [4]-isogingerol can be found in ginger, which makes [4]-isogingerol a potential biomarker for the consumption of this food product.

   

Angelicoidenol 2-O-beta-D-glucopyranoside

2-({5-hydroxy-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C16H28O7 (332.1834938)


Angelicoidenol 2-o-beta-d-glucopyranoside is a member of the class of compounds known as terpene glycosides. Terpene glycosides are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone. Angelicoidenol 2-o-beta-d-glucopyranoside is soluble (in water) and a very weakly acidic compound (based on its pKa). Angelicoidenol 2-o-beta-d-glucopyranoside can be found in ginger, which makes angelicoidenol 2-o-beta-d-glucopyranoside a potential biomarker for the consumption of this food product.

   

3-Methyl-2(3-methylbut-2-en-1-yl)furan

3-methyl-2-(3-methylbut-2-en-1-yl)furan

C10H14O (150.1044594)


3-methyl-2(3-methylbut-2-en-1-yl)furan is a member of the class of compounds known as heteroaromatic compounds. Heteroaromatic compounds are compounds containing an aromatic ring where a carbon atom is linked to an hetero atom. 3-methyl-2(3-methylbut-2-en-1-yl)furan is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 3-methyl-2(3-methylbut-2-en-1-yl)furan is a caramel, green, and minty tasting compound found in ginger, which makes 3-methyl-2(3-methylbut-2-en-1-yl)furan a potential biomarker for the consumption of this food product.

   

5-Ethenyl-2-methoxyphenol

5-Ethenyl-2-methoxyphenol

C9H10O2 (150.06807600000002)


5-ethenyl-2-methoxyphenol is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 5-ethenyl-2-methoxyphenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5-ethenyl-2-methoxyphenol can be found in bilberry and highbush blueberry, which makes 5-ethenyl-2-methoxyphenol a potential biomarker for the consumption of these food products.

   

Shogaol

4-Decen-3-one, 1-(4-hydroxy-3-methoxyphenyl)-, (4E)-

C17H24O3 (276.1725354)


[6]-Shogaol is a monomethoxybenzene, a member of phenols and an enone. Shogaol is a natural product found in Flueggea suffruticosa, Zingiber zerumbet, and other organisms with data available. See also: Ginger (part of). C1907 - Drug, Natural Product > C28269 - Phytochemical D009676 - Noxae > D009153 - Mutagens Shogaol ([6]-Shogaol), an active compound isolated from Ginger (Zingiber officinale Rosc), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. Shogaol ([6]-Shogaol), an active compound isolated from Ginger (Zingiber officinale Rosc), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.

   

rosefuran

Furan, 3-methyl-2-(3-methyl-2-butenyl)-

C10H14O (150.1044594)


   
   

Isoeugenol

Phenol, 2-methoxy-4-(1-propenyl)-, (E)- (9CI)

C10H12O2 (164.0837252)


A phenylpropanoid that is an isomer of eugenol in which the allyl substituent is replaced by a prop-1-enyl group. It is used in flavourings. Occurs in ylang-ylang and other essential oils. Isoeugenol is found in many foods, some of which are celeriac, spearmint, kale, and pepper (c. baccatum). Isoeugenol is an essential oil constituent of nutmeg, clove, and cinnamon. Isoeugenol inhibits growth of Escherichia coli and Listeria innocua with MICs of 0.6 mg/mL and 1 mg/mL, respectively[1]. Isoeugenol is an essential oil constituent of nutmeg, clove, and cinnamon. Isoeugenol inhibits growth of Escherichia coli and Listeria innocua with MICs of 0.6 mg/mL and 1 mg/mL, respectively[1].

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.105642)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

Swartziol

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-5,7,4-Trihydroxyflavonol

C15H10O6 (286.047736)


Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Catechin

(+)-Catechin Hydrate

C15H14O6 (290.0790344)


Annotation level-1 Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

4-(3,4-Dimethoxyphenyl)but-3-en-1-ol

4-(3,4-Dimethoxyphenyl)but-3-en-1-ol

C12H16O3 (208.1099386)


   

Kaempferol

Kaempferol

C15H10O6 (286.047736)


Annotation level-3 Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.010 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.011 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2141; CONFIDENCE confident structure IPB_RECORD: 3341; CONFIDENCE confident structure IPB_RECORD: 3321; CONFIDENCE confident structure CONFIDENCE confident structure; IPB_RECORD: 3321 IPB_RECORD: 141; CONFIDENCE confident structure Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   
   

3-PENTANONE

3-PENTANONE

C5H10O (86.07316100000001)


A natural product found in Triatoma brasiliensis and Triatoma infestans. 3-pentanone, also known as diethyl ketone or ethyl propionyl, is a member of the class of compounds known as ketones. Ketones are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, 3-pentanone is considered to be an oxygenated hydrocarbon lipid molecule. 3-pentanone is soluble (in water) and an extremely weak acidic compound (based on its pKa). 3-pentanone is an acetone and ethereal tasting compound and can be found in a number of food items such as strawberry guava, ceylon cinnamon, beech nut, and pak choy, which makes 3-pentanone a potential biomarker for the consumption of these food products.

   

Anethole

trans-Anethole, Pharmaceutical Secondary Standard; Certified Reference Material

C10H12O (148.08881019999998)


Anethole appears as white crystals or a liquid. Odor of anise oil and a sweet taste. (NTP, 1992) Anethole is a monomethoxybenzene that is methoxybenzene substituted by a prop-1-en-1-yl group at position 4. It has a role as a plant metabolite. Anethole is a natural product found in Erucaria microcarpa, Anemopsis californica, and other organisms with data available. Anethole is a metabolite found in or produced by Saccharomyces cerevisiae. A monomethoxybenzene that is methoxybenzene substituted by a prop-1-en-1-yl group at position 4. D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Anethole is a type of aromatic compound used as a flavoring. It is a derivative of Phenylpropene and widely exists in nature. Anethole is a type of aromatic compound used as a flavoring. It is a derivative of Phenylpropene and widely exists in nature. Trans-Anethole ((E)-Anethole), a phenylpropene derivative isolated from Foeniculum vulgare, shows estrogenic activity at lower concentrations and cytotoxic at higher concentrations in cancer cell lines[1][2]. Trans-Anethole ((E)-Anethole) contributes a large component of the odor and flavor of anise and fennel, anise myrtle, liquorice, camphor, magnolia blossoms, and star anise[3]. Trans-Anethole ((E)-Anethole), a phenylpropene derivative isolated from Foeniculum vulgare, shows estrogenic activity at lower concentrations and cytotoxic at higher concentrations in cancer cell lines[1][2]. Trans-Anethole ((E)-Anethole) contributes a large component of the odor and flavor of anise and fennel, anise myrtle, liquorice, camphor, magnolia blossoms, and star anise[3].

   

1-Methoxy-4-(2-propenyl)benzene

InChI=1/C10H12O/c1-3-4-9-5-7-10(11-2)8-6-9/h3,5-8H,1,4H2,2H

C10H12O (148.08881019999998)


1-Methoxy-4-(2-propenyl)benzene, also known as methylchavicol or estragol, belongs to the class of organic compounds known as anisoles. These are organic compounds containing a methoxybenzene or a derivative thereof. 1-Methoxy-4-(2-propenyl)benzene is a sweet, alcohol, and anise tasting compound. 1-Methoxy-4-(2-propenyl)benzene is found, on average, in the highest concentration within a few different foods, such as anises, fennels, and sweet basils and in a lower concentration in cumins, tarragons, and parsley. 1-Methoxy-4-(2-propenyl)benzene has also been detected, but not quantified, in several different foods, such as citrus, chinese cinnamons, caraway, fats and oils, and cloves. This could make 1-methoxy-4-(2-propenyl)benzene a potential biomarker for the consumption of these foods. 1-Methoxy-4-(2-propenyl)benzene, with regard to humans, has been linked to the inborn metabolic disorder celiac disease. Estragole is a colorless liquid with odor of anise. Insoluble in water. Isolated from rind of persea gratissima grath. and from oil of estragon. Found in oils of Russian anise, basil, fennel turpentine, tarragon oil, anise bark oil. (NTP, 1992) Estragole is a phenylpropanoid that is chavicol in which the hydroxy group is replaced by a methoxy group. It has a role as a flavouring agent, an insect attractant, a plant metabolite, a genotoxin and a carcinogenic agent. It is an alkenylbenzene, a monomethoxybenzene and a phenylpropanoid. It is functionally related to a chavicol. Estragole is a natural product found in Vitis rotundifolia, Chaerophyllum macrospermum, and other organisms with data available. See also: Anise Oil (part of). Constituent of many essential oils. Found in apple, bilberry and orange fruits and juices. Flavouring agent. A phenylpropanoid that is chavicol in which the hydroxy group is replaced by a methoxy group. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].

   

Terpenol

3-Cyclohexene-1-methanol, .alpha.,.alpha.,4-trimethyl-, sodium salt, (1S)-

C10H18O (154.1357578)


Alpha-terpineol is a terpineol that is propan-2-ol substituted by a 4-methylcyclohex-3-en-1-yl group at position 2. It has a role as a plant metabolite. alpha-TERPINEOL is a natural product found in Nepeta nepetella, Xylopia aromatica, and other organisms with data available. 2-(4-Methyl-3-cyclohexen-1-yl)-2-propanol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Coriander Oil (part of); Cannabis sativa subsp. indica top (part of); Peumus boldus leaf (part of). A terpineol that is propan-2-ol substituted by a 4-methylcyclohex-3-en-1-yl group at position 2. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

Aceteugenol

InChI=1/C12H14O3/c1-4-5-10-6-7-11(15-9(2)13)12(8-10)14-3/h4,6-8H,1,5H2,2-3H

C12H14O3 (206.0942894)


Aceteugenol, also known as eugenol acetate, belongs to the class of organic compounds known as phenol esters. These are aromatic compounds containing a benzene ring substituted by a hydroxyl group and an ester group. Aceteugenol is an extremely weak basic (essentially neutral) compound (based on its pKa). Aceteugenol is a sweet-, carnation-, and clove-tasting compound. Outside of the human body, aceteugenol is found, on average, in the highest concentration in a few different foods, such as cloves, Ceylon cinnamons, and sweet bay. Aceteugenol has also been detected, but not quantified in, several different foods, such as nutmegs, herbs and spices, cumins, star anises, and lemon balms. This could make aceteugenol a potential biomarker for the consumption of these foods. Aceteugenol is a flavouring agent found in Caraway, oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum), and other essential oils. Acetyleugenol is a member of phenols and a benzoate ester. Acetyleugenol is a natural product found in Myrtus communis, Illicium verum, and other organisms with data available. See also: Clove Oil (part of). Flavouring agent. Found in oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum) and other essential oils Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata.

   

Caffeate

(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0422568)


D020011 - Protective Agents > D000975 - Antioxidants KEIO_ID C107 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Caffeic Acid

3,4-dihydroxy cinnamic acid

C9H8O4 (180.0422568)


A hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. 3,4-dihydroxycinnamic acid, also known as caffeic acid or trans-caffeate, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 3,4-dihydroxycinnamic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxycinnamic acid can be found in fats and oils and nuts, which makes 3,4-dihydroxycinnamic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxycinnamic acid exists in all eukaryotes, ranging from yeast to humans. Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is a key intermediate in the biosynthesis of lignin, one of the principal components of plant biomass and its residues . Caffeic acid is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food. (PMID:16870009) [HMDB]. Caffeic acid is found in many foods, some of which are cardoon, coriander, common persimmon, and irish moss. D020011 - Protective Agents > D000975 - Antioxidants Annotation level-2 CONFIDENCE standard compound; INTERNAL_ID 167 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.412 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.403 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Gingerol

3-Decanone, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-, (S)-(+)-

C17H26O4 (294.1830996)


Gingerol is a beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. It has a role as an antineoplastic agent and a plant metabolite. It is a beta-hydroxy ketone and a member of guaiacols. Gingerol is a natural product found in Illicium verum, Piper nigrum, and other organisms with data available. See also: Ginger (part of). A beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. Annotation level-1 [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.

   

Secoisolariciresinol

(-)-Secoisolariciresinol

C20H26O6 (362.17292960000003)


Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 0.816 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.813 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.806 Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.

   

Matairesinol

NCGC00169701-03_C20H22O6_2(3H)-Furanone, dihydro-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]-, (3R,4R)-

C20H22O6 (358.1416312)


Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 INTERNAL_ID 17; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.920 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.921 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1]. Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1].

   

Vanillic Acid

Vanillic acid hexoside

C8H8O4 (168.0422568)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

6-Gingerol

[6]-Gingerol

C17H26O4 (294.1830996)


[6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.

   

Lauric acid

Dodecanoic acid

C12H24O2 (200.1776204)


Lauric acid, systematically dodecanoic acid, is a saturated fatty acid with a 12-carbon atom chain, thus having many properties of medium-chain fatty acids.[6] It is a bright white, powdery solid with a faint odor of bay oil or soap. The salts and esters of lauric acid are known as laurates. Lauric acid, as a component of triglycerides, comprises about half of the fatty-acid content in coconut milk, coconut oil, laurel oil, and palm kernel oil (not to be confused with palm oil),[10][11] Otherwise, it is relatively uncommon. It is also found in human breast milk (6.2\\\\% of total fat), cow's milk (2.9\\\\%), and goat's milk (3.1\\\\%). Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

Thymol

InChI=1\C10H14O\c1-7(2)9-5-4-8(3)6-10(9)11\h4-7,11H,1-3H

C10H14O (150.1044594)


Thymol, also known as 1-hydroxy-5-methyl-2-isopropylbenzene or 2-isopropyl-5-methylphenol, is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. Thus, thymol is considered to be an isoprenoid lipid molecule. Thymol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Thymol can be synthesized from p-cymene. Thymol can also be synthesized into thymol sulfate and thymol sulfate(1-). Thymol is a camphor, herbal, and medicinal tasting compound and can be found in a number of food items such as anise, common oregano, caraway, and highbush blueberry, which makes thymol a potential biomarker for the consumption of these food products. Thymol can be found primarily in saliva and urine, as well as in human liver and skeletal muscle tissues. Thymol exists in all eukaryotes, ranging from yeast to humans. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].

   
   

nerol

(2Z)-3,7-Dimethyl-2,6-octadien-1-ol

C10H18O (154.1357578)


Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

3,4-Dihydroxybenzoic acid

3,4-Dihydroxybenzoic acid

C7H6O4 (154.0266076)


   

Carnosic acid

(4aR,10aS)-5,6-dihydroxy-1,1-dimethyl-7-propan-2-yl-2,3,4,9,10,10a-hexahydrophenanthrene-4a-carboxylic acid

C20H28O4 (332.19874880000003)


D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents

   

Eugenol

Eugenol

C10H12O2 (164.0837252)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

Dodecanoic acid

Dodecanoic acid

C12H24O2 (200.1776204)


A straight-chain, twelve-carbon medium-chain saturated fatty acid with strong bactericidal properties; the main fatty acid in coconut oil and palm kernel oil.

   

Geranylacetone

6,10-Dimethyl-5,9-undecadien-2-one

C13H22O (194.1670562)


   

Vanillyl alcohol

4-(Hydroxymethyl)-2-methoxyphenol

C8H10O3 (154.062991)


Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1]. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1].

   

pentan-3-one

pentan-3-one

C5H10O (86.07316100000001)


A pentanone that is pentane carrying an oxo group at position 3. It has been isolated from Triatoma brasiliensis and Triatoma infestans.

   

Tricyclene

1,7,7-trimethyl-tricyclo[2.2.1.0{2,6}]heptane

C10H16 (136.1251936)


   

(±)10-Gingerol

5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)tetradecan-3-one

C21H34O4 (350.24569640000004)


   

(±)8-GINGEROL

5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)dodecan-3-one

C19H30O4 (322.214398)


   

5-{4-hydroxy-6-[2-(4-hydroxy-3-methoxyphenyl)ethyl]oxan-2-yl}-3-methoxybenzene-1,2-diol

(2S,4S,6S)-2-[2-(4-Hydroxy-3-meyhoxyphenyl)ethyl]tetrahydro-6-(4,5-dihydroxy-3-methoxyphenyl)-2H-pyran-4-ol

C21H26O7 (390.1678446)


   

2-(4-hydroxy-3,5-dimethoxyphenyl)-6-[2-(4-hydroxy-3-methoxyphenyl)ethyl]oxan-4-ol

(2S,4R,6S)-2-[2-(4-hydroxy-3-methoxyphenyl)ethyl]tetrahydro-6-(4-hydroxy-3,5-dimethoxyphenyl)-2H-pyran-4-ol

C22H28O7 (404.1834938)


   

EPIROSMANOL

3,4,8-trihydroxy-11,11-dimethyl-5-(propan-2-yl)-16-oxatetracyclo[7.5.2.0^{1,10}.0^{2,7}]hexadeca-2,4,6-trien-15-one

C20H26O5 (346.17801460000004)


Epirosmanol is a nature diterpene lactone from S. officinalis. Epirosmanol shows anti-cancer activity and inhibits melanin biosynthesis against melanoma cells. Epirosmanol also exhibits DPPH radical scavenging activity[1][2].

   

Rose oxide

4-Methyl-2-(2-methylprop-1-en-1-yl)tetrahydro-2H-pyran

C10H18O (154.1357578)


A member of the class of oxanes that is tetrahydro-2H-pyran which is substituted at positions 2 and 4 by an isoprop-1-enyl group and a methyl group, respectively. Organic compound of the pyran class and the monoterpene class and a fragrance found in roses and rose oil. All four possible stereoisomers are known; the 2S,4R and 2S,4S diastereoisomers [also known as the (-)-cis- and (-)-trans-isomers, respectively] are the main constituents in several essential oils and are used as a food flavouring and in perfumes and cosmetics.

   

g-Muurolene

7-methyl-4-methylidene-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.18779039999998)


   

6-Gingesulfonic acid

1-(4-hydroxy-3-methoxyphenyl)-3-oxodecane-5-sulfonic acid

C17H26O6S (358.1450016)


   

[4]-Gingerdiol 3,5-diacetate

5-(acetyloxy)-1-(4-hydroxy-3-methoxyphenyl)octan-3-yl acetate

C19H28O6 (352.1885788)


   
   

Heptanal

InChI=1\C7H14O\c1-2-3-4-5-6-7-8\h7H,2-6H2,1H

C7H14O (114.10445940000001)


   

Nonan-2-one

Nonan-2-one

C9H18O (142.1357578)


A methyl ketone that is nonane in which the methylene hydrogens at position 2 are replaced by an oxo group.

   

3-Octanone

Octan-3-one

C8H16O (128.1201086)


A dialkyl ketone that is octane in which the two methylene protons at position 3 have been replaced by an oxo group.

   

1,2,4a,5,6,8a-Hexahydro-1-isopropyl-4,7-dimethylnaphthalene

1,2,4a,5,6,8a-Hexahydro-1-isopropyl-4,7-dimethylnaphthalene

C15H24 (204.18779039999998)


   

alpha-terpineol

alpha-terpineol

C10H18O (154.1357578)


α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.042651)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

99-50-3

InChI=1\C7H6O4\c8-5-2-1-4(7(10)11)3-6(5)9\h1-3,8-9H,(H,10,11

C7H6O4 (154.0266076)


D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Vanillate

4-Hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

AI3-63211

InChI=1\C9H8O4\c10-7-3-1-6(5-8(7)11)2-4-9(12)13\h1-5,10-11H,(H,12,13)\b4-2

C9H8O4 (180.0422568)


D020011 - Protective Agents > D000975 - Antioxidants Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Engenol

InChI=1\C10H12O2\c1-3-4-8-5-6-9(11)10(7-8)12-2\h3,5-7,11H,1,4H2,2H

C10H12O2 (164.0837252)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

Antioxine

InChI=1\C10H14O\c1-7(2)9-5-4-8(3)10(11)6-9\h4-7,11H,1-3H

C10H14O (150.1044594)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1]. Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1].

   

KB-53

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-trans)-

C15H14O6 (290.0790344)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215226)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

CHEBI:15385

(1S,8AR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


   

Coumarate

InChI=1\C9H8O3\c10-8-4-1-7(2-5-8)3-6-9(11)12\h1-6,10H,(H,11,12)\b6-3

C9H8O3 (164.0473418)


D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively.

   

CHEBI:3381

(1R,6S)-3,7,7-trimethylbicyclo[4.1.0]hept-3-ene

C10H16 (136.1251936)


   

Arbo 8

(R-(R*,R*))-2,3-Bis((4-hydroxy-3-methoxyphenyl)methyl)butane-1,4-diol

C20H26O6 (362.17292960000003)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.

   

Esdragon

InChI=1\C10H12O\c1-3-4-9-5-7-10(11-2)8-6-9\h3,5-8H,1,4H2,2H

C10H12O (148.08881019999998)


Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2]. Estragole (4-Allylanisole), a relatively nontoxic volatile terpenoid ether, is a major component of the essential oil of many plants. Estragole dose-dependently blocks nerve excitability[1]. Estragole displays anti-toxoplasma activity[2].

   

Cadinene

Naphthalene, 1,2,4a,5,8,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-(1alpha,4abeta,8aalpha))- (9CI)

C15H24 (204.18779039999998)


   

Aceteugenol

InChI=1\C12H14O3\c1-4-5-10-6-7-11(15-9(2)13)12(8-10)14-3\h4,6-8H,1,5H2,2-3H

C12H14O3 (206.0942894)


Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata.

   

AIDS-026336

Benzenepropanoic acid, .alpha.-[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-3,4-dihydroxy-, (.alpha.R)-

C18H16O8 (360.0845136)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.

   

[4]-Gingerdiol 3,5-diacetate

5-(Acetyloxy)-1-(4-hydroxy-3-methoxyphenyl)octan-3-yl acetic acid

C19H28O6 (352.1885788)


[4]-gingerdiol 3,5-diacetate is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. [4]-gingerdiol 3,5-diacetate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). [4]-gingerdiol 3,5-diacetate can be found in herbs and spices, which makes [4]-gingerdiol 3,5-diacetate a potential biomarker for the consumption of this food product. [4]-Gingerdiol 3,5-diacetate is found in herbs and spices. [4]-Gingerdiol 3,5-diacetate is a constituent of ginger (Zingiber officinale).

   

(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.18779039999998)


   

Hexahydrocurcumin

(RS)-5-Hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-3-heptanone

C21H26O6 (374.17292960000003)


Hexahydrocurcumin is a diarylheptanoid. Hexahydrocurcumin is a natural product found in Zingiber officinale with data available. Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2]. Hexahydrocurcumin is one of the major metabolites of curcumin and a selective, orally active COX-2 inhibitor. Hexahydrocurcumin is inactive against COX-1. Hexahydrocurcumin has antioxidant, anticancer and anti-inflammatory activities[1][2].

   

Pinocarveol

Bicyclo[3.1.1]heptan-3-ol,6,6-dimethyl-2-methylene-

C10H16O (152.12010859999998)


A pinane monoterpenoid that is a bicyclo[3.1.1]heptane substituted by two methyl groups at position 6, a methylidene group at position 2 and a hydroxy group at position 3.

   

2-(4-methylphenyl)propan-2-ol

2-(4-methylphenyl)propan-2-ol

C10H14O (150.1044594)


   

5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)dodecan-3-one

5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)dodecan-3-one

C19H30O4 (322.214398)


   

5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)tetradecan-3-one

5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)tetradecan-3-one

C21H34O4 (350.24569640000004)


   

3,4,8-Trihydroxy-11,11-dimethyl-5-propan-2-yl-16-oxatetracyclo[7.5.2.01,10.02,7]hexadeca-2,4,6-trien-15-one

3,4,8-Trihydroxy-11,11-dimethyl-5-propan-2-yl-16-oxatetracyclo[7.5.2.01,10.02,7]hexadeca-2,4,6-trien-15-one

C20H26O5 (346.17801460000004)


Epirosmanol is a nature diterpene lactone from S. officinalis. Epirosmanol shows anti-cancer activity and inhibits melanin biosynthesis against melanoma cells. Epirosmanol also exhibits DPPH radical scavenging activity[1][2].

   

delta-Cadinene

delta-Cadinene

C15H24 (204.18779039999998)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).

   

5-hydroxy-1-(4-hydroxy-2-methoxyphenyl)-7-(4-hydroxyphenyl)heptan-3-one

5-hydroxy-1-(4-hydroxy-2-methoxyphenyl)-7-(4-hydroxyphenyl)heptan-3-one

C20H24O5 (344.1623654)


   

4-{2-[(1s,4as,8as)-5,5,8a-trimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]ethyl}-5h-furan-2-one

4-{2-[(1s,4as,8as)-5,5,8a-trimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]ethyl}-5h-furan-2-one

C20H30O2 (302.224568)


   

2,2,5,9-tetramethyl-1h,7h,8h-cyclopenta[8]annulen-4-one

2,2,5,9-tetramethyl-1h,7h,8h-cyclopenta[8]annulen-4-one

C15H20O (216.151407)


   

1-(4-hydroxy-3-methoxyphenyl)propane-1,2-diol

1-(4-hydroxy-3-methoxyphenyl)propane-1,2-diol

C10H14O4 (198.0892044)


   

(1e,6e)-1-{3-[(1s,2e)-1-(3,4-dimethoxyphenyl)but-2-en-1-yl]-4-hydroxy-5-methoxyphenyl}-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione

(1e,6e)-1-{3-[(1s,2e)-1-(3,4-dimethoxyphenyl)but-2-en-1-yl]-4-hydroxy-5-methoxyphenyl}-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione

C33H34O8 (558.2253564)


   

5-(5,5,8a-trimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl)-3-formylpent-3-enoic acid

5-(5,5,8a-trimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl)-3-formylpent-3-enoic acid

C20H30O3 (318.21948299999997)


   

(4r)-8-(4-hydroxy-3-methoxyphenyl)-6-oxooctane-4-sulfonic acid

(4r)-8-(4-hydroxy-3-methoxyphenyl)-6-oxooctane-4-sulfonic acid

C15H22O6S (330.11370320000003)


   

1-(4-hydroxy-3-methoxyphenyl)deca-1,4-dien-3-one

1-(4-hydroxy-3-methoxyphenyl)deca-1,4-dien-3-one

C17H22O3 (274.15688620000003)


   
   

2-hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

2-hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

C33H56O14 (676.3669876)


   

4-(buta-1,3-dien-1-yl)-1,2-dimethoxybenzene

4-(buta-1,3-dien-1-yl)-1,2-dimethoxybenzene

C12H14O2 (190.09937440000002)


   

(1s,2s,4s)-4-isopropyl-1-methylcyclohexane-1,2,4-triol

(1s,2s,4s)-4-isopropyl-1-methylcyclohexane-1,2,4-triol

C10H20O3 (188.14123700000002)


   

3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)deca-1,3-dien-5-one

3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)deca-1,3-dien-5-one

C17H22O4 (290.1518012)


   

(2s,3e)-4-(3,4-dimethoxyphenyl)but-3-en-2-ol

(2s,3e)-4-(3,4-dimethoxyphenyl)but-3-en-2-ol

C12H16O3 (208.1099386)


   

(3r,5s)-5-(acetyloxy)-1-(4-hydroxy-3-methoxyphenyl)octan-3-yl acetate

(3r,5s)-5-(acetyloxy)-1-(4-hydroxy-3-methoxyphenyl)octan-3-yl acetate

C19H28O6 (352.1885788)


   

(1r,3e,7e,11s)-1,5,5,8-tetramethyl-12-oxabicyclo[9.1.0]dodeca-3,7-diene

(1r,3e,7e,11s)-1,5,5,8-tetramethyl-12-oxabicyclo[9.1.0]dodeca-3,7-diene

C15H24O (220.18270539999997)


   

3-isopropyl-6-methylcyclohex-2-en-1-one

3-isopropyl-6-methylcyclohex-2-en-1-one

C10H16O (152.12010859999998)


   

3-(5,5,8a-trimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl)-7-hydroxy-6,7-dihydro-3h-1,2-dioxepine-5-carbaldehyde

3-(5,5,8a-trimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl)-7-hydroxy-6,7-dihydro-3h-1,2-dioxepine-5-carbaldehyde

C20H30O4 (334.214398)


   

citronellol, (+-)-

citronellol, (+-)-

C10H20O (156.151407)


   

4-[(3r,5s)-3,5-dihydroxy-7-(4-hydroxy-3-methoxyphenyl)heptyl]benzene-1,2-diol

4-[(3r,5s)-3,5-dihydroxy-7-(4-hydroxy-3-methoxyphenyl)heptyl]benzene-1,2-diol

C20H26O6 (362.17292960000003)


   

(2z,4e)-1-[(1r,2r,6s)-2-(3,4-dimethoxyphenyl)-6-(4-hydroxy-3-methoxyphenyl)cyclohex-3-en-1-yl]-3-hydroxy-5-(4-hydroxy-3-methoxyphenyl)penta-2,4-dien-1-one

(2z,4e)-1-[(1r,2r,6s)-2-(3,4-dimethoxyphenyl)-6-(4-hydroxy-3-methoxyphenyl)cyclohex-3-en-1-yl]-3-hydroxy-5-(4-hydroxy-3-methoxyphenyl)penta-2,4-dien-1-one

C33H34O8 (558.2253564)


   

hexadecanimidic acid

hexadecanimidic acid

C16H33NO (255.2562008)


   
   

2-hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

2-hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

C33H58O14 (678.3826368)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

C21H20O10 (432.105642)


   

(4z,7z)-1,5,9,9-tetramethyl-12-oxabicyclo[9.1.0]dodeca-4,7-diene

(4z,7z)-1,5,9,9-tetramethyl-12-oxabicyclo[9.1.0]dodeca-4,7-diene

C15H24O (220.18270539999997)


   

(2e)-4-[(1s,4as,8as)-5,5,8a-trimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-2-(hydroxymethyl)but-2-enal

(2e)-4-[(1s,4as,8as)-5,5,8a-trimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-2-(hydroxymethyl)but-2-enal

C19H30O2 (290.224568)


   

2,4-bis[2-(3,4-dimethoxyphenyl)ethenyl]oxolane

2,4-bis[2-(3,4-dimethoxyphenyl)ethenyl]oxolane

C24H28O5 (396.1936638)


   

(2z,4e)-1-[(1r,2s,6s)-2-(3,4-dimethoxyphenyl)-6-(4-hydroxy-3-methoxyphenyl)cyclohex-3-en-1-yl]-3-hydroxy-5-(4-hydroxy-3-methoxyphenyl)penta-2,4-dien-1-one

(2z,4e)-1-[(1r,2s,6s)-2-(3,4-dimethoxyphenyl)-6-(4-hydroxy-3-methoxyphenyl)cyclohex-3-en-1-yl]-3-hydroxy-5-(4-hydroxy-3-methoxyphenyl)penta-2,4-dien-1-one

C33H34O8 (558.2253564)


   

2,6,11,15-tetramethylhexadeca-2,7,10,14-tetraen-6-ol

2,6,11,15-tetramethylhexadeca-2,7,10,14-tetraen-6-ol

C20H34O (290.2609514)


   

3-{2-[(1s,4as,8as)-5,5,8a-trimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]ethylidene}oxolan-2-one

3-{2-[(1s,4as,8as)-5,5,8a-trimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]ethylidene}oxolan-2-one

C20H30O2 (302.224568)


   

(2s,3e)-4-(2,4,5-trimethoxyphenyl)but-3-ene-1,2-diol

(2s,3e)-4-(2,4,5-trimethoxyphenyl)but-3-ene-1,2-diol

C13H18O5 (254.1154178)


   
   

(1r,2s,6s,7s,8r)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

(1r,2s,6s,7s,8r)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

C15H24 (204.18779039999998)


   

(2e,10e)-2,6,9,9-tetramethylcycloundeca-2,6,10-trien-1-one

(2e,10e)-2,6,9,9-tetramethylcycloundeca-2,6,10-trien-1-one

C15H22O (218.1670562)


   

(2r,3e)-4-(3,4-dimethoxyphenyl)-2-methoxybut-3-en-1-ol

(2r,3e)-4-(3,4-dimethoxyphenyl)-2-methoxybut-3-en-1-ol

C13H18O4 (238.1205028)


   

3,7,10,10-tetramethyl-12-oxabicyclo[9.1.0]dodeca-3,7-diene

3,7,10,10-tetramethyl-12-oxabicyclo[9.1.0]dodeca-3,7-diene

C15H24O (220.18270539999997)


   

(3s)-1,7-bis(3,4-dihydroxyphenyl)-5-oxoheptane-3-sulfonic acid

(3s)-1,7-bis(3,4-dihydroxyphenyl)-5-oxoheptane-3-sulfonic acid

C19H22O8S (410.1035332)


   

(2r,3r,4r,5s,6s)-2-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy}-3,5-dihydroxy-6-methyloxan-4-yl acetate

(2r,3r,4r,5s,6s)-2-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy}-3,5-dihydroxy-6-methyloxan-4-yl acetate

C23H22O11 (474.11620619999997)


   

(5s)-1-(3,4-dihydroxy-5-methoxyphenyl)-5-hydroxydecan-3-one

(5s)-1-(3,4-dihydroxy-5-methoxyphenyl)-5-hydroxydecan-3-one

C17H26O5 (310.1780146)


   

1-(4-hydroxy-3-methoxyphenyl)oct-7-en-3-one

1-(4-hydroxy-3-methoxyphenyl)oct-7-en-3-one

C15H20O3 (248.14123700000002)


   

(4e)-1-[4-hydroxy-3-(hydroxymethyl)phenyl]dec-4-en-3-one

(4e)-1-[4-hydroxy-3-(hydroxymethyl)phenyl]dec-4-en-3-one

C17H24O3 (276.1725354)


   

(4r,4ar,8as)-4-isopropyl-6-methyl-1-methylidene-3,4,4a,7,8,8a-hexahydro-2h-naphthalene

(4r,4ar,8as)-4-isopropyl-6-methyl-1-methylidene-3,4,4a,7,8,8a-hexahydro-2h-naphthalene

C15H24 (204.18779039999998)


   

(4s)-8-(4-hydroxy-3-methoxyphenyl)-6-oxooctane-4-sulfonic acid

(4s)-8-(4-hydroxy-3-methoxyphenyl)-6-oxooctane-4-sulfonic acid

C15H22O6S (330.11370320000003)


   

(2s)-2-hydroxy-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-2-hydroxy-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

C33H56O14 (676.3669876)


   

5-(acetyloxy)-1,7-bis(3,4-dihydroxyphenyl)heptan-3-yl acetate

5-(acetyloxy)-1,7-bis(3,4-dihydroxyphenyl)heptan-3-yl acetate

C23H28O8 (432.1784088)


   

(3r)-1,7-bis(3,4-dihydroxy-5-methoxyphenyl)-5-oxoheptane-3-sulfonic acid

(3r)-1,7-bis(3,4-dihydroxy-5-methoxyphenyl)-5-oxoheptane-3-sulfonic acid

C21H26O10S (470.1246616000001)


   

(2s,3r)-2-(3,4-dimethoxyphenyl)oxolan-3-ol

(2s,3r)-2-(3,4-dimethoxyphenyl)oxolan-3-ol

C12H16O4 (224.10485359999998)


   

(4s,4as,8as)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydronaphthalene

(4s,4as,8as)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


   

(3r)-1,7-bis(4-hydroxy-3-methoxyphenyl)-5-oxoheptan-3-yl acetate

(3r)-1,7-bis(4-hydroxy-3-methoxyphenyl)-5-oxoheptan-3-yl acetate

C23H28O7 (416.1834938)


   

4-methyl-1-(6-methylhept-5-en-2-yl)cyclohex-3-en-1-ol

4-methyl-1-(6-methylhept-5-en-2-yl)cyclohex-3-en-1-ol

C15H26O (222.1983546)


   

(1e,6e)-1-{3-[(2e)-1-(3,4-dimethoxyphenyl)but-2-en-1-yl]-4-hydroxy-5-methoxyphenyl}-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione

(1e,6e)-1-{3-[(2e)-1-(3,4-dimethoxyphenyl)but-2-en-1-yl]-4-hydroxy-5-methoxyphenyl}-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione

C33H34O8 (558.2253564)