Isorhamnetin (BioDeep_00000001359)

   

natural product human metabolite PANOMIX_OTCML-2023 blood metabolite Chemicals and Drugs


代谢物信息卡片


4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-

化学式: C16H12O7 (316.0583)
中文名称: 异鼠李素
谱图信息: 最多检出来源 Viridiplantae(plant) 29.34%

分子结构信息

SMILES: c1(cc(c2c(c1)oc(c(c2=O)O)c1ccc(c(c1)OC)O)O)O
InChI: InChI=1/C16H12O7/c1-22-11-4-7(2-3-9(11)18)16-15(21)14(20)13-10(19)5-8(17)6-12(13)23-16/h2-6,17-19,21H,1H3

描述信息

Isorhamnetin is the methylated metabolite of quercetin. Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. Isorhamnetin prevents endothelial cell injuries from oxidized LDL via inhibition of lectin-like ox-LDL receptor-1 upregulation, interference of ox-LDL-mediated intracellular signaling pathway (p38MAPK activation, NF-kappaB nuclear translocation, eNOS expression) and the antioxidant activity of isorhamnetin. Isorhamnetin prevents endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II. Isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit proliferation but also induce apoptosis of Eca-109 cells. (PMID: 15493462, 17368593, 17374653, 16963021).
Isorhamnetin is a monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, an anticoagulant and a metabolite. It is a 7-hydroxyflavonol, a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of an isorhamnetin(1-).
Isorhamnetin is a natural product found in Lotus ucrainicus, Strychnos pseudoquina, and other organisms with data available.
Isorhamnetin is a metabolite found in or produced by Saccharomyces cerevisiae.
See also: Peumus boldus leaf (part of).
Widespread flavonol found especially in bee pollen, chives, corn poppy leaves, garden cress, fennel, hartwort, red onions, pears, dillweed, parsley and tarragon. Isorhamnetin is found in many foods, some of which are italian sweet red pepper, carrot, yellow wax bean, and lemon balm.
A monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group.
Acquisition and generation of the data is financially supported in part by CREST/JST.
Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.
Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.

同义名列表

61 个代谢物同义名

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-; 4H-1-Benzopyran-4-one, 2-(3-methoxy-4-hydroxyphenyl)-3,5,7-trihydroxy-; 3,5,7-Trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-1-benzopyran-4-one; 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-benzopyran-4-one; Isorhamnetin, United States Pharmacopeia (USP) Reference Standard; 3,5,7-Trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one #; 3,5,7-Trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one; 3,5,7-Trihydroxy-2-(4-hydroxy-3-metoxyphenyl)benzopyran-4-one; 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxy-phenyl)chromen-4-one; 3,5,7-Trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-4-benzopyrone; 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)chromen-4-one; Isorhamnetin, primary pharmaceutical reference standard; 3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl); ISORHAMNETIN (CONSTITUENT OF GINKGO) [DSC]; Flavone, 3-methoxy-3,4,5,7-tetrahydroxy-; FLAVONE, 3,4,5,7-TETRAHYDROXY-3-METHOXY-; 3,4’,5,7-Tetrahydroxy-3’-methoxyflavone; 3,4,5,7-tetrahydroxy-3-methoxy-flavone; 3-Methoxy-3,4,5,7-tetrahydroxyflavone; 3,4,5,7-tetrahydroxy-3-methoxyflavone; 3,5,7,4-Tetrahydroxy-3-methoxyflavone; ISORHAMNETIN (CONSTITUENT OF GINKGO); Isorhamnetin, analytical standard; 3-Methylquercetin (Isorhamnetin); Isorhamnetin, >=95.0\\% (HPLC); IZQSVPBOUDKVDZ-UHFFFAOYSA-N; Quercetin 3’-methyl ether; Quercetin 3-methyl ether; quercetin-3-methyl ether; ISORHAMNETIN (USP-RS); METHYLQUERCETIN, 3-O-; ISORHAMNETIN [USP-RS]; 3’-O-Methylquercetin; 3’-Methoxyquercetin; 3-O-methylquercetin; 4-O-Methylquercetin; ISORHAMNETIN [INCI]; 3-O-Methylquercetin; 3-Methoxyquercetin; 3-Methylquercetine; 3’-Methylquercetin; 4-Methoxyquercetin; 3-methyl-quercetin; 3-methylquercetin; 3-Methylquercetin; -4H-chromen-4-one; 4-Methylquercetin; UNII-07X3IB4R4Z; Isorhanetin,(S); isorhamnetine; iso-rhamnetin; Oprea1_145406; MEGxp0_001863; Isorhamnetin; Isorhamnetol; ACon1_000275; 07X3IB4R4Z; IRH; 3 4 5 7-tetrahydroxy-3-methoxy flavone; 3'-Methylquercetin; Isorhamnetin



数据库引用编号

37 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(2)

代谢反应

90 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(89)

COVID-19 Disease Map(0)

PathBank(1)

PharmGKB(0)

1029 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 15 ADIG, BCL2, CASP3, CAT, CCNB1, MAPK14, MAPK8, MTOR, NFE2L2, PIK3CA, PPARG, PTGS2, RELA, TLR4, TP53
Peripheral membrane protein 2 MTOR, PTGS2
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 4 BCL2, HMOX1, MTOR, PTGS2
Nucleus 13 ADIG, BCL2, CASP3, CCNB1, HMOX1, MAPK14, MAPK8, MPO, MTOR, NFE2L2, PPARG, RELA, TP53
cytosol 13 BCL2, CASP3, CAT, CCNB1, HMOX1, MAPK14, MAPK8, MTOR, NFE2L2, PIK3CA, PPARG, RELA, TP53
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
centrosome 3 CCNB1, NFE2L2, TP53
nucleoplasm 11 CASP3, CCNB1, HMOX1, MAPK14, MAPK8, MPO, MTOR, NFE2L2, PPARG, RELA, TP53
RNA polymerase II transcription regulator complex 2 NFE2L2, PPARG
Cell membrane 1 TLR4
Cytoplasmic side 2 HMOX1, MTOR
lamellipodium 1 PIK3CA
Golgi apparatus membrane 1 MTOR
Synapse 1 MAPK8
cell surface 1 TLR4
glutamatergic synapse 3 CASP3, MAPK14, RELA
Golgi apparatus 1 NFE2L2
Golgi membrane 2 INS, MTOR
lysosomal membrane 1 MTOR
neuronal cell body 1 CASP3
Cytoplasm, cytosol 1 NFE2L2
Lysosome 2 MPO, MTOR
plasma membrane 3 NFE2L2, PIK3CA, TLR4
Membrane 8 ADIG, BCL2, CAT, CCNB1, HMOX1, MTOR, TLR4, TP53
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 2 CAT, MPO
Lysosome membrane 1 MTOR
endoplasmic reticulum 4 BCL2, HMOX1, PTGS2, TP53
extracellular space 5 CXCL8, HMOX1, IL10, INS, MPO
perinuclear region of cytoplasm 4 HMOX1, PIK3CA, PPARG, TLR4
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, CAT, MAPK14, TP53
protein-containing complex 4 BCL2, CAT, PTGS2, TP53
intracellular membrane-bounded organelle 3 CAT, MPO, PPARG
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TLR4
Secreted 4 ADIG, CXCL8, IL10, INS
extracellular region 7 ADIG, CAT, CXCL8, IL10, INS, MAPK14, MPO
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 2 ADIG, BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
Mitochondrion matrix 1 TP53
mitochondrial matrix 3 CAT, CCNB1, TP53
transcription regulator complex 2 RELA, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TLR4
nucleolus 1 TP53
Early endosome 1 TLR4
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 1 CAT
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 2 MTOR, TP53
PML body 2 MTOR, TP53
secretory granule 1 MPO
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 2 PPARG, TLR4
neuron projection 1 PTGS2
chromatin 4 NFE2L2, PPARG, RELA, TP53
mediator complex 1 NFE2L2
phagocytic cup 1 TLR4
spindle pole 2 CCNB1, MAPK14
site of double-strand break 1 TP53
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
endosome lumen 1 INS
Lipid droplet 1 ADIG
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
azurophil granule 1 MPO
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 INS, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
azurophil granule lumen 1 MPO
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Single-pass type IV membrane protein 1 HMOX1
outer kinetochore 1 CCNB1
phagocytic vesicle lumen 1 MPO
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 1 NFE2L2
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
Cytoplasmic vesicle, phagosome 1 MTOR
catalase complex 1 CAT
cyclin B1-CDK1 complex 1 CCNB1
BAD-BCL-2 complex 1 BCL2
NF-kappaB p50/p65 complex 1 RELA
NF-kappaB complex 1 RELA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA


文献列表

  • Jia Jian, Li Yu-Qing, Han Rang-Yue, Zhong Xia, Xie Ke-Huan, Yan Ying, Wang Li, Tan Rui-Zhi. Isorhamnetin ameliorates cisplatin-induced acute kidney injury in mice by activating SLPI-mediated anti-inflammatory effect in macrophage. Immunopharmacology and immunotoxicology. 2024 Jun; 46(3):319-329. doi: 10.1080/08923973.2024.2329621. [PMID: 38466121]
  • Xiaojuan Li, Tao Wang, Qilong Zhou, Fan Li, Ting Liu, Kun Zhang, Ao Wen, Lijuan Feng, Xiaoling Shu, Simin Tian, Yijiang Liu, Yu Gao, Qing Xia, Guang Xin, Wen Huang. Isorhamnetin Alleviates Mitochondrial Injury in Severe Acute Pancreatitis via Modulation of KDM5B/HtrA2 Signaling Pathway. International journal of molecular sciences. 2024 Mar; 25(7):. doi: 10.3390/ijms25073784. [PMID: 38612598]
  • Lingkun Wang, Yaochen Xie, Boneng Xiao, Xuelin He, Guanghui Ying, Huiyan Zha, Chen Yang, Xuejin Jin, Guilin Li, Li Ping, Jincheng Wang, Qinjie Weng. Isorhamnetin alleviates cisplatin-induced acute kidney injury via enhancing fatty acid oxidation. Free radical biology & medicine. 2024 Feb; 212(?):22-33. doi: 10.1016/j.freeradbiomed.2023.12.010. [PMID: 38101584]
  • Xue-Feng Shi, Qi Yu, Kai-Bo Wang, Yi-Dong Fu, Shun Zhang, Zhen-Yun Liao, Yan Li, Ting Cai. Active ingredients Isorhamnetin of Croci Srigma inhibit stomach adenocarcinomas progression by MAPK/mTOR signaling pathway. Scientific reports. 2023 08; 13(1):12607. doi: 10.1038/s41598-023-39627-z. [PMID: 37537191]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Hong Wang, Lijia Chen, Binrui Yang, Jun Du, Liang Chen, Yiming Li, Fujiang Guo. Structures, Sources, Identification/Quantification Methods, Health Benefits, Bioaccessibility, and Products of Isorhamnetin Glycosides as Phytonutrients. Nutrients. 2023 Apr; 15(8):. doi: 10.3390/nu15081947. [PMID: 37111165]
  • Tianshu Yang, Yi Xiao, Shuo Liu, Fazhen Luo, Dongyun Tang, Yilin Yu, Yan Xie. Isorhamnetin induces cell cycle arrest and apoptosis by triggering DNA damage and regulating the AMPK/mTOR/p70S6K signaling pathway in doxorubicin-resistant breast cancer. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Mar; 114(?):154780. doi: 10.1016/j.phymed.2023.154780. [PMID: 37004402]
  • Peng Zhang, Yisheng Sun, Lei Shi, Dekang Sun, Lin Wang, Dongdong Feng, Chao Ding. Effect of isorhamnetin on carbonic anhydrase IX expression and tumorigenesis of bladder cancer by activating PPARγ/PTEN/AKT pathway. Tissue & cell. 2023 Mar; 82(?):102048. doi: 10.1016/j.tice.2023.102048. [PMID: 36905861]
  • Fei Yu, Yanfeng Xue, Yunyan Zhao, Long Zhang, Xiao He, Zheng Liu. Isorhamnetin inhibits inflammatory response to alleviate DHEA-induced polycystic ovary syndrome in rats. Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology. 2023 Feb; ?(?):2183045. doi: 10.1080/09513590.2023.2183045. [PMID: 36842967]
  • Maitane González-Arceo, Iván Gomez-Lopez, Helen Carr-Ugarte, Itziar Eseberri, Marcela González, M Pilar Cano, María P Portillo, Saioa Gómez-Zorita. Anti-Obesity Effects of Isorhamnetin and Isorhamnetin Conjugates. International journal of molecular sciences. 2022 Dec; 24(1):. doi: 10.3390/ijms24010299. [PMID: 36613743]
  • Anna Stochmal, Agata Rolnik, Bartosz Skalski, Jerzy Zuchowski, Beata Olas. Antiplatelet and Anticoagulant Activity of Isorhamnetin and Its Derivatives Isolated from Sea Buckthorn Berries, Measured in Whole Blood. Molecules (Basel, Switzerland). 2022 Jul; 27(14):. doi: 10.3390/molecules27144429. [PMID: 35889302]
  • Vanessa Pittol, Kleyton Santos Veras, Eduarda Doneda, Ariane Dorneles Silva, Maria Gabriele Delagustin, Letícia Scherer Koester, Valquíria Linck Bassani. The challenge of flavonoid/cyclodextrin complexation in a complex matrix of the quercetin, luteolin, and 3-O-methylquercetin. Pharmaceutical development and technology. 2022 Jul; 27(6):625-634. doi: 10.1080/10837450.2022.2098326. [PMID: 35796030]
  • Huseyin Gungor, Mehmet Ekici, Mehmet Burak Ates. Lipid-lowering, anti-inflammatory, and hepatoprotective effects of isorhamnetin on acetaminophen-induced hepatotoxicity in mice. Drug and chemical toxicology. 2022 May; ?(?):1-9. doi: 10.1080/01480545.2022.2069256. [PMID: 35502492]
  • Feten Zar Kalai, Mondher Boulaaba, Farhana Ferdousi, Hiroko Isoda. Effects of Isorhamnetin on Diabetes and Its Associated Complications: A Review of In Vitro and In Vivo Studies and a Post Hoc Transcriptome Analysis of Involved Molecular Pathways. International journal of molecular sciences. 2022 Jan; 23(2):. doi: 10.3390/ijms23020704. [PMID: 35054888]
  • Fuqi Wang, Xu Zhao, Xin Su, Danni Song, Fengmao Zou, Lina Fang. Isorhamnetin, the xanthine oxidase inhibitor from Sophora japonica, ameliorates uric acid levels and renal function in hyperuricemic mice. Food & function. 2021 Dec; 12(24):12503-12512. doi: 10.1039/d1fo02719k. [PMID: 34806108]
  • M Antunes-Ricardo, D Guardado-Félix, M R Rocha-Pizaña, J Garza-Martínez, L Acevedo-Pacheco, J A Gutiérrez-Uribe, J Villela-Castrejón, F López-Pacheco, S O Serna-Saldívar. Opuntia ficus-indica Extract and Isorhamnetin-3-O-Glucosyl-Rhamnoside Diminish Tumor Growth of Colon Cancer Cells Xenografted in Immune-Suppressed Mice through the Activation of Apoptosis Intrinsic Pathway. Plant foods for human nutrition (Dordrecht, Netherlands). 2021 Dec; 76(4):434-441. doi: 10.1007/s11130-021-00934-3. [PMID: 34786663]
  • Yingzhuan Zhan, Wenjing Ta, Wenjuan Tang, Ruochen Hua, Jue Wang, Cheng Wang, Wen Lu. Potential antiviral activity of isorhamnetin against SARS-CoV-2 spike pseudotyped virus in vitro. Drug development research. 2021 12; 82(8):1124-1130. doi: 10.1002/ddr.21815. [PMID: 33847382]
  • Haowen Li, Manzhen Li, Jingxin Fu, Hui Ao, Weihua Wang, Xiangtao Wang. Enhancement of oral bioavailability of quercetin by metabolic inhibitory nanosuspensions compared to conventional nanosuspensions. Drug delivery. 2021 Dec; 28(1):1226-1236. doi: 10.1080/10717544.2021.1927244. [PMID: 34142631]
  • Aiziguli Mulati, Xin Zhang, Tong Zhao, Bo Ren, Luanfeng Wang, Xiaoning Liu, Ying Lan, Xuebo Liu. Isorhamnetin attenuates high-fat and high-fructose diet induced cognitive impairments and neuroinflammation by mediating MAPK and NFκB signaling pathways. Food & function. 2021 Oct; 12(19):9261-9272. doi: 10.1039/d0fo03165h. [PMID: 34606526]
  • Eduarda Doneda, Sara Elis Bianchi, Vanessa Pittol, Tainá Kreutz, Juliete Nathali Scholl, Irene L Ibañez, Candelaria Bracalente, Hebe Durán, Fabrício Figueiró, Fábio Klamt, Valquiria Linck Bassani. 3-O-Methylquercetin from Achyrocline satureioides-cytotoxic activity against A375-derived human melanoma cell lines and its incorporation into cyclodextrins-hydrogels for topical administration. Drug delivery and translational research. 2021 10; 11(5):2151-2168. doi: 10.1007/s13346-020-00882-6. [PMID: 33410099]
  • Ece Sevgi, Aydan Dag, Çağla Kızılarslan-Hançer, Sezen Atasoy, Belma Zengin Kurt, Öznur Aksakal. Evaluation of cytotoxic and antioxidant potential of Dittrichia viscosa (L.) Greuter used in traditional medicine. Journal of ethnopharmacology. 2021 Aug; 276(?):114211. doi: 10.1016/j.jep.2021.114211. [PMID: 34015367]
  • Ahmed A Zaki, Xiaoqian Xu, Yuewen Wang, Pei-Hsin Shie, Longxin Qiu. A new anti-inflammatory flavonoid glycoside from tetraena aegyptia. Natural product research. 2021 Jun; 35(12):1985-1990. doi: 10.1080/14786419.2019.1650356. [PMID: 31397172]
  • Ling Li, Xiao-Jie Jin, Jia-Wei Li, Cheng-Hao Li, Shuang-Yan Zhou, Jun-Jie Li, Cai-Qin Feng, Dong-Ling Liu, Yong-Qi Liu. Systematic insight into the active constituents and mechanism of Guiqi Baizhu for the treatment of gastric cancer. Cancer science. 2021 May; 112(5):1772-1784. doi: 10.1111/cas.14851. [PMID: 33682294]
  • Fei Chen, Minwei Hu, Yue Shen, Wenjun Zhu, Ailin Cao, Bin Ni, Jiao Qian, Jun Yang. Isorhamnetin promotes functional recovery in rats with spinal cord injury by abating oxidative stress and modulating M2 macrophages/microglia polarization. European journal of pharmacology. 2021 Mar; 895(?):173878. doi: 10.1016/j.ejphar.2021.173878. [PMID: 33453223]
  • Marwa Matboli, Doaa Ibrahim, Amany H Hasanin, Mohamed K Hassan, Eman K Habib, Miram M Bekhet, Ahmed M Afifi, Sanaa Eissa. Epigenetic modulation of autophagy genes linked to diabetic nephropathy by administration of isorhamnetin in Type 2 diabetes mellitus rats. Epigenomics. 2021 02; 13(3):187-202. doi: 10.2217/epi-2020-0353. [PMID: 33406900]
  • Jordan M Chapman, Gloria K Muday. Flavonols modulate lateral root emergence by scavenging reactive oxygen species in Arabidopsis thaliana. The Journal of biological chemistry. 2021 Jan; 296(?):100222. doi: 10.1074/jbc.ra120.014543. [PMID: 33839683]
  • Zhi Chang, Jia-Ling Wang, Zhi-Cheng Jing, Ping Ma, Qing-Bing Xu, Jian-Rong Na, Jie Tian, Xuan Ma, Wei Zhou, Ru Zhou. Protective effects of isorhamnetin on pulmonary arterial hypertension: in vivo and in vitro studies. Phytotherapy research : PTR. 2020 Oct; 34(10):2730-2744. doi: 10.1002/ptr.6714. [PMID: 32452118]
  • Sara E Bianchi, Melissa A Pegues, Camila K Dias, Francesca Mascia, Eduarda Doneda, Vanessa Pittol, V Ashutosh Rao, Fábio Klamt, Valquiria L Bassani. Achyrocline satureioides compounds, achyrobichalcone and 3-O-methylquercetin, induce mitochondrial dysfunction and apoptosis in human breast cancer cell lines. IUBMB life. 2020 10; 72(10):2133-2145. doi: 10.1002/iub.2348. [PMID: 32710804]
  • Gang Gong, Ying-Yun Guan, Zhong-Lin Zhang, Khalid Rahman, Su-Juan Wang, Shuang Zhou, Xin Luan, Hong Zhang. Isorhamnetin: A review of pharmacological effects. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020 Aug; 128(?):110301. doi: 10.1016/j.biopha.2020.110301. [PMID: 32502837]
  • Jeffrey P Davis, Mihoko Koyanagi, Robert R Maronpot, Leslie Recio, Shim-Mo Hayashi. Identification of compound causing yellow bone discoloration following alpha-glycosyl isoquercitrin exposure in Sprague-Dawley rats. Archives of toxicology. 2020 07; 94(7):2413-2421. doi: 10.1007/s00204-020-02760-z. [PMID: 32388820]
  • Maiko Sakai, Kohta Ohnishi, Masashi Masuda, Hirokazu Ohminami, Hisami Yamanaka-Okumura, Taichi Hara, Yutaka Taketani. Isorhamnetin, a 3'-methoxylated flavonol, enhances the lysosomal proteolysis in J774.1 murine macrophages in a TFEB-independent manner. Bioscience, biotechnology, and biochemistry. 2020 Jun; 84(6):1221-1231. doi: 10.1080/09168451.2020.1727309. [PMID: 32046625]
  • Edgar Jesús Delgado-Núñez, Alejandro Zamilpa, Manasés González-Cortazar, Agustín Olmedo-Juárez, Alexandre Cardoso-Taketa, Ernesto Sánchez-Mendoza, Daniel Tapia-Maruri, David Osvaldo Salinas-Sánchez, Pedro Mendoza-de Gives. Isorhamnetin: A Nematocidal Flavonoid from Prosopis Laevigata Leaves Against Haemonchus Contortus Eggs and Larvae. Biomolecules. 2020 05; 10(5):. doi: 10.3390/biom10050773. [PMID: 32429307]
  • Cristian López-Palacios, Cecilia B Peña-Valdivia. Screening of secondary metabolites in cladodes to further decode the domestication process in the genus Opuntia (Cactaceae). Planta. 2020 Mar; 251(4):74. doi: 10.1007/s00425-020-03371-9. [PMID: 32144512]
  • Debanjana Bhattacharya, Ritam Sinha, Priyadarshini Mukherjee, Debaki Ranjan Howlader, Dhrubajyoti Nag, Soumyadev Sarkar, Hemanta Koley, Jeffrey H Withey, Ratan Gachhui. Anti-virulence activity of polyphenolic fraction isolated from Kombucha against Vibrio cholerae. Microbial pathogenesis. 2020 Mar; 140(?):103927. doi: 10.1016/j.micpath.2019.103927. [PMID: 31846743]
  • Wei-Chen Xiong, He-Zhen Wu, Yi-Yi Xiong, Bo Liu, Zhou-Tao Xie, Song-Tao Wu, Yun-Feng Yao, Yan-Fang Yang. Network Pharmacology-based Research of Active Components of Albiziae Flos and Mechanisms of Its Antidepressant Effect. Current medical science. 2020 Feb; 40(1):123-129. doi: 10.1007/s11596-020-2155-7. [PMID: 32166674]
  • Akram Taleghani, Seyed Ahmad Emami, Zahra Tayarani-Najaran. Artemisia: a promising plant for the treatment of cancer. Bioorganic & medicinal chemistry. 2020 01; 28(1):115180. doi: 10.1016/j.bmc.2019.115180. [PMID: 31784199]
  • Elhadi E Elamir, Abdulrhman A Almadiy, Gomah E Nenaah, Abdullah A Alabas, Hajer S Alsaqri. Comparing six mathematical link function models of the antifeedant activity of lesser grain borer exposed to sub-lethal concentrations of some extracts from calotropis procera. Bioengineered. 2019 12; 10(1):292-305. doi: 10.1080/21655979.2019.1641399. [PMID: 31284815]
  • Maja Budeč, Jasna Bošnir, Aleksandar Racz, Dario Lasić, Danijel Brkić, Ana Mosović Ćuić, Željka Kuharić, Gordana Jurak, Lidija Barušić. VERIFICATION OF AUTHENTICITY OF GINKGO BILOBA L. LEAF EXTRACT AND ITS PRODUCTS PRESENT ON THE CROATIAN MARKET BY ANALYSIS OF QUANTITY AND RATIO OF GINKGO FLAVONE GLYCOSIDES (QUERCETIN, KAEMPFEROL AND ISORHAMNETIN) TO TERPENE TRILACTONES TO THE EFFECT OF UNMASKING COUNTERFEIT DRUGS ENDANGERING PATIENT HEALTH. Acta clinica Croatica. 2019 Dec; 58(4):672-692. doi: 10.20471/acc.2019.58.04.15. [PMID: 32595253]
  • Munkhzul Ganbold, Yohei Owada, Yusuke Ozawa, Yasuhiro Shimamoto, Farhana Ferdousi, Kenichi Tominaga, Yun-Wen Zheng, Nobuhiro Ohkohchi, Hiroko Isoda. Isorhamnetin Alleviates Steatosis and Fibrosis in Mice with Nonalcoholic Steatohepatitis. Scientific reports. 2019 11; 9(1):16210. doi: 10.1038/s41598-019-52736-y. [PMID: 31700054]
  • Anil Kumar Chauhan, Jieun Kim, Yeongjoon Lee, Pavithra K Balasubramanian, Yangmee Kim. Isorhamnetin Has Potential for the Treatment of Escherichia coli-Induced Sepsis. Molecules (Basel, Switzerland). 2019 Nov; 24(21):. doi: 10.3390/molecules24213984. [PMID: 31689976]
  • Marilena Antunes-Ricardo, Annia Hernández-Reyes, Ashanti C Uscanga-Palomeque, Cristina Rodríguez-Padilla, Ana Carolina Martínez-Torres, Janet Alejandra Gutiérrez-Uribe. Isorhamnetin glycoside isolated from Opuntia ficus-indica (L.) MilI induces apoptosis in human colon cancer cells through mitochondrial damage. Chemico-biological interactions. 2019 Sep; 310(?):108734. doi: 10.1016/j.cbi.2019.108734. [PMID: 31276661]
  • Sen-Wei Tsai, Chi-Chien Lin, Shih-Chao Lin, Shun-Ping Wang, Deng-Ho Yang. Isorhamnetin ameliorates inflammatory responses and articular cartilage damage in the rats of monosodium iodoacetate-induced osteoarthritis. Immunopharmacology and immunotoxicology. 2019 Aug; 41(4):504-512. doi: 10.1080/08923973.2019.1641723. [PMID: 31342791]
  • Jerzy Żuchowski, Łukasz Pecio, Beata Marciniak, Renata Kontek, Anna Stochmal. Unusual isovalerylated flavonoids from the fruit of sea buckthorn (Elaeagnus rhamnoides) grown in Sokółka, Poland. Phytochemistry. 2019 Jul; 163(?):178-186. doi: 10.1016/j.phytochem.2019.03.001. [PMID: 30952449]
  • Huan-Huan Zhu, Ju-Xiang Yang, Chu-Han Xiao, Tian-Yu Mao, Jie Zhang, Hong-Yan Zhang. Differences in flavonoid pathway metabolites and transcripts affect yellow petal colouration in the aquatic plant Nelumbo nucifera. BMC plant biology. 2019 Jun; 19(1):277. doi: 10.1186/s12870-019-1886-8. [PMID: 31234776]
  • Gen Wang, Qi Cui, Lu-Jun Yin, Xue Zheng, Ming-Zhu Gao, Yao Meng, Wei Wang. Efficient extraction of flavonoids from Flos Sophorae Immaturus by tailored and sustainable deep eutectic solvent as green extraction media. Journal of pharmaceutical and biomedical analysis. 2019 Jun; 170(?):285-294. doi: 10.1016/j.jpba.2018.12.032. [PMID: 30951994]
  • Srijita Sireswar, Gargi Dey. Matrix-wise evaluation of in vivo and in vitro efficiencies of L. rhamnosus GG-fortified beverages. Food research international (Ottawa, Ont.). 2019 05; 119(?):908-919. doi: 10.1016/j.foodres.2018.10.077. [PMID: 30884731]
  • Chu Chu, Shan Wang, Huan Zhang, Caijing Liu, Luyi Jiang, Yiping Tang, Jizhong Yan. A sensitive dispersive micro solid-phase extraction coupled with high performance liquid chromatography for determination of three flavonoids in complex matrics by using crab shell as a sorbent. Electrophoresis. 2019 05; 40(9):1298-1305. doi: 10.1002/elps.201900003. [PMID: 30724379]
  • Claudio Gardana, Paolo Simonetti. Evaluation of the Degree of Polymerization of the Proanthocyanidins in Cranberry by Molecular Sieving and Characterization of the Low Molecular Weight Fractions by UHPLC-Orbitrap Mass Spectrometry. Molecules (Basel, Switzerland). 2019 Apr; 24(8):. doi: 10.3390/molecules24081504. [PMID: 30999600]
  • Sara Elis Bianchi, Samuel Kaiser, Vanessa Pittol, Eduarda Doneda, Kellen Cristhinia Borges De Souza, Valquiria Linck Bassani. Semi-preparative isolation and purification of phenolic compounds from Achyrocline satureioides (Lam) D.C. by high-performance counter-current chromatography. Phytochemical analysis : PCA. 2019 Mar; 30(2):182-192. doi: 10.1002/pca.2803. [PMID: 30565775]
  • Bartosz Skalski, Bernadetta Lis, Łukasz Pecio, Bogdan Kontek, Beata Olas, Jerzy Żuchowski, Anna Stochmal. Isorhamnetin and its new derivatives isolated from sea buckthorn berries prevent H2O2/Fe - Induced oxidative stress and changes in hemostasis. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2019 Mar; 125(?):614-620. doi: 10.1016/j.fct.2019.02.014. [PMID: 30738133]
  • Xiaoxia Li, Yunliang Dai, Kyung Ho Row. Preparation of two-dimensional magnetic molecularly imprinted polymers based on boron nitride and a deep eutectic solvent for the selective recognition of flavonoids. The Analyst. 2019 Feb; 144(5):1777-1788. doi: 10.1039/c8an02258e. [PMID: 30672517]
  • Hao Jiang, Yoko Yamashita, Asuka Nakamura, Kevin Croft, Hitoshi Ashida. Quercetin and its metabolite isorhamnetin promote glucose uptake through different signalling pathways in myotubes. Scientific reports. 2019 02; 9(1):2690. doi: 10.1038/s41598-019-38711-7. [PMID: 30804434]
  • Yi Xiao, Lei Xin, Lujia Li, Guowen Li, Xiufeng Shi, Guang Ji, Jinxia Mi, Yan Xie. Quercetin and kaempferol increase the intestinal absorption of isorhamnetin coexisting in Elaeagnus rhamnoides (L.) A. Nelson (Elaeagnaceae) extracts via regulating multidrug resistance-associated protein 2. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Feb; 53(?):154-162. doi: 10.1016/j.phymed.2018.09.028. [PMID: 30668394]
  • Xiaopu Ren, Yingjie Bao, Yuxia Zhu, Shixin Liu, Zengqi Peng, Yawei Zhang, Guanghong Zhou. Isorhamnetin, Hispidulin, and Cirsimaritin Identified in Tamarix ramosissima Barks from Southern Xinjiang and Their Antioxidant and Antimicrobial Activities. Molecules (Basel, Switzerland). 2019 Jan; 24(3):. doi: 10.3390/molecules24030390. [PMID: 30678248]
  • Itziar Eseberri, Jonatan Miranda, Arrate Lasa, Andrea Mosqueda-Solís, Susana González-Manzano, Celestino Santos-Buelga, Maria P Portillo. Effects of Quercetin Metabolites on Triglyceride Metabolism of 3T3-L1 Preadipocytes and Mature Adipocytes. International journal of molecular sciences. 2019 Jan; 20(2):. doi: 10.3390/ijms20020264. [PMID: 30641871]
  • Cheng Jiayi, Ning Tianyi, Teng Dan, Kang Tingguo, Wang Qingfeng, Zhang Qianqian. Isorhamnetin protects endothelial cells model CRL1730 from oxidative injury by hydrogen peroxide. Pakistan journal of pharmaceutical sciences. 2019 Jan; 32(1):131-136. doi: ". [PMID: 30772801]
  • Ji-Xiao Zhu, Le Wen, Wei-Jin Zhong, Li Xiong, Jian Liang, Hong-Ling Wang. Quercetin, Kaempferol and Isorhamnetin in Elaeagnus pungens Thunb. Leaf: Pharmacological Activities and Quantitative Determination Studies. Chemistry & biodiversity. 2018 Aug; 15(8):e1800129. doi: 10.1002/cbdv.201800129. [PMID: 29802806]
  • Aicha Bouratoua, Assia Khalfallah, Chawki Bensouici, Zahia Kabouche, Abdulmagid Alabdul Magid, Dominique Harakat, Laurence Voutquenne-Nazabadioko, Ahmed Kabouche. Chemical composition and antioxidant activity of aerial parts of Ferula longipes Coss. ex Bonnier and Maury. Natural product research. 2018 Aug; 32(16):1873-1880. doi: 10.1080/14786419.2017.1353513. [PMID: 28714345]
  • Mak-Soon Lee, Yangha Kim. Effects of Isorhamnetin on Adipocyte Mitochondrial Biogenesis and AMPK Activation. Molecules (Basel, Switzerland). 2018 Jul; 23(8):. doi: 10.3390/molecules23081853. [PMID: 30044453]
  • Xiya Lu, Tong Liu, Kan Chen, Yujing Xia, Weiqi Dai, Shizan Xu, Ling Xu, Fan Wang, Liwei Wu, Jingjing Li, Sainan Li, Wenwen Wang, Qiang Yu, Jiao Feng, Xiaoming Fan, Yingqun Zhou, Peiqin Niu, Chuanyong Guo. Isorhamnetin: A hepatoprotective flavonoid inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Jul; 103(?):800-811. doi: 10.1016/j.biopha.2018.04.016. [PMID: 29684859]
  • Haroon Khan, Kannan R R Rengasamy, Aini Pervaiz, Seyed Mohammad Nabavi, Atanas G Atanasov, Mohammad A Kamal. Plant-derived mPGES-1 inhibitors or suppressors: A new emerging trend in the search for small molecules to combat inflammation. European journal of medicinal chemistry. 2018 Jun; 153(?):2-28. doi: 10.1016/j.ejmech.2017.12.059. [PMID: 29329790]
  • Maria F Quintero-Soto, Ana G Saracho-Peña, Jeanett Chavez-Ontiveros, Jose A Garzon-Tiznado, Karen V Pineda-Hidalgo, Francisco Delgado-Vargas, Jose A Lopez-Valenzuela. Phenolic profiles and their contribution to the antioxidant activity of selected chickpea genotypes from Mexico and ICRISAT collections. Plant foods for human nutrition (Dordrecht, Netherlands). 2018 Jun; 73(2):122-129. doi: 10.1007/s11130-018-0661-6. [PMID: 29516285]
  • Lei-Lei Gong, Hui-Jun Yuan, Lan Wang, Xiao-Jie Yin, Hai-Yu Xu, Ri-Xin Liang, Hong-Jun Yang. [Simultaneous determination of seven bioactive compounds and pharmacokinetics in rat plasma after oral administration of Yindan Xinnaotong Ruanjiaonang by UPLC-MS/MS]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2017 Dec; 42(23):4665-4673. doi: 10.19540/j.cnki.cjcmm.2017.0204. [PMID: 29376269]
  • Ji Ye Wang, Hong Chen, Yin Yin Wang, Xiao Qin Wang, Han Ying Chen, Mei Zhang, Yun Tang, Bo Zhang. Network pharmacological mechanisms of Vernonia anthelmintica (L.) in the treatment of vitiligo: Isorhamnetin induction of melanogenesis via up-regulation of melanin-biosynthetic genes. BMC systems biology. 2017 Nov; 11(1):103. doi: 10.1186/s12918-017-0486-1. [PMID: 29145845]
  • Asma Ressaissi, Nebil Attia, Pedro Luis Falé, Rita Pacheco, Bruno L Victor, Miguel Machuqueiro, Maria Luísa M Serralheiro. Isorhamnetin derivatives and piscidic acid for hypercholesterolemia: cholesterol permeability, HMG-CoA reductase inhibition, and docking studies. Archives of pharmacal research. 2017 Nov; 40(11):1278-1286. doi: 10.1007/s12272-017-0959-1. [PMID: 28936788]
  • Marilena Antunes-Ricardo, César Rodríguez-Rodríguez, Janet A Gutiérrez-Uribe, Eduardo Cepeda-Cañedo, Sergio O Serna-Saldívar. Bioaccessibility, Intestinal Permeability and Plasma Stability of Isorhamnetin Glycosides from Opuntia ficus-indica (L.). International journal of molecular sciences. 2017 Aug; 18(8):. doi: 10.3390/ijms18081816. [PMID: 28829356]
  • Wenzhong Shi, Lili Liu, Jian Li, Lu Qu, Xu Pang, Haiyang Yu, Yi Zhang, Tao Wang. Bioactive flavonoids from Flos Sophorae. Journal of natural medicines. 2017 Jul; 71(3):513-522. doi: 10.1007/s11418-017-1084-7. [PMID: 28357634]
  • Jin-Song Su, Cai-Yun Zhao, Jian Wen, Chuan Liu, Cai-Xiang Xie, Yi Zhang. [Correlation between flavonoids contents in Hippophae rhamnoides subsp. inensis leaf and ecological factors, and ecological suitability analysis of H. rhamnoides subsp. sinensis]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2017 May; 42(10):1865-1870. doi: 10.19540/j.cnki.cjcmm.2017.0078. [PMID: 29090544]
  • Ruixue Guo, Xinbo Guo, Tong Li, Xiong Fu, Rui Hai Liu. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Food chemistry. 2017 Apr; 221(?):997-1003. doi: 10.1016/j.foodchem.2016.11.063. [PMID: 27979305]
  • Ye Tian, Jaana Liimatainen, Aino-Liisa Alanne, Anni Lindstedt, Pengzhan Liu, Jari Sinkkonen, Heikki Kallio, Baoru Yang. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food chemistry. 2017 Apr; 220(?):266-281. doi: 10.1016/j.foodchem.2016.09.145. [PMID: 27855899]
  • Sarah Neveux, Nicole K Smith, Anna Roche, Bruce E Blough, Wimal Pathmasiri, Allison B Coffin. Natural Compounds as Occult Ototoxins? Ginkgo biloba Flavonoids Moderately Damage Lateral Line Hair Cells. Journal of the Association for Research in Otolaryngology : JARO. 2017 Apr; 18(2):275-289. doi: 10.1007/s10162-016-0604-6. [PMID: 27896487]
  • Maja Mikulic-Petkovsek, Boris Krska, Biljana Kiprovski, Robert Veberic. Bioactive Components and Antioxidant Capacity of Fruits from Nine Sorbus Genotypes. Journal of food science. 2017 Mar; 82(3):647-658. doi: 10.1111/1750-3841.13643. [PMID: 28182841]
  • Di Zhou, Hongyan Wei, Zhe Jiang, Xuezheng Li, Kun Jiao, Xiaoguang Jia, Yue Hou, Ning Li. Natural potential neuroinflammatory inhibitors from Alhagi sparsifolia Shap. Bioorganic & medicinal chemistry letters. 2017 02; 27(4):973-978. doi: 10.1016/j.bmcl.2016.12.075. [PMID: 28073678]
  • Sanja Ž Mudrić, Uroš M Gašić, Aleksandra M Dramićanin, Ivanka Ž Ćirić, Dušanka M Milojković-Opsenica, Jelena B Popović-Đorđević, Nebojša M Momirović, Živoslav Lj Tešić. The polyphenolics and carbohydrates as indicators of botanical and geographical origin of Serbian autochthonous clones of red spice paprika. Food chemistry. 2017 Feb; 217(?):705-715. doi: 10.1016/j.foodchem.2016.09.038. [PMID: 27664689]
  • Constanze Burak, Verena Brüll, Peter Langguth, Benno F Zimmermann, Birgit Stoffel-Wagner, Udo Sausen, Peter Stehle, Siegfried Wolffram, Sarah Egert. Higher plasma quercetin levels following oral administration of an onion skin extract compared with pure quercetin dihydrate in humans. European journal of nutrition. 2017 Feb; 56(1):343-353. doi: 10.1007/s00394-015-1084-x. [PMID: 26482244]
  • F Ferreres, S C Q Magalhães, A Gil-Izquierdo, P Valentão, A R J Cabrita, A J M Fonseca, P B Andrade. HPLC-DAD-ESI/MS(n) profiling of phenolic compounds from Lathyrus cicera L. seeds. Food chemistry. 2017 Jan; 214(?):678-685. doi: 10.1016/j.foodchem.2016.07.129. [PMID: 27507525]
  • A Mata, J P Ferreira, C Semedo, T Serra, C M M Duarte, M R Bronze. Contribution to the characterization of Opuntia spp. juices by LC-DAD-ESI-MS/MS. Food chemistry. 2016 Nov; 210(?):558-65. doi: 10.1016/j.foodchem.2016.04.033. [PMID: 27211682]
  • Hang-qing Cui, Cai-ying Peng, Ying-zheng Huang, Ying Gao, Jian-qun Liu, Rui Zhang, Ji-cheng Shu. [Flavonoids from leaves of Psidum littorale]. Yao xue xue bao = Acta pharmaceutica Sinica. 2016 11; 51(11):1745-50. doi: . [PMID: 29908132]
  • Houmei Liu, Mingliang Zhang, Yong Guo, Hongdeng Qiu. Solid-phase extraction of flavonoids in honey samples using carbamate-embedded triacontyl-modified silica sorbent. Food chemistry. 2016 Aug; 204(?):56-61. doi: 10.1016/j.foodchem.2016.02.102. [PMID: 26988475]
  • Komei Kato, Masayuki Ninomiya, Kaori Tanaka, Mamoru Koketsu. Effects of Functional Groups and Sugar Composition of Quercetin Derivatives on Their Radical Scavenging Properties. Journal of natural products. 2016 07; 79(7):1808-14. doi: 10.1021/acs.jnatprod.6b00274. [PMID: 27314621]
  • Jingze Duan, Yang Dang, Houjun Meng, Huizhen Wang, Ping Ma, Guowen Li, Tao Wu, Yan Xie. A comparison of the pharmacokinetics of three different preparations of total flavones of Hippophae rhamnoides in beagle dogs after oral administration. European journal of drug metabolism and pharmacokinetics. 2016 Jun; 41(3):239-49. doi: 10.1007/s13318-015-0254-9. [PMID: 25613316]
  • Yu Geon Lee, Jeong-Yong Cho, Young-Min Kim, Jae-Hak Moon. Change in Flavonoid Composition and Antioxidative Activity during Fermentation of Onion (Allium cepa L.) by Leuconostoc mesenteroides with Different Salt Concentrations. Journal of food science. 2016 Jun; 81(6):C1385-93. doi: 10.1111/1750-3841.13329. [PMID: 27175820]
  • Isabel Juániz, Iziar A Ludwig, Estibaliz Huarte, Gema Pereira-Caro, Jose Manuel Moreno-Rojas, Concepción Cid, María-Paz De Peña. Influence of heat treatment on antioxidant capacity and (poly)phenolic compounds of selected vegetables. Food chemistry. 2016 Apr; 197(Pt A):466-73. doi: 10.1016/j.foodchem.2015.10.139. [PMID: 26616976]
  • Yuan-Chun Ma, Ana Mani, Yaling Cai, Jaclyn Thomson, Jie Ma, Flavie Peudru, Sarah Chen, Mai Luo, Junzeng Zhang, Robert G Chapman, Zhen-Tuo Shi. An effective identification and quantification method for Ginkgo biloba flavonol glycosides with targeted evaluation of adulterated products. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2016 Apr; 23(4):377-87. doi: 10.1016/j.phymed.2016.02.003. [PMID: 27002408]
  • Jin-Liang Liu, Long-Yun Li, Guang-Hua He. Optimization of Microwave-Assisted Extraction Conditions for Five Major Bioactive Compounds from Flos Sophorae Immaturus (Cultivars of Sophora japonica L.) Using Response Surface Methodology. Molecules (Basel, Switzerland). 2016 Mar; 21(3):296. doi: 10.3390/molecules21030296. [PMID: 26950107]
  • Lanxiang Jiang, Hongen Li, Laiying Wang, Zexin Song, Lei Shi, Wenhua Li, Xuming Deng, Jianfeng Wang. Isorhamnetin Attenuates Staphylococcus aureus-Induced Lung Cell Injury by Inhibiting Alpha-Hemolysin Expression. Journal of microbiology and biotechnology. 2016 Mar; 26(3):596-602. doi: 10.4014/jmb.1507.07091. [PMID: 26643966]
  • Marcus T Brock, Lauren K Lucas, Nickolas A Anderson, Matthew J Rubin, R J Cody Markelz, Michael F Covington, Upendra K Devisetty, Clint Chapple, Julin N Maloof, Cynthia Weinig. Genetic architecture, biochemical underpinnings and ecological impact of floral UV patterning. Molecular ecology. 2016 03; 25(5):1122-40. doi: 10.1111/mec.13542. [PMID: 26800256]
  • Yu Zhang, Ming Gu, Wujie Cai, Lijing Yu, Li Feng, Lu Zhang, Qingqing Zang, Yahui Wang, Dongshan Wang, Hui Chen, Qingchun Tong, Guang Ji, Cheng Huang. Dietary component isorhamnetin is a PPARγ antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency. Scientific reports. 2016 Jan; 6(?):19288. doi: 10.1038/srep19288. [PMID: 26775807]
  • Mario J Simirgiotis, Cristina Quispe, Jorge Bórquez, Carlos Areche, Beatriz Sepúlveda. Fast Detection of Phenolic Compounds in Extracts of Easter Pears (Pyrus communis) from the Atacama Desert by Ultrahigh-Performance Liquid Chromatography and Mass Spectrometry (UHPLC-Q/Orbitrap/MS/MS). Molecules (Basel, Switzerland). 2016 Jan; 21(1):92. doi: 10.3390/molecules21010092. [PMID: 26784158]
  • Yu Liu, Juan Yang, Yang-ling Tuo, Ting Wei, Yong Zeng, Ping Wang, Xian-li Meng. [Determination of plasma concentration of quercetin, kaempferid and isorhamnetin in Hippophae rhamnoides extract by HPLC-MS/MS and pharmacokinetics in rats]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2015 Oct; 40(19):3859-65. doi: . [PMID: 26975114]
  • Tahira Fatima, Vigya Kesari, Ian Watt, David Wishart, James F Todd, William R Schroeder, Gopinadhan Paliyath, Priti Krishna. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.). Phytochemistry. 2015 Oct; 118(?):181-91. doi: 10.1016/j.phytochem.2015.08.008. [PMID: 26318327]
  • Jonathan G Messer, Robin G Hopkins, Deborah E Kipp. Quercetin Metabolites Up-Regulate the Antioxidant Response in Osteoblasts Isolated From Fetal Rat Calvaria. Journal of cellular biochemistry. 2015 Sep; 116(9):1857-66. doi: 10.1002/jcb.25141. [PMID: 25716194]
  • Yingzhan Tang, Junhong Ling, Peng Zhang, Xiangrong Zhang, Na Zhang, Wenli Wang, Jiayuan Li, Ning Li. Potential therapeutic agents for circulatory diseases from Bauhinia glauca Benth.subsp. pernervosa. (Da Ye Guan Men). Bioorganic & medicinal chemistry letters. 2015 Aug; 25(16):3217-20. doi: 10.1016/j.bmcl.2015.05.089. [PMID: 26096681]
  • Cai-yun Shao, Qing-hu Wang, Rong-jun Wu, Jie-si Wu, Na-ren-chao-ke-tu Han, Na-yin-tai Dai. [Study on Chemical Constituents of Panzeria alaschanica]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 Aug; 38(8):1668-70. doi: . [PMID: 26983242]
  • Yan Xie, Jingze Duan, Qingxue Fu, Mengxin Xia, Lei Zhang, Guowen Li, Tao Wu, Guang Ji. Comparison of isorhamnetin absorption properties in total flavones of Hippophae rhamnoides L. with its pure form in a Caco-2 cell model mediated by multidrug resistance-associated protein. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2015 Jun; 73(?):1-8. doi: 10.1016/j.ejps.2015.03.008. [PMID: 25813735]
  • Qi Sun, Nicole M Wedick, Shelley S Tworoger, An Pan, Mary K Townsend, Aedin Cassidy, Adrian A Franke, Eric B Rimm, Frank B Hu, Rob M van Dam. Urinary Excretion of Select Dietary Polyphenol Metabolites Is Associated with a Lower Risk of Type 2 Diabetes in Proximate but Not Remote Follow-Up in a Prospective Investigation in 2 Cohorts of US Women. The Journal of nutrition. 2015 Jun; 145(6):1280-8. doi: 10.3945/jn.114.208736. [PMID: 25904735]
  • Ji Yeon Jeong, Yang Hee Jo, Seon Beom Kim, Qing Liu, Jin Woo Lee, Eun Jin Mo, Ki Yong Lee, Bang Yeon Hwang, Mi Kyeong Lee. Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions. Bioorganic & medicinal chemistry letters. 2015 Jun; 25(11):2269-74. doi: 10.1016/j.bmcl.2015.04.045. [PMID: 25935644]
  • J Maciej, C T Schäff, E Kanitz, A Tuchscherer, R M Bruckmaier, S Wolffram, H M Hammon. Bioavailability of the flavonol quercetin in neonatal calves after oral administration of quercetin aglycone or rutin. Journal of dairy science. 2015 Jun; 98(6):3906-17. doi: 10.3168/jds.2015-9361. [PMID: 25795488]
  • Wiesław Wiczkowski, Janina Skipor, Tomasz Misztal, Dorota Szawara-Nowak, Joanna Topolska, Mariusz K Piskula. Quercetin and isorhamnetin aglycones are the main metabolites of dietary quercetin in cerebrospinal fluid. Molecular nutrition & food research. 2015 Jun; 59(6):1088-94. doi: 10.1002/mnfr.201400567. [PMID: 25727325]