Isoeugenol (BioDeep_00000008108)
Secondary id: BioDeep_00000177216, BioDeep_00000268418
human metabolite PANOMIX_OTCML-2023 natural product Volatile Flavor Compounds
代谢物信息卡片
化学式: C10H12O2 (164.0837252)
中文名称: (E)-2-甲氧基-4-(1-丙烯基苯酚), 异丁香酚(正+反), 异丁香酚, 4-丙烯基-2-甲氧基苯酚, 丙烯基愈创木酚
谱图信息:
最多检出来源 Viridiplantae(plant) 0.05%
分子结构信息
SMILES: C/C=C/c1ccc(O)c(OC)c1
InChI: InChI=1S/C10H12O2/c1-3-4-8-5-6-9(11)10(7-8)12-2/h3-7,11H,1-2H3/b4-3+
描述信息
Isoeugenol is a pale yellow oily liquid with a spice-clove odor. Freezes at 14 °F. Density 1.08 g / cm3. Occurs in ylang-ylang oil and other essential oils.
Isoeugenol is a phenylpropanoid that is an isomer of eugenol in which the allyl substituent is replaced by a prop-1-enyl group. It has a role as an allergen and a sensitiser. It is a phenylpropanoid and an alkenylbenzene. It is functionally related to a guaiacol.
Isoeugenol is a commonly used fragrance added to many commercially available products, and occurs naturally in the essential oils of plants such as ylang-ylang. It is also a significant dermatologic sensitizer and allergen, and as a result has been restricted to 200 p.p.m. since 1998 according to guidelines issued by the fragrance industry. Allergic reactivity to Isoeugenol may be identified with a patch test.
Isoeugenol is a natural product found in Chaerophyllum macrospermum, Origanum sipyleum, and other organisms with data available.
Isoeugenol is is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil and cinnamon. It is very slightly soluble in water and soluble in organic solvents. It has a spicy odor and taste of clove. Isoeugenol is prepared from eugenol by heating. Eugenol is used in perfumeries, flavorings, essential oils and in medicine (local antiseptic and analgesic). It is used in the production of isoeugenol for the manufacture of vanillin. Eugenol derivatives or methoxyphenol derivatives in wider classification are used in perfumery and flavoring. They are used in formulating insect attractants and UV absorbers, analgesics, biocides and antiseptics. They are also used in manufacturing stabilizers and antioxidants for plastics and rubbers. Isoeugenol is used in manufacturing perfumeries, flavorings, essential oils (odor description: Clove, spicy, sweet, woody) and in medicine (local antiseptic and analgesic) as well as vanillin. (A7915).
E-4-Propenyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae.
Isoeugenol is an isomer of eugenol, wherein the double bond on the alkyl chain is shifted by one carbon. It also known as propenylgualacol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Isoeugenol is also classified as a phenylpropene, a propenyl-substituted guaiacol. Isoeugenol may occur as either the cis (Z) or trans (E) isomer. Trans (E) isoeugenol is crystalline while cis (Z) isoeugenol is a pale, yellow liquid. Isoeugenol is very slightly soluble in water and soluble in organic solvents. It has a spicy, sweet, carnation-like odour and tastes of sweet spice and clove. Isoeugenol is a widely used food flavoring agent and a perfuming agent. As a food flavoring agent, it is responsible for the flavor of nutmeg (in pumpkin pies), As a fragrance, it is extensively used as a scent agent in consumer products such as soaps, shampoos, perfumes, detergents and bath tissues (often labeled as “Fragrance” rather than isoeugenol). However, some individuals can develop allergies to isoeugenol as it appears to be a strong contact allergen (PMID:10554062 ). Isoeugenol can be prepared from eugenol by heating. In addition to its industrial production via eugenol, isoeugenol can also be extracted from certain essential oils especially from clove oil and cinnamon. It is found naturally in a wide number of foods, spices and plants including allspice, basil, blueberries, cinnamon, cloves, coffee, dill, ginber, nutmeg, thyme and turmeric. Isoeugenol is also a component of wood smoke and liquid smoke. It is one of several phenolic compounds responsible for the mold-inhibiting effect of smoke on meats and cheeses. Isoeugenol (specifically the acetate ester) has also been used in the production of vanillin. Isoeugenol is one of several non-cannabinoid phenols found in cannabis plants (PMID:6991645 ).
(e)-isoeugenol, also known as 2-methoxy-4-propenylphenol or propenylgualacol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety (e)-isoeugenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). (e)-isoeugenol is a sweet, carnation, and clove tasting compound and can be found in a number of food items such as corn salad, coconut, flaxseed, and winter squash, which makes (e)-isoeugenol a potential biomarker for the consumption of these food products (e)-isoeugenol can be found primarily in saliva (e)-isoeugenol exists in all eukaryotes, ranging from yeast to humans (e)-isoeugenol is a non-carcinogenic (not listed by IARC) potentially toxic compound.
Isoeugenol is an essential oil constituent of nutmeg, clove, and cinnamon. Isoeugenol inhibits growth of Escherichia coli and Listeria innocua with MICs of 0.6 mg/mL and 1 mg/mL, respectively[1].
Isoeugenol is an essential oil constituent of nutmeg, clove, and cinnamon. Isoeugenol inhibits growth of Escherichia coli and Listeria innocua with MICs of 0.6 mg/mL and 1 mg/mL, respectively[1].
同义名列表
103 个代谢物同义名
Isoeugenol, predominantly trans, analytical standard; 2-methoxy-4-(1-propenyl)phenol (ACD/Name 4.0); 3-06-00-04993 (Beilstein Handbook Reference); 4-06-00-06324 (Beilstein Handbook Reference); 3-Methoxy-4-hydroxy-1-propen-1-ylbenzene; 1-Hydroxy-2-methoxy-4-propen-1-ylbenzene; 4-Hydroxy-3-methoxy-1-propen-1-ylbenzene; 1-(3-Methoxy-4-hydroxyphenyl)-1-propane; Phenol, 2-methoxy-4-(1-propenyl)-, (E)-; 2-Methoxy-4-propenylphenol (isoeugenol); 2-methoxy-4-[(1E)-prop-1-en-1-yl]phenol; 1-(3-Methoxy-4-hydroxyphenyl)-1-propene; (E)-2-Methoxy-4-(prop-1-en-1-yl)phenol; Phenol,2-methoxy-4-(1E)-1-propen-1-yl-; 4-Hydroxy-3-methoxy-beta-methylstyrene; 1-Hydroxy-2-methoxy-4-propenylbenzene; 4-Hydroxy-3-methoxy-1-propenylbenzene; 3-Methoxy-4-hydroxy-1-propenylbenzene; (E)-2-Methoxy-4-(1-propen-1-yl)phenol; (E)-2-methoxy-4- (1-propenyl)-Phenol; trans-2-methoxy-4-(1-propenyl)phenol; 2-Methoxy-4-(1E)-1-propen-1-ylphenol; Phenol, 2-methoxy-4-(1-propen-1-yl)-; Phenol, 2-methoxy-4-(1E)-1-propenyl-; 4-Hydroxy-3-methoxy-β-methylstyrene; Phenol, 2-methoxy-4-propenyl-, (E)-; 2-methoxy-4-[(E)-prop-1-enyl]phenol; (E)-2-methoxy-4-(1-propenyl)-Phenol; 2-Methoxy-4-[(1E)-1-propenyl]phenol; (E)-2-Methoxy-4-(prop-1-enyl)phenol; 4-Hydroxy-3-methoxypropenylbenzene; 2-methoxy-4-(prop-1-en-1-yl)phenol; 3-Methoxy-4-hydroxypropenylbenzene; (E)-2-METHOXY-4-(1-PROPENYL)PHENOL; 2-Methoxy-4-[(E)-1-propenyl]phenol; Phenol, 2-methoxy-4-(1-propenyl)-; 2-Methoxy-4-(1-propen-1-yl)phenol; trans-2-Methoxy-4-propenylphenol; Isoeugenol, analytical standard; (E)-2-methoxy-4-propenyl-Phenol; 2-Methoxy-4(E)-1-propenylphenol; Isoeugenol, predominantly trans; 2-methoxy-4-(1-propenyl)-Phenol; 2-Methoxy-4-[1-propenyl]phenol; Isoeugenol,predominantly trans; 2-METHOXY-4-(1-PROPENYL)PHENOL; Isoeugenol, natural, 99\\%, FG; Phenol, 2-methoxy-4-propenyl-; 2-methoxy-4-propenyl-Phenol; ISOEUGENOL TRANS-FORM [MI]; 2-methoxy-4-propenylphenol; trans-p-Propenylquaiacol; trans-p-Propenylguaiacol; trans-4-Propenylguaiacol; trans-4-Propenylgualacol; isoeugenol extra nat us; 4-(1-Propenyl) Guaiacol; isoeugenol, sodium salt; Isoeugenol, cis + trans; (E)-4-PROPENYLGUAIACOL; Isoeugenol and isomers; isoeugenol, (Z)-isomer; isoeugenol, (E)-isomer; Isoeugenol trans-form; WLN: 2U1R DQ CO1 -E; ISOEUGENOL, TRANS-; 4-Propenylguaiacol; iso eugenol 88\\%+; WLN: 2U1R DQ CO1; trans-Isoeugenol; ISOEUGENOL, (E)-; Propenylguaiacol; Propenylgualacol; UNII-28FSR1NAY4; UNII-5M0MWY797U; isoeugenol tech; Isoeugenol (I); isoeugenol fcc; (E)-Isoeugenol; Isoeugenol,c&t; ISOEUGENOL, E-; Tox21_111138_1; iso-Eugenol 2; e-isoeugenol; Tox21_202433; Phenol, (E)-; Tox21_300303; Isoeugenol Z; Isoeugenol E; Tox21_111138; Iso eugenol; Iso-eugenol; CAS-97-54-1; IE TRANS 92; 28FSR1NAY4; Isoeugenol; 5M0MWY797U; isougenol; AI3-15356; CHISOEUG; Isoeugenol; Propenylguaiacol; Isoeugenol
数据库引用编号
30 个数据库交叉引用编号
- ChEBI: CHEBI:50545
- ChEBI: CHEBI:18224
- KEGG: C10469
- PubChem: 853433
- PubChem: 7338
- HMDB: HMDB0005802
- Metlin: METLIN58323
- DrugBank: DB14188
- ChEMBL: CHEMBL193598
- Wikipedia: Isoeugenol
- MeSH: isoeugenol
- ChemIDplus: 0000097541
- MetaCyc: ISOEUGENOL
- KNApSAcK: C00035095
- KNApSAcK: C00000620
- foodb: FDB012403
- chemspider: 21106129
- CAS: 5932-68-3
- CAS: 97-54-1
- medchemexpress: HY-N1952
- PMhub: MS000021660
- PubChem: 12652
- PDB-CCD: EUG
- PDB-CCD: H7Y
- 3DMET: B03874
- NIKKAJI: J3.221B
- LOTUS: LTS0136836
- KNApSAcK: 18224
- LOTUS: LTS0086128
- wikidata: Q420043
分类词条
相关代谢途径
代谢反应
152 个相关的代谢反应过程信息。
Reactome(2)
- Olfactory Signaling Pathway:
GTP + odorant:Olfactory Receptor:GNAL:GDP:GNB1:GNG13 ⟶ GDP + odorant:Olfactory Receptor:GNAL:GTP:GNB1:GNG13
- Sensory Perception:
GTP + odorant:Olfactory Receptor:GNAL:GDP:GNB1:GNG13 ⟶ GDP + odorant:Olfactory Receptor:GNAL:GTP:GNB1:GNG13
BioCyc(3)
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + isoeugenol ⟶ H+ + SAH + isomethyleugenol
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(147)
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + isoeugenol ⟶ H+ + SAH + isomethyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + isoeugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
acetyl-CoA + coniferyl alcohol ⟶ coenzyme A + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- volatile cinnamoic ester biosynthesis:
SAM + eugenol ⟶ H+ + SAH + methyleugenol
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- eugenol and isoeugenol biosynthesis:
NADP+ + acetate + eugenol ⟶ NADPH + coniferyl acetate
- volatile cinnamoic ester biosynthesis:
SAM + isoeugenol ⟶ H+ + SAH + isomethyleugenol
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
131 个相关的物种来源信息
- 13328 - Achillea: LTS0136836
- 282734 - Achillea erba-rotta: 10.1080/10412905.1989.9697751
- 282750 - Achillea moschata: 10.1080/10412905.1989.9697751
- 282752 - Achillea nana: 10.1080/10412905.1989.9697751
- 282753 - Achillea nobilis: 10.1080/10412905.1989.9697751
- 133233 - Achillea ptarmica: 10.1080/10412905.1989.9697751
- 4465 - Acorus calamus: 10.1016/J.PHYTOCHEM.2005.01.007
- 46988 - Actaea: LTS0136836
- 64042 - Actaea simplex: 10.1016/0305-1978(87)90058-5
- 64042 - Actaea simplex: LTS0136836
- 165353 - Angelica sinensis (Oliv.)Diels: -
- 4037 - Apiaceae: LTS0136836
- 28498 - Asarum canadense: 10.1021/JF00065A004
- 76103 - Asarum hatsushimae: 10.1248/YAKUSHI1947.107.3_209
- 4210 - Asteraceae: LTS0136836
- 48103 - Bupleurum fruticosum: 10.1080/10412905.1992.9698110
- 3481 - Cannabaceae: LTS0136836
- 3482 - Cannabis: LTS0136836
- 3483 - Cannabis sativa: 10.1021/NP50008A001
- 3483 - Cannabis sativa: LTS0136836
- 4200 - Caprifoliaceae: LTS0136836
- 89496 - Cardiocrinum cordatum: 10.1016/0031-9422(89)85070-8
- 54707 - Chaerophyllum: LTS0136836
- 109104 - Chaerophyllum macrospermum: 10.1007/BF00630022
- 109104 - Chaerophyllum macrospermum: LTS0136836
- 13428 - Cinnamomum: LTS0136836
- 1132458 - Cinnamomum kotoense: 10.1021/NP060107L
- 1132458 - Cinnamomum kotoense: LTS0136836
- 128608 - Cinnamomum verum: 10.1021/JF60218A031
- 128608 - Cinnamomum verum: LTS0136836
- 332445 - Clinopodium gilliesii: 10.1080/10412905.1993.9698276
- 587658 - Coleus: LTS0136836
- 204180 - Coleus amboinicus: 10.1007/BF01961467
- 204180 - Coleus amboinicus: LTS0136836
- 16906 - Cornus Officinalis Sieb. Et Zucc.: -
- 79837 - Cymbopogon martinii: 10.1021/JF00073A015
- 4039 - Daucus carota: 10.1016/J.PHYTOCHEM.2018.12.020
- 2759 - Eukaryota: LTS0136836
- 110723 - Hedychium spicatum: 10.1002/FFJ.2730100310
- 9606 - Homo sapiens: -
- 13097 - Illicium: LTS0136836
- 124772 - Illicium difengpi: 10.1673/031.011.15201
- 124772 - Illicium difengpi: LTS0136836
- 124772 - Illicium Difengpi K. L. B. Et K. I. M.: -
- 80369 - Imperata cylindrica: 10.1021/JF902310J
- 4136 - Lamiaceae: LTS0136836
- 3433 - Lauraceae: LTS0136836
- 4447 - Liliopsida: LTS0136836
- 3411 - Magnolia salicifolia: 10.1076/PHBI.35.2.84.13279
- 3398 - Magnoliopsida: LTS0136836
- 24647 - Mandragora: LTS0136836
- 389206 - Mandragora autumnalis: 10.1016/J.PHYTOCHEM.2005.07.016
- 389206 - Mandragora autumnalis: LTS0136836
- 33117 - Mandragora officinarum: 10.1016/J.PHYTOCHEM.2005.07.016
- 33117 - Mandragora officinarum: LTS0136836
- 680227 - Millingtonia hortensis: 10.1016/0031-9422(94)00939-Q
- 51088 - Myristica: LTS0136836
- 51089 - Myristica fragrans:
- 51089 - Myristica fragrans: 10.1016/0378-8741(90)90054-W
- 51089 - Myristica fragrans: 10.1055/S-2007-969683
- 51089 - Myristica fragrans: LTS0136836
- 51089 - Myristica fragrans Houtt.: -
- 22274 - Myristicaceae: LTS0136836
- 3931 - Myrtaceae: LTS0136836
- 63800 - Nectandra: LTS0136836
- 883797 - Nectandra hihua: 10.1016/S0031-9422(00)97906-8
- 883797 - Nectandra hihua: LTS0136836
- 1136773 - Neomirandea: LTS0136836
- 4085 - Nicotiana: LTS0136836
- 200309 - Nicotiana rosulata: LTS0136836
- 200307 - Nicotiana rosulata subsp. ingulba: 10.1016/J.PHYTOCHEM.2006.05.038
- 200307 - Nicotiana rosulata subsp. ingulba: LTS0136836
- 39174 - Origanum: LTS0136836
- 1268194 - Origanum minutiflorum: 10.1080/10412905.1991.9697982
- 1268194 - Origanum minutiflorum: LTS0136836
- 1132404 - Origanum sipyleum: 10.1080/10412905.1992.9698035
- 1132404 - Origanum sipyleum: LTS0136836
- 3684 - Passiflora: LTS0136836
- 159425 - Passiflora incarnata: 10.1080/10412905.1992.9698081
- 159425 - Passiflora incarnata: LTS0136836
- 3683 - Passifloraceae: LTS0136836
- 48385 - Perilla: LTS0136836
- 48386 - Perilla Frutescens: -
- 48386 - Perilla frutescens: 10.1021/JF00023A054
- 48386 - Perilla frutescens: LTS0136836
- 4101 - Petunia: LTS0136836
- 33119 - Petunia axillaris: 10.1271/BBB.60507
- 33119 - Petunia axillaris: LTS0136836
- 3526 - Phytolacca: LTS0136836
- 3528 - Phytolacca acinosa: 10.1007/S10600-019-02670-2
- 3528 - Phytolacca acinosa: LTS0136836
- 3528 - Phytolacca acinosa Roxb.: -
- 3527 - Phytolacca americana L.: -
- 3525 - Phytolaccaceae: LTS0136836
- 33090 - Plants: -
- 41227 - Plectranthus: LTS0136836
- 204180 - Plectranthus amboinicus: 10.1007/BF01961467
- 46147 - Portulaca oleracea: 10.1016/J.TALANTA.2009.11.047
- 72968 - Psiadia: LTS0136836
- 1225821 - Psiadia arguta: 10.1080/10412905.2000.9712158
- 1225821 - Psiadia arguta: LTS0136836
- 3440 - Ranunculaceae: LTS0136836
- 39367 - Salvia rosmarinus: 10.1080/10412905.1998.9700854
- 46944 - Sassafras: LTS0136836
- 46945 - Sassafras albidum: 10.1093/CHROMSCI/32.7.253
- 46945 - Sassafras albidum: LTS0136836
- 16733 - Schisandraceae: LTS0136836
- 4139 - Scutellaria: LTS0136836
- 65409 - Scutellaria baicalensis: 10.1271/BBB1961.51.1449
- 65409 - Scutellaria baicalensis: LTS0136836
- 4070 - Solanaceae: LTS0136836
- 35493 - Streptophyta: LTS0136836
- 178174 - Syzygium: LTS0136836
- 219868 - Syzygium aromaticum:
- 219868 - Syzygium aromaticum: 10.1021/JF0103469
- 219868 - Syzygium aromaticum: 10.1021/JF0208278
- 219868 - Syzygium aromaticum: LTS0136836
- 58023 - Tracheophyta: LTS0136836
- 19952 - Valeriana: LTS0136836
- 19953 - Valeriana officinalis: 10.1016/0031-9422(95)00492-P
- 19953 - Valeriana officinalis: LTS0136836
- 19944 - Valerianaceae: LTS0136836
- 33090 - Viridiplantae: LTS0136836
- 354530 - Zanthoxylum schinifolium: -
- 4650 - Zingiber: LTS0136836
- 136225 - Zingiber mioga: 10.1271/BBB1961.55.1655
- 94328 - Zingiber officinale:
- 94328 - Zingiber officinale: 10.1021/JF00059A031
- 94328 - Zingiber officinale: LTS0136836
- 94328 - Zingiber Officinale Roscoe: -
- 4642 - Zingiberaceae: LTS0136836
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Lakshmi Goswami, Lovely Gupta, Sayantan Paul, Pooja Vijayaraghavan, Asish Kumar Bhattacharya. Design and Synthesis of 1,3-Diynes as Potent Antifungal Agents Against Aspergillus fumigatus.
ChemMedChem.
2023 Feb; ?(?):e202300013. doi:
10.1002/cmdc.202300013
. [PMID: 36852543] - Takao Koeduka, Bunta Watanabe, Konomi Shirahama, Masaru Nakayasu, Shiro Suzuki, Takumi Furuta, Hideyuki Suzuki, Kenji Matsui, Tomoyuki Kosaka, Shin-Ichi Ozaki. Biosynthesis of dillapiole/apiole in dill (Anethum graveolens): characterization of regioselective phenylpropene O-methyltransferase.
The Plant journal : for cell and molecular biology.
2023 02; 113(3):562-575. doi:
10.1111/tpj.16068
. [PMID: 36534115] - Xiaoling Zhang, Susan P Felter, Anne Marie Api, Kaushal Joshi, Dan Selechnik. A Cautionary tale for using read-across for cancer hazard classification: Case study of isoeugenol and methyl eugenol.
Regulatory toxicology and pharmacology : RTP.
2022 Dec; 136(?):105280. doi:
10.1016/j.yrtph.2022.105280
. [PMID: 36367523] - Lakshmi Goswami, Lovely Gupta, Sayantan Paul, Maansi Vermani, Pooja Vijayaraghavan, Asish K Bhattacharya. Design and synthesis of eugenol/isoeugenol glycoconjugates and other analogues as antifungal agents against Aspergillus fumigatus.
RSC medicinal chemistry.
2022 Aug; 13(8):955-962. doi:
10.1039/d2md00138a
. [PMID: 36092146] - Yi Zhou, Zhanqiang Li, Dejun Zhang, Benyin Zhang. Screening of bioactive ingredients of Tsantan Sumtang in ameliorating H9c2 cells injury.
Journal of ethnopharmacology.
2022 Mar; 285(?):114854. doi:
10.1016/j.jep.2021.114854
. [PMID: 34808301] - Hajime Ono. Functional characterization of an olfactory receptor in the Oriental fruit fly, Bactrocera dorsalis, that responds to eugenol and isoeugenol.
Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
2022 Feb; 258(?):110696. doi:
10.1016/j.cbpb.2021.110696
. [PMID: 34800681] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Waleed Bakry Suleiman. In vitro estimation of superfluid critical extracts of some plants for their antimicrobial potential, phytochemistry, and GC-MS analyses.
Annals of clinical microbiology and antimicrobials.
2020 Jul; 19(1):29. doi:
10.1186/s12941-020-00371-1
. [PMID: 32680515] - Anton C de Groot. Fragrances: Contact Allergy and Other Adverse Effects.
Dermatitis : contact, atopic, occupational, drug.
2020 Jan; 31(1):13-35. doi:
10.1097/der.0000000000000463
. [PMID: 31433384] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Lijun Zhou, Zhilin Zhang, Mi Wei, Yongjian Xie, Shan He, Hongan Shi, Zhufeng Lin. Evaluation of the antifungal activity of individual and combined monoterpenes against Rhizopus stolonifer and Absidia coerulea.
Environmental science and pollution research international.
2019 Mar; 26(8):7804-7809. doi:
10.1007/s11356-019-04278-z
. [PMID: 30675711] - Sarmistha Saha, Ramtej J Verma. Molecular interactions of active constituents of essential oils in zwitterionic lipid bilayers.
Chemistry and physics of lipids.
2018 07; 213(?):76-87. doi:
10.1016/j.chemphyslip.2018.03.008
. [PMID: 29596800] - Toshiki Furuya, Mari Kuroiwa, Kuniki Kino. Biotechnological production of vanillin using immobilized enzymes.
Journal of biotechnology.
2017 Feb; 243(?):25-28. doi:
10.1016/j.jbiotec.2016.12.021
. [PMID: 28042012] - Christina Krogsgård Nielsen, Jørgen Kjems, Tina Mygind, Torben Snabe, Karin Schwarz, Yvonne Serfert, Rikke Louise Meyer. Antimicrobial effect of emulsion-encapsulated isoeugenol against biofilms of food pathogens and spoilage bacteria.
International journal of food microbiology.
2017 Feb; 242(?):7-12. doi:
10.1016/j.ijfoodmicro.2016.11.002
. [PMID: 27851985] - Aaron D Gross, Kevin B Temeyer, Tim A Day, Adalberto A Pérez de León, Michael J Kimber, Joel R Coats. Interaction of plant essential oil terpenoids with the southern cattle tick tyramine receptor: A potential biopesticide target.
Chemico-biological interactions.
2017 Feb; 263(?):1-6. doi:
10.1016/j.cbi.2016.12.009
. [PMID: 27986436] - Larissa Rangel Peixoto, Pedro Luiz Rosalen, Gabriela Lacet Silva Ferreira, Irlan Almeida Freires, Fabíola Galbiatti de Carvalho, Lúcio Roberto Castellano, Ricardo Dias de Castro. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp.
Archives of oral biology.
2017 Jan; 73(?):179-185. doi:
10.1016/j.archoralbio.2016.10.013
. [PMID: 27771586] - Waheba Elsayed, Lamia El-Shafie, Mohamed K Hassan, Mohamed A Farag, Sherif F El-Khamisy. Isoeugenol is a selective potentiator of camptothecin cytotoxicity in vertebrate cells lacking TDP1.
Scientific reports.
2016 05; 6(?):26626. doi:
10.1038/srep26626
. [PMID: 27220325] - Nami Kim, Jung Ok Lee, Hye Jeong Lee, Yong Woo Lee, Hyung Ip Kim, Su Jin Kim, Sun Hwa Park, Chul Su Lee, Sun Woo Ryoo, Geum-Sook Hwang, Hyeon Soo Kim. AMPK, a metabolic sensor, is involved in isoeugenol-induced glucose uptake in muscle cells.
The Journal of endocrinology.
2016 Feb; 228(2):105-14. doi:
10.1530/joe-15-0302
. [PMID: 26585419] - Nur Fariza M Shaipulah, Joëlle K Muhlemann, Benjamin D Woodworth, Alex Van Moerkercke, Julian C Verdonk, Aldana A Ramirez, Michel A Haring, Natalia Dudareva, Robert C Schuurink. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia.
Plant physiology.
2016 Feb; 170(2):717-31. doi:
10.1104/pp.15.01646
. [PMID: 26620524] - Alok K Gupta, Ines Schauvinhold, Eran Pichersky, Florian P Schiestl. Eugenol synthase genes in floral scent variation in Gymnadenia species.
Functional & integrative genomics.
2014 Dec; 14(4):779-88. doi:
10.1007/s10142-014-0397-9
. [PMID: 25239559] - I Lynch Ianniello, M Battán Horenstein, M C Lábaque, A Luna, R H Marin, R M Gleiser. Fly emergence from manure of Japanese quail fed thymol- or isoeugenol-supplemented diets.
Poultry science.
2014 Oct; 93(10):2449-56. doi:
10.3382/ps.2014-03951
. [PMID: 25104767] - M N Gallucci, M E Carezzano, M M Oliva, M S Demo, R P Pizzolitto, M P Zunino, J A Zygadlo, J S Dambolena. In vitro activity of natural phenolic compounds against fluconazole-resistant Candida species: a quantitative structure-activity relationship analysis.
Journal of applied microbiology.
2014 Apr; 116(4):795-804. doi:
10.1111/jam.12432
. [PMID: 24387763] - T Koeduka, K Sugimoto, B Watanabe, N Someya, D Kawanishi, T Gotoh, R Ozawa, J Takabayashi, K Matsui, J Hiratake. Bioactivity of natural O-prenylated phenylpropenes from Illicium anisatum leaves and their derivatives against spider mites and fungal pathogens.
Plant biology (Stuttgart, Germany).
2014 Mar; 16(2):451-6. doi:
10.1111/plb.12054
. [PMID: 23889818] - Indu Kumari Renu, Inamul Haque, Manish Kumar, Raju Poddar, Rajib Bandopadhyay, Amit Rai, Kunal Mukhopadhyay. Characterization and functional analysis of eugenol O-methyltransferase gene reveal metabolite shifts, chemotype specific differential expression and developmental regulation in Ocimum tenuiflorum L.
Molecular biology reports.
2014 Mar; 41(3):1857-70. doi:
10.1007/s11033-014-3035-7
. [PMID: 24420851] - Sung-Jin Kim, Daniel G Vassão, Syed G A Moinuddin, Diana L Bedgar, Laurence B Davin, Norman G Lewis. Allyl/propenyl phenol synthases from the creosote bush and engineering production of specialty/commodity chemicals, eugenol/isoeugenol, in Escherichia coli.
Archives of biochemistry and biophysics.
2014 Jan; 541(?):37-46. doi:
10.1016/j.abb.2013.10.019
. [PMID: 24189289] - Katja Nehrenheim, Imke Meyer, Heidi Brenden, Gabriele Vielhaber, Jean Krutmann, Susanne Grether-Beck. Dihydrodehydrodiisoeugenol enhances adipocyte differentiation and decreases lipolysis in murine and human cells.
Experimental dermatology.
2013 Oct; 22(10):638-43. doi:
10.1111/exd.12218
. [PMID: 24079732] - Martin Zabka, Roman Pavela. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi.
Chemosphere.
2013 Oct; 93(6):1051-6. doi:
10.1016/j.chemosphere.2013.05.076
. [PMID: 23800587] - Eric Andres, Vanessa M Sá-Rocha, Carla Barrichello, Tina Haupt, Graham Ellis, Andreas Natsch. The sensitivity of the KeratinoSens™ assay to evaluate plant extracts: a pilot study.
Toxicology in vitro : an international journal published in association with BIBRA.
2013 Jun; 27(4):1220-5. doi:
10.1016/j.tiv.2013.02.008
. [PMID: 23428960] - Sathya N Prasad, Muralidhara. Evidence of acrylamide induced oxidative stress and neurotoxicity in Drosophila melanogaster - its amelioration with spice active enrichment: relevance to neuropathy.
Neurotoxicology.
2012 Oct; 33(5):1254-64. doi:
10.1016/j.neuro.2012.07.006
. [PMID: 22841601] - Sanghae Nam, Hae Won Jang, Takayuki Shibamoto. Antioxidant activities of extracts from teas prepared from medicinal plants, Morus alba L., Camellia sinensis L., and Cudrania tricuspidata , and their volatile components.
Journal of agricultural and food chemistry.
2012 Sep; 60(36):9097-105. doi:
10.1021/jf301800x
. [PMID: 22871255] - Mohammad Moradi, Massoud Kaykhaii, Ali Reza Ghiasvand, Shahriar Shadabi, Alinazar Salehinia. Comparison of headspace solid-phase microextraction, headspace single-drop microextraction and hydrodistillation for chemical screening of volatiles in Myrtus communis L.
Phytochemical analysis : PCA.
2012 Jul; 23(4):379-86. doi:
10.1002/pca.1368
. [PMID: 22069217] - Alex Van Moerkercke, Carlos S Galván-Ampudia, Julian C Verdonk, Michel A Haring, Robert C Schuurink. Regulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals.
Journal of experimental botany.
2012 May; 63(8):3157-71. doi:
10.1093/jxb/ers034
. [PMID: 22345641] - Shamina Azeez, Rosana O Babu, Riju Aykkal, Reena Narayanan. Virtual screening and in vitro assay of potential drug like inhibitors from spices against glutathione-S-transferase of filarial nematodes.
Journal of molecular modeling.
2012 Jan; 18(1):151-63. doi:
10.1007/s00894-011-1035-2
. [PMID: 21523552] - Vineeta Singh, Atul Kumar Gupta, S P Singh, Anil Kumar. Direct analysis in real time by mass spectrometric technique for determining the variation in metabolite profiles of Cinnamomum tamala Nees and Eberm genotypes.
TheScientificWorldJournal.
2012; 2012(?):549265. doi:
10.1100/2012/549265
. [PMID: 22701361] - Morten Hyldgaard, Tina Mygind, Rikke Louise Meyer. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components.
Frontiers in microbiology.
2012; 3(?):12. doi:
10.3389/fmicb.2012.00012
. [PMID: 22291693] - Ilga Porth, Björn Hamberger, Richard White, Kermit Ritland. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway.
BMC genomics.
2011 Dec; 12(?):608. doi:
10.1186/1471-2164-12-608
. [PMID: 22177423] - Venugopal Mendu, Anne E Harman-Ware, Mark Crocker, Jungho Jae, Jozsef Stork, Samuel Morton, Andrew Placido, George Huber, Seth Debolt. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production.
Biotechnology for biofuels.
2011 Oct; 4(?):43. doi:
10.1186/1754-6834-4-43
. [PMID: 22018114] - Esra Fındık, Mustafa Ceylan, Mahfuz Elmastaş. Isoeugenol-based novel potent antioxidants: synthesis and reactivity.
European journal of medicinal chemistry.
2011 Sep; 46(9):4618-24. doi:
10.1016/j.ejmech.2011.07.041
. [PMID: 21843909] - Thomas A Colquhoun, Joo Young Kim, Ashlyn E Wedde, Laura A Levin, Kyle C Schmitt, Robert C Schuurink, David G Clark. PhMYB4 fine-tunes the floral volatile signature of Petunia x hybrida through PhC4H.
Journal of experimental botany.
2011 Jan; 62(3):1133-43. doi:
10.1093/jxb/erq342
. [PMID: 21068208] - Xiao-Xue Wang, Jiu-Ming He, Chun-Lan Wang, Rui-Ping Zhang, Wen-Yi He, Shun-Xing Guo, Rui-Xiang Sun, Zeper Abliz. Simultaneous structural identification of natural products in fractions of crude extract of the rare endangered plant Anoectochilus roxburghii using H NMR/RRLC-MS parallel dynamic spectroscopy.
International journal of molecular sciences.
2011; 12(4):2556-71. doi:
10.3390/ijms12042556
. [PMID: 21731458] - Gordon V Louie, Marianne E Bowman, Yi Tu, Aidyn Mouradov, German Spangenberg, Joseph P Noel. Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference.
The Plant cell.
2010 Dec; 22(12):4114-27. doi:
10.1105/tpc.110.077578
. [PMID: 21177481] - . Toxicology and carcinogenesis studies of isoeugenol (CAS No. 97-54-1) in F344/N rats and B6C3F1 mice (gavage studies).
National Toxicology Program technical report series.
2010 Sep; ?(551):1-178. doi:
. [PMID: 21372857]
- Cielo Pasay, Kate Mounsey, Graeme Stevenson, Rohan Davis, Larry Arlian, Marjorie Morgan, Diann Vyszenski-Moher, Kathy Andrews, James McCarthy. Acaricidal activity of eugenol based compounds against scabies mites.
PloS one.
2010 Aug; 5(8):e12079. doi:
10.1371/journal.pone.0012079
. [PMID: 20711455] - Yun-Yang Wan, Rong Lu, Kazuhiro Akiyama, Katsuhisa Okamoto, Takayuki Honda, Yu-Min Du, Takashi Yoshida, Tetsuo Miyakoshi, Charles J Knill, John F Kennedy. Effects of lacquer polysaccharides, glycoproteins and isoenzymes on the activity of free and immobilised laccase from Rhus vernicifera.
International journal of biological macromolecules.
2010 Jul; 47(1):76-81. doi:
10.1016/j.ijbiomac.2010.03.016
. [PMID: 20363247] - Anthony L Schilmiller, Dennis P Miner, Matthew Larson, Eric McDowell, David R Gang, Curtis Wilkerson, Robert L Last. Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics.
Plant physiology.
2010 Jul; 153(3):1212-23. doi:
10.1104/pp.110.157214
. [PMID: 20431087] - Nicholas P L Tuckey, Malcolm E Forster, Steven P Gieseg. Effects of rested harvesting on muscle metabolite concentrations and K-values in Chinook salmon (Oncorhynchus tshawytscha) fillets during storage at 15 degrees C.
Journal of food science.
2010 Jun; 75(5):C459-64. doi:
10.1111/j.1750-3841.2010.01648.x
. [PMID: 20629868] - Ben Spitzer-Rimon, Elena Marhevka, Oren Barkai, Ira Marton, Orit Edelbaum, Tania Masci, Naveen-Kumar Prathapani, Elena Shklarman, Marianna Ovadis, Alexander Vainstein. EOBII, a gene encoding a flower-specific regulator of phenylpropanoid volatiles' biosynthesis in petunia.
The Plant cell.
2010 Jun; 22(6):1961-76. doi:
10.1105/tpc.109.067280
. [PMID: 20543029] - Ji-Young Ryu, Jiyoung Seo, Tatsuya Unno, Joong-Hoon Ahn, Tao Yan, Michael J Sadowsky, Hor-Gil Hur. Isoeugenol monooxygenase and its putative regulatory gene are located in the eugenol metabolic gene cluster in Pseudomonas nitroreducens Jin1.
Archives of microbiology.
2010 Mar; 192(3):201-9. doi:
10.1007/s00203-010-0547-y
. [PMID: 20091296] - Ayelet Bar-Akiva, Rinat Ovadia, Ilana Rogachev, Carmiya Bar-Or, Einat Bar, Zohar Freiman, Ada Nissim-Levi, Natan Gollop, Efraim Lewinsohn, Asaph Aharoni, David Weiss, Hinanit Koltai, Michal Oren-Shamir. Metabolic networking in Brunfelsia calycina petals after flower opening.
Journal of experimental botany.
2010 Mar; 61(5):1393-403. doi:
10.1093/jxb/erq008
. [PMID: 20202996] - Tran Dang Xuan, Tsuneaki Toyama, Masakazu Fukuta, Tran Dang Khanh, Shinkichi Tawata. Chemical interaction in the invasiveness of cogongrass (Imperata cylindrica (L.) Beauv.).
Journal of agricultural and food chemistry.
2009 Oct; 57(20):9448-53. doi:
10.1021/jf902310j
. [PMID: 19810700] - D G Cook, A J Holland, A R Jerrett, M E Forster. Effect of harvest treatment on biochemical properties of farmed Chinook salmon (Oncorhynchus tshawytscha) tissue during frozen and thawed storage.
Journal of food science.
2009 Sep; 74(7):C543-8. doi:
10.1111/j.1750-3841.2009.01264.x
. [PMID: 19895458] - Takao Koeduka, Irina Orlova, Thomas J Baiga, Joseph P Noel, Natalia Dudareva, Eran Pichersky. The lack of floral synthesis and emission of isoeugenol in Petunia axillaris subsp. parodii is due to a mutation in the isoeugenol synthase gene.
The Plant journal : for cell and molecular biology.
2009 Jun; 58(6):961-9. doi:
10.1111/j.1365-313x.2009.03834.x
. [PMID: 19222805] - Nicholas P L Tuckey, Malcolm E Forster, Steven P Gieseg. Lipid oxidation is inhibited by isoeugenol exposure in chinook Salmon (Oncorhynchus Tshawytscha) fillets during storage at 15 degrees C.
Journal of food science.
2009 May; 74(4):C333-8. doi:
10.1111/j.1750-3841.2009.01135.x
. [PMID: 19490320] - Divya Srivastava, David E Cohen. Identification of the constituents of balsam of peru in tomatoes.
Dermatitis : contact, atopic, occupational, drug.
2009 Mar; 20(2):99-105. doi:
. [PMID: 19426616]
- Gisele B Messiano, Tito da Silva, Isabele R Nascimento, Lucia M X Lopes. Biosynthesis of antimalarial lignans from Holostylis reniformis.
Phytochemistry.
2009 Mar; 70(5):590-6. doi:
10.1016/j.phytochem.2009.02.008
. [PMID: 19307005] - Sen-Sung Cheng, Ju-Yun Liu, Ed-Haun Chang, Shang-Tzen Chang. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi.
Bioresource technology.
2008 Jul; 99(11):5145-9. doi:
10.1016/j.biortech.2007.09.013
. [PMID: 17945485] - U Anand, W R Otto, P Facer, N Zebda, I Selmer, M J Gunthorpe, I P Chessell, M Sinisi, R Birch, P Anand. TRPA1 receptor localisation in the human peripheral nervous system and functional studies in cultured human and rat sensory neurons.
Neuroscience letters.
2008 Jun; 438(2):221-7. doi:
10.1016/j.neulet.2008.04.007
. [PMID: 18456404] - Takao Koeduka, Gordon V Louie, Irina Orlova, Christine M Kish, Mwafaq Ibdah, Curtis G Wilkerson, Marianne E Bowman, Thomas J Baiga, Joseph P Noel, Natalia Dudareva, Eran Pichersky. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages.
The Plant journal : for cell and molecular biology.
2008 May; 54(3):362-74. doi:
10.1111/j.1365-313x.2008.03412.x
. [PMID: 18208524] - Andrea L Medina-Holguín, F Omar Holguín, Sandra Micheletto, Sondra Goehle, Julian A Simon, Mary A O'Connell. Chemotypic variation of essential oils in the medicinal plant, Anemopsis californica.
Phytochemistry.
2008 Feb; 69(4):919-27. doi:
10.1016/j.phytochem.2007.11.006
. [PMID: 18177907] - Gordon V Louie, Thomas J Baiga, Marianne E Bowman, Takao Koeduka, John H Taylor, Snejina M Spassova, Eran Pichersky, Joseph P Noel. Structure and reaction mechanism of basil eugenol synthase.
PloS one.
2007 Oct; 2(10):e993. doi:
10.1371/journal.pone.0000993
. [PMID: 17912370] - Pedro Marcos G Soares, Ricardo F Lima, Alana de Freitas Pires, Emmanuel P Souza, Ana Maria S Assreuy, David N Criddle. Effects of anethole and structural analogues on the contractility of rat isolated aorta: Involvement of voltage-dependent Ca2+-channels.
Life sciences.
2007 Sep; 81(13):1085-93. doi:
10.1016/j.lfs.2007.08.027
. [PMID: 17869309] - Il-Kwon Park, Junheon Kim, Sang-Gil Lee, Sang-Chul Shin. Nematicidal Activity of Plant Essential Oils and Components From Ajowan (Trachyspermum ammi), Allspice (Pimenta dioica) and Litsea (Litsea cubeba) Essential Oils Against Pine Wood Nematode (Bursaphelenchus Xylophilus).
Journal of nematology.
2007 Sep; 39(3):275-9. doi:
. [PMID: 19259498]
- Pål A Olsvik, Kai K Lie, Ernst M Hevrøy. Do anesthetics and sampling strategies affect transcription analysis of fish tissues?.
BMC molecular biology.
2007 Jun; 8(?):48. doi:
10.1186/1471-2199-8-48
. [PMID: 17559653] - W Uter, J Geier, A Schnuch, P J Frosch. Patch test results with patients' own perfumes, deodorants and shaving lotions: results of the IVDK 1998-2002.
Journal of the European Academy of Dermatology and Venereology : JEADV.
2007 Mar; 21(3):374-9. doi:
10.1111/j.1468-3083.2006.01973.x
. [PMID: 17309462] - Masatoshi Kondo, Naomi Oyama-Okubo, Masanori Sagae, Toshio Ando, Eduardo Marchesi, Masayoshi Nakayama. Metabolic regulation of floral scent in Petunia axillaris lines: biosynthetic relationship between dihydroconiferyl acetate and iso-eugenol.
Bioscience, biotechnology, and biochemistry.
2007 Feb; 71(2):458-63. doi:
10.1271/bbb.60507
. [PMID: 17284848] - Richard Dexter, Anthony Qualley, Christine M Kish, Choong Je Ma, Takao Koeduka, Dinesh A Nagegowda, Natalia Dudareva, Eran Pichersky, David Clark. Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol.
The Plant journal : for cell and molecular biology.
2007 Jan; 49(2):265-75. doi:
10.1111/j.1365-313x.2006.02954.x
. [PMID: 17241449] - Takao Koeduka, Eyal Fridman, David R Gang, Daniel G Vassão, Brenda L Jackson, Christine M Kish, Irina Orlova, Snejina M Spassova, Norman G Lewis, Joseph P Noel, Thomas J Baiga, Natalia Dudareva, Eran Pichersky. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester.
Proceedings of the National Academy of Sciences of the United States of America.
2006 Jun; 103(26):10128-33. doi:
10.1073/pnas.0603732103
. [PMID: 16782809] - Marta Kieć-Swierczyńska, Beata Krecisz, Dominika Swierczyńska-Machura. [Contact allergy to fragrances].
Medycyna pracy.
2006; 57(5):431-7. doi:
. [PMID: 17340985]
- José Luis Torres-Estrada, R Amanda Meza-Alvarez, Juan Cibrián-Tovar, Mario H Rodríguez-López, Juan I Arredondo-Jiménez, Leopoldo Cruz-López, Julio C Rojas-Leon. Vegetation-derived cues for the selection of oviposition substrates by Anopheles albimanus under laboratory conditions.
Journal of the American Mosquito Control Association.
2005 Dec; 21(4):344-9. doi:
10.2987/8756-971x(2006)21[344:vcftso]2.0.co;2
. [PMID: 16506557] - Tajuddin, Shamshad Ahmad, Abdul Latif, Iqbal Ahmad Qasmi, Kunwar Mohammad Yusuf Amin. An experimental study of sexual function improving effect of Myristica fragrans Houtt. (nutmeg).
BMC complementary and alternative medicine.
2005 Jul; 5(?):16. doi:
10.1186/1472-6882-5-16
. [PMID: 16033651] - Yong-Hong Li, Zhi-Hao Sun, Li-Qing Zhao, Yan Xu. Bioconversion of isoeugenol into vanillin by crude enzyme extracted from soybean.
Applied biochemistry and biotechnology.
2005 Apr; 125(1):1-10. doi:
10.1385/abab:125:1:001
. [PMID: 15834158] - Masae Ito, Keiko Murakami, Masataka Yoshino. Antioxidant action of eugenol compounds: role of metal ion in the inhibition of lipid peroxidation.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2005 Mar; 43(3):461-6. doi:
10.1016/j.fct.2004.11.019
. [PMID: 15680683] - Joyce Govinden-Soulange, Naresh Magan, Ameenah Gurib-Fakim, Anne Gauvin, Jaqueline Smadja, Hippolyte Kodja. Chemical composition and in vitro antimicrobial activities of the essential oils from endemic Psiadia species growing in mauritius.
Biological & pharmaceutical bulletin.
2004 Nov; 27(11):1814-8. doi:
10.1248/bpb.27.1814
. [PMID: 15516729] - Clarissa D Villarama, Howard I Maibach. Correlations of patch test reactivity and the repeated open application test (ROAT)/provocative use test (PUT).
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2004 Nov; 42(11):1719-25. doi:
10.1016/j.fct.2004.05.009
. [PMID: 15350669] - Grant T McQuate, Young Soo Keum, Charmaine D Sylva, Qing X Li, Eric B Jang. Active ingredients in cade oil that synergize attractiveness of alpha-ionol to male Bactrocera latifrons (Diptera: Tephritidae).
Journal of economic entomology.
2004 Jun; 97(3):862-70. doi:
10.1603/0022-0493(2004)097[0862:aiicot]2.0.co;2
. [PMID: 15279265] - Jae-Kwan Hwang, Jae-Youn Chung, Nam-In Baek, Jung-Hee Park. Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans.
International journal of antimicrobial agents.
2004 Apr; 23(4):377-81. doi:
10.1016/j.ijantimicag.2003.08.011
. [PMID: 15081087] - Ayben Kilic, Harzemsah Hafizoglu, Hubert Kollmannsberger, Siegfried Nitz. Volatile constituents and key odorants in leaves, buds, flowers, and fruits of Laurus nobilis L.
Journal of agricultural and food chemistry.
2004 Mar; 52(6):1601-6. doi:
10.1021/jf0306237
. [PMID: 15030218] - Axel Schnuch, Holger Lessmann, Johannes Geier, Peter J Frosch, Wolfgang Uter. Contact allergy to fragrances: frequencies of sensitization from 1996 to 2002. Results of the IVDK*.
Contact dermatitis.
2004 Feb; 50(2):65-76. doi:
10.1111/j.0105-1873.2004.00302.x
. [PMID: 15128316] - Badri N Pandey, Kaushala P Mishra. Modification of thymocytes membrane radiooxidative damage and apoptosis by eugenol.
Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer.
2004; 23(2):117-22. doi:
10.1615/jenvpathtoxoncol.v23.i2.40
. [PMID: 15163290] - Hong Fang, Weida Tong, William S Branham, Carrie L Moland, Stacy L Dial, Huixiao Hong, Qian Xie, Roger Perkins, William Owens, Daniel M Sheehan. Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor.
Chemical research in toxicology.
2003 Oct; 16(10):1338-58. doi:
10.1021/tx030011g
. [PMID: 14565775] - Young-Cheol Yang, Si-Hyeock Lee, Won-Ja Lee, Don-Ha Choi, Young-Joon Ahn. Ovicidal and adulticidal effects of Eugenia caryophyllata bud and leaf oil compounds on Pediculus capitis.
Journal of agricultural and food chemistry.
2003 Aug; 51(17):4884-8. doi:
10.1021/jf034225f
. [PMID: 12903940] - Nikolaos Nenadis, Hong-Yu Zhang, Maria Z Tsimidou. Structure-antioxidant activity relationship of ferulic acid derivatives: effect of carbon side chain characteristic groups.
Journal of agricultural and food chemistry.
2003 Mar; 51(7):1874-9. doi:
10.1021/jf0261452
. [PMID: 12643644] - Julian C Verdonk, C H Ric de Vos, Harrie A Verhoeven, Michel A Haring, Arjen J van Tunen, Robert C Schuurink. Regulation of floral scent production in petunia revealed by targeted metabolomics.
Phytochemistry.
2003 Mar; 62(6):997-1008. doi:
10.1016/s0031-9422(02)00707-0
. [PMID: 12590126] - D A Badger, R L Smith, J Bao, R K Kuester, I G Sipes. Disposition and metabolism of isoeugenol in the male Fischer 344 rat.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2002 Dec; 40(12):1757-65. doi:
10.1016/s0278-6915(02)00183-7
. [PMID: 12419689] - Mendel Friedman, Philip R Henika, Robert E Mandrell. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica.
Journal of food protection.
2002 Oct; 65(10):1545-60. doi:
10.4315/0362-028x-65.10.1545
. [PMID: 12380738] - S Wöhrl, W Hemmer, M Focke, M Götz, R Jarisch. The significance of fragrance mix, balsam of Peru, colophony and propolis as screening tools in the detection of fragrance allergy.
The British journal of dermatology.
2001 Aug; 145(2):268-73. doi:
10.1046/j.1365-2133.2001.04345.x
. [PMID: 11531790] - H Priefert, J Rabenhorst, A Steinbüchel. Biotechnological production of vanillin.
Applied microbiology and biotechnology.
2001 Aug; 56(3-4):296-314. doi:
10.1007/s002530100687
. [PMID: 11548997] - F M Rauscher, R A Sanders, J B Watkins. Effects of isoeugenol on oxidative stress pathways in normal and streptozotocin-induced diabetic rats.
Journal of biochemical and molecular toxicology.
2001; 15(3):159-64. doi:
10.1002/jbt.13
. [PMID: 11424226] - T Atsumi, S Fujisawa, K Satoh, H Sakagami, I Iwakura, T Ueha, Y Sugita, I Yokoe. Cytotoxicity and radical intensity of eugenol, isoeugenol or related dimers.
Anticancer research.
2000 Jul; 20(4):2519-24. doi:
. [PMID: 10953321]
- G B Chainy, S K Manna, M M Chaturvedi, B B Aggarwal. Anethole blocks both early and late cellular responses transduced by tumor necrosis factor: effect on NF-kappaB, AP-1, JNK, MAPKK and apoptosis.
Oncogene.
2000 Jun; 19(25):2943-50. doi:
10.1038/sj.onc.1203614
. [PMID: 10871845] - L Juhász, L Kürti, S Antus. Simple synthesis of benzofuranoid neolignans from Myristica fragrans.
Journal of natural products.
2000 Jun; 63(6):866-70. doi:
10.1021/np990327h
. [PMID: 10869224] - M Rao, M M Kumar, M A Rao. In vitro and in vivo effects of phenolic antioxidants against cisplatin-induced nephrotoxicity.
Journal of biochemistry.
1999 Feb; 125(2):383-90. doi:
10.1093/oxfordjournals.jbchem.a022298
. [PMID: 9990138] - K I Priyadarsini, S N Guha, M N Rao. Physico-chemical properties and antioxidant activities of methoxy phenols.
Free radical biology & medicine.
1998 Apr; 24(6):933-41. doi:
10.1016/s0891-5849(97)00382-1
. [PMID: 9607603] - I Hilton, R J Dearman, I Fielding, D A Basketter, I Kimber. Evaluation of the sensitizing potential of eugenol and isoeugenol in mice and guinea pigs.
Journal of applied toxicology : JAT.
1996 Sep; 16(5):459-64. doi:
10.1002/(sici)1099-1263(199609)16:5<459::aid-jat366>3.0.co;2-h
. [PMID: 8889799] - L Fernández de Corrès, J M Díez, M Audicana, M García, D Muñoz, E Fernández, M Etxenagusía. Photodermatitis from plant derivatives in topical and oral medicaments.
Contact dermatitis.
1996 Sep; 35(3):184-5. doi:
10.1111/j.1600-0536.1996.tb02347.x
. [PMID: 8930489] - M Uchida, S Nakajin, S Toyoshima, M Shinoda. Antioxidative effect of sesamol and related compounds on lipid peroxidation.
Biological & pharmaceutical bulletin.
1996 Apr; 19(4):623-26. doi:
10.1248/bpb.19.623
. [PMID: 9132170] - C J Rompelberg, J H Ploemen, S Jespersen, J van der Greef, H Verhagen, P J van Bladeren. Inhibition of rat, mouse, and human glutathione S-transferase by eugenol and its oxidation products.
Chemico-biological interactions.
1996 Jan; 99(1-3):85-97. doi:
10.1016/0009-2797(95)03662-8
. [PMID: 8620581] - D V Rajakumar, M N Rao. Dehydrozingerone and isoeugenol as inhibitors of lipid peroxidation and as free radical scavengers.
Biochemical pharmacology.
1993 Dec; 46(11):2067-72. doi:
10.1016/0006-2952(93)90649-h
. [PMID: 8267655] - J Janssens, G M Laekeman, L A Pieters, J Totte, A G Herman, A J Vlietinck. Nutmeg oil: identification and quantitation of its most active constituents as inhibitors of platelet aggregation.
Journal of ethnopharmacology.
1990 May; 29(2):179-88. doi:
10.1016/0378-8741(90)90054-w
. [PMID: 2115612]