(2E)-2-Heptenal (BioDeep_00000019384)

   

human metabolite blood metabolite Toxin


代谢物信息卡片


2-Heptenal, (e)-isomer

化学式: C7H12O (112.0888102)
中文名称: 反-2-庚烯醛, 对苯二酚单乙醚
谱图信息: 最多检出来源 Homo sapiens(blood) 75%

分子结构信息

SMILES: CCCCC=CC=O
InChI: InChI=1S/C7H12O/c1-2-3-4-5-6-7-8/h5-7H,2-4H2,1H3

描述信息

(2E)-2-Heptenal, also known as 3-butylacrolein or 2-trans-heptenal, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. (2E)-2-Heptenal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, (2E)-2-heptenal is considered to be a fatty aldehyde lipid molecule. Uremic toxins such as 2-Heptenal are actively transported into the kidneys via organic ion transporters (especially OAT3). (2E)-2-Heptenal is an almond, and fatty tasting compound. (2E)-2-Heptenal is found, on average, in the highest concentration within safflowers. (2E)-2-Heptenal has also been detected, but not quantified, in several different foods, such as roselles, common grapes, cucumbers, garden tomato, and evergreen blackberries. (2E)-2-Heptenal is a potentially toxic compound. Uremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. As a uremic toxin, this compound can cause uremic syndrome. Chronic exposure to uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) (A7868). Shortness of breath from fluid buildup in the space between the lungs and the chest wall (pleural effusion) can also be present. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma.
(2e)-2-heptenal, also known as 3-butylacrolein or alpha-heptenal, is a member of the class of compounds known as medium-chain aldehydes. Medium-chain aldehydes are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, (2e)-2-heptenal is considered to be a fatty aldehyde lipid molecule (2e)-2-heptenal is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (2e)-2-heptenal is an almond, fat, and fatty tasting compound and can be found in a number of food items such as watermelon, safflower, oat, and common grape, which makes (2e)-2-heptenal a potential biomarker for the consumption of these food products (2e)-2-heptenal can be found primarily in blood and saliva (2e)-2-heptenal is a non-carcinogenic (not listed by IARC) potentially toxic compound. As a uremic toxin, this compound can cause uremic syndrome. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Abnormal bleeding, such as bleeding spontaneously or profusely from a very minor injury can also occur. Heart problems, such as an irregular heartbeat, inflammation in the sac that surrounds the heart (pericarditis), and increased pressure on the heart can be seen in patients with uremic syndrome. Shortness of breath from fluid buildup in the space between the lungs and the chest wall (pleural effusion) can also be present (T3DB).

同义名列表

25 个代谢物同义名

2-Heptenal, (e)-isomer; trans-2-Hepten-1-al; N-Hept-trans-2-enal; beta-Butylacrolein; 2-heptenal, (2E)-; Hept-trans-2-enal; (e)-2-Hepten-1-al; (2E)-hept-2-enal; trans-2-Heptenal; 2-trans-Heptenal; b-Butylacrolein; Β-butylacrolein; Hept-(e)-2-enal; (2E)-2-Heptenal; 3-Butylacrolein; (e)-2-Heptenal; Hept-2(e)-enal; alpha-Heptenal; 2-Hepten-1-al; Butylacrolein; (2E)-Heptenal; 2-Hept-enal; 2-heptenal; FEMA 3165; Heptenal



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

27 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jianwei Chen, Yaojia Lu, Xinyi Ye, Mahmoud Emam, Huawei Zhang, Hong Wang. Current advances in Vibrio harveyi quorum sensing as drug discovery targets. European journal of medicinal chemistry. 2020 Dec; 207(?):112741. doi: 10.1016/j.ejmech.2020.112741. [PMID: 32871343]
  • Ye Zhou, Wei Fan, Fuxiang Chu, Chengzhang Wang, Dong Pei. Identification of Volatile Oxidation Compounds as Potential Markers of Walnut Oil Quality. Journal of food science. 2018 Nov; 83(11):2745-2752. doi: 10.1111/1750-3841.14342. [PMID: 30370923]
  • Didier Froissard, Sylvie Rapior, Jean-Marie Bessière, Bruno Buatois, Alain Fruchier, Vincent Sol, Françoise Fons. Asplenioideae Species as a Reservoir of Volatile Organic Compounds with Potential Therapeutic Properties. Natural product communications. 2015 Jun; 10(6):1079-83. doi: . [PMID: 26197556]
  • Martin Globisch, Marco Schindler, Jana Kreßler, Thomas Henle. Studies on the reaction of trans-2-heptenal with peanut proteins. Journal of agricultural and food chemistry. 2014 Aug; 62(33):8500-7. doi: 10.1021/jf502501f. [PMID: 25065678]
  • In Hee Cho, Hyun Jeong Lee, Young-Suk Kim. Differences in the volatile compositions of ginseng species (Panax sp.). Journal of agricultural and food chemistry. 2012 Aug; 60(31):7616-22. doi: 10.1021/jf301835v. [PMID: 22804575]
  • Paige Ties, Sheryl Barringer. Influence of lipid content and lipoxygenase on flavor volatiles in the tomato peel and flesh. Journal of food science. 2012 Jul; 77(7):C830-7. doi: 10.1111/j.1750-3841.2012.02775.x. [PMID: 22757705]
  • Brendan Wampler, Sheryl A Barringer. Volatile generation in bell peppers during frozen storage and thawing using selected ion flow tube mass spectrometry (SIFT-MS). Journal of food science. 2012 Jun; 77(6):C677-83. doi: 10.1111/j.1750-3841.2012.02727.x. [PMID: 22590987]
  • Katharina Domitila Petersen, Kim Karen Kleeberg, Gerhard Jahreis, Jan Fritsche. Assessment of the oxidative stability of conventional and high-oleic sunflower oil by means of solid-phase microextraction-gas chromatography. International journal of food sciences and nutrition. 2012 Mar; 63(2):160-9. doi: 10.3109/09637486.2011.609158. [PMID: 21854109]
  • Tapan Kumar Mohanta, Andrea Occhipinti, Simon Atsbaha Zebelo, Maria Foti, Judith Fliegmann, Simone Bossi, Massimo E Maffei, Cinzia M Bertea. Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PloS one. 2012; 7(3):e32822. doi: 10.1371/journal.pone.0032822. [PMID: 22448229]
  • Yongxia Xu, Qingchan Chen, Shengjiao Lei, Peng Wu, Gang Fan, Xiaoyun Xu, Siyi Pan. Effects of lard on the formation of volatiles from the Maillard reaction of cysteine with xylose. Journal of the science of food and agriculture. 2011 Sep; 91(12):2241-6. doi: 10.1002/jsfa.4445. [PMID: 21618545]
  • JaeHwan Lee, Eric A Decker. Effects of metal chelator, sodium azide, and superoxide dismutase on the oxidative stability in riboflavin-photosensitized oil-in-water emulsion systems. Journal of agricultural and food chemistry. 2011 Jun; 59(11):6271-6. doi: 10.1021/jf2001537. [PMID: 21542578]
  • Alicia Olivares, Kseniya Dryahina, José Luis Navarro, David Smith, Patrik Spanĕl, Mónica Flores. SPME-GC-MS versus Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analyses for the study of volatile compound generation and oxidation status during dry fermented sausage processing. Journal of agricultural and food chemistry. 2011 Mar; 59(5):1931-8. doi: 10.1021/jf104281a. [PMID: 21294565]
  • Luciane Conceição Silva Bastos, Pedro Afonso de Paula Pereira. Influence of heating time and metal ions on the amount of free fatty acids and formation rates of selected carbonyl compounds during the thermal oxidation of canola oil. Journal of agricultural and food chemistry. 2010 Dec; 58(24):12777-83. doi: 10.1021/jf1028575. [PMID: 21105653]
  • Natsuki Otaki, Miho Chikazawa, Ritsuko Nagae, Yuki Shimozu, Takahiro Shibata, Sohei Ito, Yoshinari Takasaki, Junichi Fujii, Koji Uchida. Identification of a lipid peroxidation product as the source of oxidation-specific epitopes recognized by anti-DNA autoantibodies. The Journal of biological chemistry. 2010 Oct; 285(44):33834-42. doi: 10.1074/jbc.m110.165175. [PMID: 20736172]
  • Yichi Xu, Sheryl Barringer. Effect of temperature on lipid-related volatile production in tomato puree. Journal of agricultural and food chemistry. 2009 Oct; 57(19):9108-13. doi: 10.1021/jf902192r. [PMID: 19743856]
  • G H Lee, Y Shin, M J Oh. Aroma-active components of Lycii fructus (kukija). Journal of food science. 2008 Aug; 73(6):C500-5. doi: 10.1111/j.1750-3841.2008.00851.x. [PMID: 19241541]
  • Thalita Oliveira da Silva, Pedro Afonso de Paula Pereira. Influence of time, surface-to-volume ratio, and heating process (continuous or intermittent) on the emission rates of selected carbonyl compounds during thermal oxidation of palm and soybean oils. Journal of agricultural and food chemistry. 2008 May; 56(9):3129-35. doi: 10.1021/jf0734525. [PMID: 18422332]
  • W Jahouach-Rabai, M Trabelsi, V Van Hoed, A Adams, R Verhé, N De Kimpe, M H Frikha. Influence of bleaching by ultrasound on fatty acids and minor compounds of olive oil. Qualitative and quantitative analysis of volatile compounds (by SPME coupled to GC/MS). Ultrasonics sonochemistry. 2008 Apr; 15(4):590-597. doi: 10.1016/j.ultsonch.2007.06.007. [PMID: 17681835]
  • L Battinelli, C Daniele, M Cristiani, G Bisignano, A Saija, G Mazzanti. In vitro antifungal and anti-elastase activity of some aliphatic aldehydes from Olea europaea L. fruit. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2006 Sep; 13(8):558-63. doi: 10.1016/j.phymed.2005.09.009. [PMID: 16920510]
  • Joachim Ruther, Benjamin Fürstenau. Emission of herbivore-induced volatiles in absence of a herbivore--response of Zea mays to green leaf volatiles and terpenoids. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2005 Sep; 60(9-10):743-56. doi: 10.1515/znc-2005-9-1014. [PMID: 16320618]
  • María Rosario Ramírez, Mario Estévez, David Morcuende, Ramón Cava. Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS. Journal of agricultural and food chemistry. 2004 Dec; 52(25):7637-43. doi: 10.1021/jf049207s. [PMID: 15675815]
  • F Chemat, I Grondin, A Shum Cheong Sing, J Smadja. Deterioration of edible oils during food processing by ultrasound. Ultrasonics sonochemistry. 2004 Jan; 11(1):13-5. doi: 10.1016/s1350-4177(03)00127-5. [PMID: 14624981]
  • Stephen M Boué, Betty Y Shih, Carol H Carter-Wientjes, Thomas E Cleveland. Identification of volatile compounds in soybean at various developmental stages using solid phase microextraction. Journal of agricultural and food chemistry. 2003 Aug; 51(17):4873-6. doi: 10.1021/jf030051q. [PMID: 12903938]
  • Jishen Pan, Fung-Lung Chung. Formation of cyclic deoxyguanosine adducts from omega-3 and omega-6 polyunsaturated fatty acids under oxidative conditions. Chemical research in toxicology. 2002 Mar; 15(3):367-72. doi: 10.1021/tx010136q. [PMID: 11896684]
  • X Zhu, K Wang, J Zhu, M Koga. Analysis of cooking oil fumes by ultraviolet spectrometry and gas chromatography-mass spectrometry. Journal of agricultural and food chemistry. 2001 Oct; 49(10):4790-4. doi: 10.1021/jf001084y. [PMID: 11600023]
  • S Srivastava, S J Watowich, J M Petrash, S K Srivastava, A Bhatnagar. Structural and kinetic determinants of aldehyde reduction by aldose reductase. Biochemistry. 1999 Jan; 38(1):42-54. doi: 10.1021/bi981794l. [PMID: 9890881]
  • R Canonero, A Martelli, U M Marinari, G Brambilla. Mutation induction in Chinese hamster lung V79 cells by five alk-2-enals produced by lipid peroxidation. Mutation research. 1990 Jun; 244(2):153-6. doi: 10.1016/0165-7992(90)90065-r. [PMID: 2355937]
  • . . . . doi: . [PMID: 19346240]