Delta-Tocopherol (BioDeep_00000002843)
Secondary id: BioDeep_00000405543, BioDeep_00000868463
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C27H46O2 (402.3498)
中文名称: Delta-生育酚, δ-生育酚
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 23.62%
Last reviewed on 2024-07-16.
Cite this Page
Delta-Tocopherol. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/delta-tocopherol (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000002843). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=C(C)C2O[C@@](CCC[C@]([H])(C)CCC[C@]([H])(C)CCCC(C)C)(C)CCC=2C=C1O
InChI: InChI=1/C27H46O2/c1-20(2)10-7-11-21(3)12-8-13-22(4)14-9-16-27(6)17-15-24-19-25(28)18-23(5)26(24)29-27/h18-22,28H,7-17H2,1-6H3/t21-,22-,27-/m1/s1
描述信息
Tocopherol, or Vitamin E, is a fat-soluble vitamin in eight forms that is an important antioxidant. Vitamin E is often used in skin creams and lotions because it is believed to play a role in encouraging skin healing and reducing scarring after injuries such as burns. -- Wikipedia; Natural vitamin E exists in eight different forms or isomers, four tocopherols and four tocotrienols. All isomers have a chromanol ring, with a hydroxyl group which can donate a hydrogen atom to reduce free radicals and a hydrophobic side chain which allows for penetration into biological membranes. There is an alpha, beta, gamma and delta form of both the tocopherols and tocotrienols, determined by the number of methyl groups on the chromanol ring. Each form has its own biological activity, the measure of potency or functional use in the body. -- Wikipedia; Alpha-tocopherol is traditionally recognized as the most active form of vitamin E in humans, and is a powerful biological antioxidant. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to alpha tocopherol. It increases naturally to about 150\\\\\% of normal in the maternal circulation during human pregnancies. 1 IU of vitamin E is defined as the biological equivalent of 0.667 milligrams of d-alpha-tocopherol, or of 1 milligram of dl-alpha-tocopherol acetate. The other isomers are slowly being recognized as research begins to elucidate their additional roles in the human body. Many naturopathic and orthomolecular medicine advocates suggest that vitamin E supplements contain at least 20\\\\\% by weight of the other natural vitamin E isomers. Commercially available blends of natural vitamin E include "mixed tocopherols" and "high gamma tocopherol" formulas. Also selenium, Coenzyme Q10, and ample vitamin C have been shown to be essential cofactors of natural tocopherols. -- Wikipedia; Synthetic vitamin E, usually marked as d,l-tocopherol or d,l tocopheryl acetate, with 50\\\\\% d-alpha tocopherol moiety and 50\\\\\% l-alpha-tocopherol moiety, as synthesized by an earlier process is now actually manufactured as all-racemic alpha tocopherol, with only about one alpha tocopherol molecule in 8 molecules as actual d-alpha tocpherol. The synthetic form is not as active as the natural alpha tocopherol form. The 1950s thalidomide disaster with numerous severe birth defects is a common example of d- vs l- epimer forms type problem with synthesized racemic mixtures. Information on any side effects of the synthetic vitamin E epimers is not readily available. Naturopathic and orthomolecular medicine advocates have long considered the synthetic vitamin E forms to be with little or no merit for cancer, circulatory and heart diseases. -- Wikipedia; Abetalipoproteinemia is a rare inherited disorder of fat metabolism that results in poor absorption of dietary fat and vitamin E. The vitamin E deficiency associated with this disease causes problems such as poor transmission of nerve impulses, muscle weakness, and degeneration of the retina that can cause blindness. Individuals with abetalipoproteinemia may be prescribed special vitamin E supplements by a physician to treat this disorder. -- Wikipedia; Recent studies also show that vitamin E acts as an effective free radical scavenger and can lower the incidence of lung cancer in smokers. The effects are opposite to that of the clinical trials based on administering carotenoid to male smokers, that resulted in increased risk of lung cancer. Hence vitamin E is an effective antagonist to the oxidative stress that is imposed by high carotenoids in certain patients. -- Wikipedia; A cataract is a condition of clouding of the tissue of the lens of the eye. They increase the risk of disability and blindness in aging adults. Antioxidants are being studied to determine whether they can help prevent or delay cataract growth. Observational studies have found that lens clarity, wh...
Delta-Tocopherol is an isomer of Vitamin E.
Delta-Tocopherol is an isomer of Vitamin E.
同义名列表
27 个代谢物同义名
(2R)-3,4-Dihydro-2,8-dimethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-2H-1-benzopyran-6-ol; (2R)-2,8-Dimethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-3,4-dihydro-2H-1-benzopyran-6-ol; (2R)-2,8-dimethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-3,4-dihydro-2H-chromen-6-ol; (2R,4r,8r)-delta-Tocopherol; (2R,4’R,8’r)-δ-tocopherol; (R,R,R)-delta-Tocopherol; (2R,4r,8r)-Δ-tocopherol; (+)-delta-Tocopherol; (R,R,R)-Δ-tocopherol; RRR-delta-Tocopherol; delta-D-Tocopherol; δ-Tocopherol; D-delta-Tocopherol; Delta-Tocopherol; delta tocopherol; RRR-Δ-tocopherol; (+)-Δ-tocopherol; delta-Vitamin e; UNII-ZL0RFA4E5N; Δ-D-tocopherol; D-Δ-tocopherol; 8-Methyltocol; Δ-tocopherol; Δ-vitamin e; Vitamine e; e309; delta-Tocopherol
数据库引用编号
24 个数据库交叉引用编号
- ChEBI: CHEBI:47772
- KEGG: C14151
- PubChem: 92094
- HMDB: HMDB0002902
- Metlin: METLIN232
- ChEMBL: CHEMBL1451395
- Wikipedia: Delta-Tocopherol
- LipidMAPS: LMPR02020066
- MetaCyc: DELTA-TOCOPHEROL
- KNApSAcK: C00007363
- foodb: FDB112209
- chemspider: 83144
- CAS: 119-13-1
- MoNA: PS073903
- MoNA: PS073901
- MoNA: PS073902
- PMhub: MS000006634
- NIKKAJI: J5.309K
- RefMet: delta-Tocopherol
- medchemexpress: HY-113026
- LOTUS: LTS0005408
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-820
- PubChem: 7846963
- KNApSAcK: 47772
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
236 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- vitamin E biosynthesis (tocopherols):
δ-tocopherol ⟶ 2-methyl-6-phytyl-1,4-benzoquinol
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis:
γ-tocopherol + SAM ⟶ α-tocopherol + S-adenosyl-L-homocysteine + H+
WikiPathways(0)
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Vitamin E biosynthesis:
HPPYRA + Oxygen ⟶ HGTA + carbon dioxide
INOH(0)
PlantCyc(230)
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
2-methyl-6-phytyl-1,4-benzoquinol + SAM ⟶ 2,3-dimethyl-6-phytyl-1,4-benzoquinol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
H+ + homogentisate + phytyl diphosphate ⟶ 2-methyl-6-phytyl-1,4-benzoquinol + CO2 + diphosphate
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
2-methyl-6-phytyl-1,4-benzoquinol + SAM ⟶ 2,3-dimethyl-6-phytyl-1,4-benzoquinol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
δ-tocopherol + SAM ⟶ β-tocopherol + H+ + SAH
- vitamin E biosynthesis (tocopherols):
γ-tocopherol + SAM ⟶ α-tocopherol + H+ + SAH
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
a very-long-chain fatty aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very long chain alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty alcohol + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain fatty aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
a very-long-chain aldehyde ⟶ CO + a very long-chain alkane
- cuticular wax biosynthesis:
NADP+ + a very-long-chain fatty aldehyde + coenzyme A ⟶ H+ + NADPH + a very-long-chain fatty acyl-CoA
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
132 个相关的物种来源信息
- 3624 - Actinidia: LTS0005408
- 3625 - Actinidia chinensis: LTS0005408
- 3623 - Actinidiaceae: LTS0005408
- 3563 - Amaranthaceae: LTS0005408
- 3564 - Amaranthus: LTS0005408
- 117272 - Amaranthus cruentus: 10.1007/BF02536726
- 117272 - Amaranthus cruentus: LTS0005408
- 4050 - Araliaceae: LTS0005408
- 4210 - Asteraceae: LTS0005408
- 3208 - Bryophyta: LTS0005408
- 41495 - Calendula: LTS0005408
- 41496 - Calendula officinalis: 10.1111/J.1399-3054.1985.TB02321.X
- 41496 - Calendula officinalis: LTS0005408
- 40568 - Campanula: LTS0005408
- 56154 - Campanula medium: 10.1007/S10600-014-1165-8
- 56154 - Campanula medium: LTS0005408
- 4381 - Campanulaceae: LTS0005408
- 316668 - Caryodendron: LTS0005408
- 316669 - Caryodendron orinocense: 10.1046/J.1467-2494.2000.00034.X
- 316669 - Caryodendron orinocense: LTS0005408
- 1804623 - Chenopodiaceae: LTS0005408
- 23159 - Crataegus: LTS0005408
- 140997 - Crataegus monogyna: 10.1016/S0031-9422(00)00250-8
- 140997 - Crataegus monogyna: LTS0005408
- 25996 - Elaeagnaceae: LTS0005408
- 2759 - Eukaryota: LTS0005408
- 3977 - Euphorbiaceae: LTS0005408
- 3803 - Fabaceae: LTS0005408
- 3846 - Glycine: LTS0005408
- 3847 - Glycine max: 10.1248/CPB.33.3834
- 3847 - Glycine max: LTS0005408
- 43908 - Guarea: LTS0005408
- 485821 - Guarea kunthiana: 10.1590/S0103-50532004000500025
- 485821 - Guarea kunthiana: LTS0005408
- 48233 - Hippophae: LTS0005408
- 193516 - Hippophae rhamnoides:
- 193516 - Hippophae rhamnoides: 10.1007/BF00713311
- 193516 - Hippophae rhamnoides: 10.1021/JF020421V
- 193516 - Hippophae rhamnoides: LTS0005408
- 9606 - Homo sapiens: -
- 629714 - Hypericaceae: LTS0005408
- 55962 - Hypericum: LTS0005408
- 268990 - Hypericum ericoides: 10.1016/J.ARABJC.2013.10.019
- 268990 - Hypericum ericoides: LTS0005408
- 1137008 - Hypericum perfoliatum: 10.1016/J.ARABJC.2013.10.019
- 1137008 - Hypericum perfoliatum: LTS0005408
- 65561 - Hypericum perforatum: 10.1016/J.ARABJC.2013.10.019
- 65561 - Hypericum perforatum: LTS0005408
- 1137039 - Hypericum tomentosum: 10.1016/J.ARABJC.2013.10.019
- 1137039 - Hypericum tomentosum: LTS0005408
- 224860 - Iryanthera: LTS0005408
- 3202 - Jungermannia: LTS0005408
- 362815 - Jungermannia infusca: 10.1248/CPB.48.1818
- 3201 - Jungermanniaceae: LTS0005408
- 186771 - Jungermanniopsida: LTS0005408
- 4136 - Lamiaceae: LTS0005408
- 4447 - Liliopsida: LTS0005408
- 4004 - Linaceae: LTS0005408
- 4005 - Linum: LTS0005408
- 4006 - Linum usitatissimum: 10.1021/JF960735G
- 4006 - Linum usitatissimum: LTS0005408
- 3398 - Magnoliopsida: LTS0005408
- 3195 - Marchantiophyta: LTS0005408
- 43707 - Meliaceae: LTS0005408
- 45163 - Muntingia: LTS0005408
- 45164 - Muntingia calabura: 10.1055/S-2007-967196
- 45164 - Muntingia calabura: LTS0005408
- 91852 - Muntingiaceae: LTS0005408
- 22274 - Myristicaceae: LTS0005408
- 4145 - Olea: LTS0005408
- 4146 - Olea europaea: 10.1007/978-1-59259-887-8_10
- 4146 - Olea europaea: LTS0005408
- 4144 - Oleaceae: LTS0005408
- 39174 - Origanum: LTS0005408
- 497761 - Origanum dictamnus: 10.3109/09637489609031878
- 497761 - Origanum dictamnus: LTS0005408
- 452416 - Origanum onites: 10.3109/09637489609031878
- 452416 - Origanum onites: LTS0005408
- 39352 - Origanum vulgare: 10.3109/09637489609031878
- 39352 - Origanum vulgare: LTS0005408
- 4527 - Oryza: LTS0005408
- 4530 - Oryza sativa: 10.1007/BF02545312
- 4530 - Oryza sativa: LTS0005408
- 4180 - Pedaliaceae: LTS0005408
- 40339 - Pellia: LTS0005408
- 40340 - Pellia epiphylla: 10.1016/S0031-9422(97)00414-7
- 40340 - Pellia epiphylla: LTS0005408
- 40338 - Pelliaceae: LTS0005408
- 58019 - Pinopsida: LTS0005408
- 4479 - Poaceae: LTS0005408
- 13228 - Potamogeton: LTS0005408
- 16362 - Potamogetonaceae: LTS0005408
- 3889 - Psophocarpus: LTS0005408
- 3891 - Psophocarpus tetragonolobus: 10.1021/JF00109A010
- 3891 - Psophocarpus tetragonolobus: LTS0005408
- 139836 - Radula: LTS0005408
- 1494991 - Radula marginata: 10.1248/CPB.50.1390
- 1494991 - Radula marginata: LTS0005408
- 280841 - Radula perrottetii: 10.1016/S0031-9422(00)90371-6
- 280841 - Radula perrottetii: LTS0005408
- 139835 - Radulaceae: LTS0005408
- 3745 - Rosaceae: LTS0005408
- 23216 - Rubus: LTS0005408
- 32247 - Rubus idaeus:
- 32247 - Rubus idaeus: 10.1016/S0031-9422(00)00250-8
- 32247 - Rubus idaeus: 10.1016/S0308-8146(99)00260-5
- 32247 - Rubus idaeus: LTS0005408
- 21880 - Salvia: LTS0005408
- 39367 - Salvia rosmarinus: 10.1007/BF01201582
- 39367 - Salvia rosmarinus: LTS0005408
- 49986 - Satureja: LTS0005408
- 49989 - Satureja thymbra: 10.3109/09637489609031878
- 49989 - Satureja thymbra: LTS0005408
- 46414 - Schefflera: LTS0005408
- 1433837 - Schefflera taiwaniana: 10.1002/JCCS.200200067
- 50507 - Schisandra chinensis (Turcz.) Baill.: -
- 4181 - Sesamum: LTS0005408
- 4182 - Sesamum indicum: 10.3109/10915819309140647
- 4182 - Sesamum indicum: LTS0005408
- 3561 - Spinacia: LTS0005408
- 3562 - Spinacia oleracea: 10.1002/JSFA.2740600113
- 3562 - Spinacia oleracea: LTS0005408
- 35493 - Streptophyta: LTS0005408
- 246706 - Stuckenia: LTS0005408
- 55444 - Stuckenia pectinata: 10.1016/J.PHYTOCHEM.2003.08.014
- 55444 - Stuckenia pectinata: LTS0005408
- 25623 - Taxaceae: LTS0005408
- 50188 - Torreya: LTS0005408
- 50189 - Torreya nucifera: 10.1016/S0031-9422(00)82385-7
- 50189 - Torreya nucifera: LTS0005408
- 58023 - Tracheophyta: LTS0005408
- 33090 - Viridiplantae: LTS0005408
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Vassilis Athanasiadis, Theodoros Chatzimitakos, Dimitrios Kalompatsios, Dimitrios Palaiogiannis, Ioannis Makrygiannis, Eleni Bozinou, Stavros I Lalas. Evaluation of the Efficacy and Synergistic Effect of α- and δ-Tocopherol as Natural Antioxidants in the Stabilization of Sunflower Oil and Olive Pomace Oil during Storage Conditions.
International journal of molecular sciences.
2023 Jan; 24(2):. doi:
10.3390/ijms24021113
. [PMID: 36674630] - Truong Nhat Van Do, Tho Huu Le, Hai Xuan Nguyen, Trang Ngoc Tran Vo, Phu Hoang Dang, Nhan Trung Nguyen, Mai Thanh Thi Nguyen. δ-Tocopherol derivatives from the leaves of Muntingia calabura L.
Natural product research.
2022 Nov; 36(21):5524-5529. doi:
10.1080/14786419.2021.2018589
. [PMID: 34933616] - Junjie Hong, Yu-Shan Cheng, Shu Yang, Manju Swaroop, Miao Xu, Jeanette Beers, Jizhong Zou, Wenwei Huang, Juan J Marugan, Xiujun Cai, Wei Zheng. iPS-derived neural stem cells for disease modeling and evaluation of therapeutics for mucopolysaccharidosis type II.
Experimental cell research.
2022 03; 412(1):113007. doi:
10.1016/j.yexcr.2021.113007
. [PMID: 34990619] - Rieko Tanaka-Yachi, Rena Otsu, Chie Takahashi-Muto, Chikako Kiyose. Delta-Tocopherol Suppresses the Dysfunction of Thermogenesis due to Inflammatory Stimulation in Brown Adipocytes.
Journal of oleo science.
2022; 71(11):1647-1653. doi:
10.5650/jos.ess22184
. [PMID: 36310052] - Qilong Xie, Ming Xia, Dekui Sun, Jiangping Cao, Yong Xiao, Mingui Lin, Bo Hou, Litao Jia, Debao Li. Deep eutectic solvent-based liquid-phase microextraction coupled with reversed-phase high-performance liquid chromatography for determination of α-, β-, γ-, and δ-tocopherol in edible oils.
Analytical and bioanalytical chemistry.
2021 Jan; 413(2):577-584. doi:
10.1007/s00216-020-03029-1
. [PMID: 33205254] - Liangxiao Zhang, Sujun Wang, Ruinan Yang, Jin Mao, Jun Jiang, Xiupin Wang, Wen Zhang, Qi Zhang, Peiwu Li. Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS.
Food chemistry.
2019 Aug; 289(?):313-319. doi:
10.1016/j.foodchem.2019.03.067
. [PMID: 30955618] - Leqi Cui, Peiyi Shen, Zili Gao, Jianhua Yi, Bingcan Chen. New Insights into the Impact of Sodium Chloride on the Lipid Oxidation of Oil-in-Water Emulsions.
Journal of agricultural and food chemistry.
2019 Apr; 67(15):4321-4327. doi:
10.1021/acs.jafc.9b00396
. [PMID: 30883113] - Mylinh Vu, Rong Li, Amanda Baskfield, Billy Lu, Atena Farkhondeh, Kirill Gorshkov, Omid Motabar, Jeanette Beers, Guokai Chen, Jizhong Zou, Angela J Espejo-Mojica, Alexander Rodríguez-López, Carlos J Alméciga-Díaz, Luis A Barrera, Xuntian Jiang, Daniel S Ory, Juan J Marugan, Wei Zheng. Neural stem cells for disease modeling and evaluation of therapeutics for Tay-Sachs disease.
Orphanet journal of rare diseases.
2018 09; 13(1):152. doi:
10.1186/s13023-018-0886-3
. [PMID: 30220252] - Fahad Aljuhaimi, Kashif Ghafoor, Mehmet Musa Özcan, Otilija Miseckaite, Elfadıl E Babiker, Shadzad Hussain. The Effect of Solvent Type and Roasting Processes on Physico-Chemical Properties of Tigernut (Cyperus esculentus L.) Tuber Oil.
Journal of oleo science.
2018 Jul; 67(7):823-828. doi:
10.5650/jos.ess17281
. [PMID: 29877229] - Ni Sima, Rong Li, Wei Huang, Miao Xu, Jeanette Beers, Jizhong Zou, Steven Titus, Elizabeth A Ottinger, Juan J Marugan, Xing Xie, Wei Zheng. Neural stem cells for disease modeling and evaluation of therapeutics for infantile (CLN1/PPT1) and late infantile (CLN2/TPP1) neuronal ceroid lipofuscinoses.
Orphanet journal of rare diseases.
2018 04; 13(1):54. doi:
10.1186/s13023-018-0798-2
. [PMID: 29631617] - Zhen-Shan Zhang, Yu-Lan Liu, Li-Ming Che. Characterization of a New α-Linolenic Acid-Rich Oil: Eucommia ulmoides Seed Oil.
Journal of food science.
2018 Mar; 83(3):617-623. doi:
10.1111/1750-3841.14049
. [PMID: 29355957] - G Chen, L Brecker, S Felsinger, X-H Cai, S Kongkiatpaiboon, J Schinnerl. Morphological and chemical variation of Stemona tuberosa from southern China - Evidence for heterogeneity of this medicinal plant species.
Plant biology (Stuttgart, Germany).
2017 Sep; 19(5):835-842. doi:
10.1111/plb.12587
. [PMID: 28580601] - Yan Long, Miao Xu, Rong Li, Sheng Dai, Jeanette Beers, Guokai Chen, Ferri Soheilian, Ulrich Baxa, Mengqiao Wang, Juan J Marugan, Silvia Muro, Zhiyuan Li, Roscoe Brady, Wei Zheng. Induced Pluripotent Stem Cells for Disease Modeling and Evaluation of Therapeutics for Niemann-Pick Disease Type A.
Stem cells translational medicine.
2016 12; 5(12):1644-1655. doi:
10.5966/sctm.2015-0373
. [PMID: 27484861] - Bertrand Matthaus, Mehmet Musa Özcan, Fahad Al Juhaimi. Some rape/canola seed oils: fatty acid composition and tocopherols.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2016 Mar; 71(3-4):73-7. doi:
10.1515/znc-2016-0003
. [PMID: 27023318] - Corrine Hanson, Elizabeth Lyden, Jeremy Furtado, Hannia Campos, David Sparrow, Pantel Vokonas, Augusto A Litonjua. Serum tocopherol levels and vitamin E intake are associated with lung function in the normative aging study.
Clinical nutrition (Edinburgh, Scotland).
2016 Feb; 35(1):169-174. doi:
10.1016/j.clnu.2015.01.020
. [PMID: 25715694] - M O W Grimm, C P Stahlmann, J Mett, V J Haupenthal, V C Zimmer, J Lehmann, B Hundsdörfer, K Endres, H S Grimm, T Hartmann. Vitamin E: Curse or Benefit in Alzheimer's Disease? A Systematic Investigation of the Impact of α-, γ- and δ-Tocopherol on Aß Generation and Degradation in Neuroblastoma Cells.
The journal of nutrition, health & aging.
2015 Jun; 19(6):646-56. doi:
10.1007/s12603-015-0506-z
. [PMID: 26054501] - Rosana Chirinos, Romina Pedreschi, Gilberto Domínguez, David Campos. Comparison of the physico-chemical and phytochemical characteristics of the oil of two Plukenetia species.
Food chemistry.
2015 Apr; 173(?):1203-6. doi:
10.1016/j.foodchem.2014.10.120
. [PMID: 25466144] - Yu Young Lee, Hyang Mi Park, Tae Young Hwang, Sun Lim Kim, Mi Jung Kim, Seuk Ki Lee, Min Jung Seo, Kee Jong Kim, Young-Up Kwon, Sang Chul Lee, Yul Ho Kim. A correlation between tocopherol content and antioxidant activity in seeds and germinating seeds of soybean cultivars.
Journal of the science of food and agriculture.
2015 Mar; 95(4):819-27. doi:
10.1002/jsfa.6963
. [PMID: 25475360] - Filipa S Reis, Lillian Barros, Ricardo C Calhelha, Ana Cirić, Leo J L D van Griensven, Marina Soković, Isabel C F R Ferreira. The methanolic extract of Cordyceps militaris (L.) Link fruiting body shows antioxidant, antibacterial, antifungal and antihuman tumor cell lines properties.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2013 Dec; 62(?):91-8. doi:
10.1016/j.fct.2013.08.033
. [PMID: 23994083] - Amanda K Smolarek, Jae Young So, Paul E Thomas, Hong Jin Lee, Shiby Paul, Anne Dombrowski, Chung-Xiou Wang, Constance Lay-Lay Saw, Tin Oo Khor, Ah-Ng Tony Kong, Kenneth Reuhl, Mao-Jung Lee, Chung S Yang, Nanjoo Suh. Dietary tocopherols inhibit cell proliferation, regulate expression of ERα, PPARγ, and Nrf2, and decrease serum inflammatory markers during the development of mammary hyperplasia.
Molecular carcinogenesis.
2013 Jul; 52(7):514-25. doi:
10.1002/mc.21886
. [PMID: 22389237] - Miao Xu, Ke Liu, Manju Swaroop, Forbes D Porter, Rohini Sidhu, Sally Firnkes, Sally Finkes, Daniel S Ory, Juan J Marugan, Jingbo Xiao, Noel Southall, William J Pavan, Cristin Davidson, Steven U Walkley, Alan T Remaley, Ulrich Baxa, Wei Sun, John C McKew, Christopher P Austin, Wei Zheng. δ-Tocopherol reduces lipid accumulation in Niemann-Pick type C1 and Wolman cholesterol storage disorders.
The Journal of biological chemistry.
2012 Nov; 287(47):39349-60. doi:
10.1074/jbc.m112.357707
. [PMID: 23035117] - Muhammad Zia-Ul-Haq, Shakeel Ahmad, Luca Calani, Teresa Mazzeo, Daniele Del Rio, Nicoletta Pellegrini, Vincenzo De Feo. Compositional study and antioxidant potential of Ipomoea hederacea Jacq. and Lepidium sativum L. seeds.
Molecules (Basel, Switzerland).
2012 Aug; 17(9):10306-21. doi:
10.3390/molecules170910306
. [PMID: 22932212] - Laura L Baxter, Juan J Marugan, Jingbo Xiao, Art Incao, John C McKew, Wei Zheng, William J Pavan. Plasma and tissue concentrations of α-tocopherol and δ-tocopherol following high dose dietary supplementation in mice.
Nutrients.
2012 06; 4(6):467-90. doi:
10.3390/nu4060467
. [PMID: 22822447] - Fei Guan, Guangxun Li, Anna B Liu, Mao-Jung Lee, Zhihong Yang, Yu-Kuo Chen, Yong Lin, Weichung Shih, Chung S Yang. δ- and γ-tocopherols, but not α-tocopherol, inhibit colon carcinogenesis in azoxymethane-treated F344 rats.
Cancer prevention research (Philadelphia, Pa.).
2012 Apr; 5(4):644-54. doi:
10.1158/1940-6207.capr-11-0521
. [PMID: 22366914] - Lidia Del Moral, José M Fernández-Martínez, Begoña Pérez-Vich, Leonardo Velasco. Expression of modified tocopherol content and profile in sunflower tissues.
Journal of the science of food and agriculture.
2012 Jan; 92(2):351-7. doi:
10.1002/jsfa.4585
. [PMID: 21815166] - Russell L Blaylock, Joseph Maroon. Natural plant products and extracts that reduce immunoexcitotoxicity-associated neurodegeneration and promote repair within the central nervous system.
Surgical neurology international.
2012; 3(?):19. doi:
10.4103/2152-7806.92935
. [PMID: 22439110] - M Alcaraz, D Armero, Y Martínez-Beneyto, J Castillo, O Benavente-García, H Fernandez, M Alcaraz-Saura, M Canteras. Chemical genoprotection: reducing biological damage to as low as reasonably achievable levels.
Dento maxillo facial radiology.
2011 Jul; 40(5):310-4. doi:
10.1259/dmfr/95408354
. [PMID: 21697157] - Elena Moretti, Cesare Castellini, Evangelia Mourvaki, Serena Capitani, Michela Geminiani, Tommaso Renieri, Giulia Collodel. Distribution of α- and δ-tocopherols in seminal plasma and sperm fractions of men with normal and abnormal semen parameters.
Journal of andrology.
2011 May; 32(3):232-9. doi:
10.2164/jandrol.109.009936
. [PMID: 20930194] - Guang-Xun Li, Mao-Jung Lee, Anna B Liu, Zhihong Yang, Yong Lin, Weichung J Shih, Chung S Yang. δ-tocopherol is more active than α - or γ -tocopherol in inhibiting lung tumorigenesis in vivo.
Cancer prevention research (Philadelphia, Pa.).
2011 Mar; 4(3):404-13. doi:
10.1158/1940-6207.capr-10-0130
. [PMID: 21372040] - Jörg Hofmann, Frederik Börnke, Alfred Schmiedl, Tatjana Kleine, Uwe Sonnewald. Detecting functional groups of Arabidopsis mutants by metabolic profiling and evaluation of pleiotropic responses.
Frontiers in plant science.
2011; 2(?):82. doi:
10.3389/fpls.2011.00082
. [PMID: 22639613] - Shengbao Feng, Lixia Song, Yuan Kun Lee, Dejian Huang. The effects of fungal stress on the antioxidant contents of black soybeans under germination.
Journal of agricultural and food chemistry.
2010 Dec; 58(23):12491-6. doi:
10.1021/jf102926r
. [PMID: 21058652] - Augusta Caligiani, Francesca Bonzanini, Gerardo Palla, Martina Cirlini, Renato Bruni. Characterization of a potential nutraceutical ingredient: pomegranate (Punica granatum L.) seed oil unsaponifiable fraction.
Plant foods for human nutrition (Dordrecht, Netherlands).
2010 Sep; 65(3):277-83. doi:
10.1007/s11130-010-0173-5
. [PMID: 20607413] - Philippe Seguin, Gilles Tremblay, Denis Pageau, Wucheng Liu. Soybean tocopherol concentrations are affected by crop management.
Journal of agricultural and food chemistry.
2010 May; 58(9):5495-501. doi:
10.1021/jf100455f
. [PMID: 20402508] - Evangelia Mourvaki, Raffaella Cardinali, Alessandro Dal Bosco, Cesare Castellini. In vitro antioxidant activity of the prostatic secretory granules in rabbit semen after exposure to organic peroxides.
Reproductive biology and endocrinology : RB&E.
2010 Feb; 8(?):16. doi:
10.1186/1477-7827-8-16
. [PMID: 20178592] - Francesca Mangialasche, Miia Kivipelto, Patrizia Mecocci, Debora Rizzuto, Katie Palmer, Bengt Winblad, Laura Fratiglioni. High plasma levels of vitamin E forms and reduced Alzheimer's disease risk in advanced age.
Journal of Alzheimer's disease : JAD.
2010; 20(4):1029-37. doi:
10.3233/jad-2010-091450
. [PMID: 20413888] - Janez Salobir, Tanja Pajk Zontar, Alenka Levart, Vida Rezar. The comparison of black currant juice and vitamin E for the prevention of oxidative stress.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2010 Jan; 80(1):5-11. doi:
10.1024/0300-9831/a000001
. [PMID: 20533240] - Ossama Kodad, Gloria Estopañán, Teresa Juan, Rafel Socias i Company. Xenia effects on oil content and fatty acid and tocopherol concentrations in autogamous almond cultivars.
Journal of agricultural and food chemistry.
2009 Nov; 57(22):10809-13. doi:
10.1021/jf9023195
. [PMID: 19883070] - Zahra Noreen, Muhammad Ashraf. Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers.
Journal of plant physiology.
2009 Nov; 166(16):1764-74. doi:
10.1016/j.jplph.2009.05.005
. [PMID: 19540015] - Regina M Day, Ismael A Matus, Yuichiro J Suzuki, Kyung-Jin Yeum, Jian Qin, Ah-Mee Park, Vivek Jain, Tunay Kuru, Guangwen Tang. Plasma levels of retinoids, carotenoids and tocopherols in patients with mild obstructive sleep apnoea.
Respirology (Carlton, Vic.).
2009 Nov; 14(8):1134-42. doi:
10.1111/j.1440-1843.2009.01623.x
. [PMID: 19761534] - Richard W Browne, Michael S Bloom, Wendy B Shelly, Andrew J Ocque, Heather G Huddleston, Victor Y Fujimoto. Follicular fluid high density lipoprotein-associated micronutrient levels are associated with embryo fragmentation during IVF.
Journal of assisted reproduction and genetics.
2009 Nov; 26(11-12):557-60. doi:
10.1007/s10815-009-9367-x
. [PMID: 19921421] - M H Bruscatto, R C Zambiazi, M Sganzerla, V R Pestana, D Otero, R Lima, F Paiva. Degradation of tocopherols in rice bran oil submitted to heating at different temperatures.
Journal of chromatographic science.
2009 Oct; 47(9):762-5. doi:
10.1093/chromsci/47.9.762
. [PMID: 19835684] - Joshua D Lambert, Gang Lu, Mao-Jung Lee, Jennifer Hu, Jihyeung Ju, Chung S Yang. Inhibition of lung cancer growth in mice by dietary mixed tocopherols.
Molecular nutrition & food research.
2009 Aug; 53(8):1030-5. doi:
10.1002/mnfr.200800438
. [PMID: 19557822] - Yu-Wen Chiu, Hung-Yi Chuang, Meng-Chuan Huang, Ming-Tsang Wu, Hong-Wen Liu, Chia-Tsuan Huang. Comparison of plasma antioxidant levels and related metabolic parameters between smokers and non-smokers.
The Kaohsiung journal of medical sciences.
2009 Aug; 25(8):423-30. doi:
10.1016/s1607-551x(09)70537-6
. [PMID: 19605336] - M Alcaraz, C Acevedo, J Castillo, O Benavente-Garcia, D Armero, V Vicente, M Canteras. Liposoluble antioxidants provide an effective radioprotective barrier.
The British journal of radiology.
2009 Jul; 82(979):605-9. doi:
10.1259/bjr/30930369
. [PMID: 19188244] - Denis Thibeault, Haixiang Su, Elizabeth MacNamara, Hyman M Schipper. Isocratic rapid liquid chromatographic method for simultaneous determination of carotenoids, retinol, and tocopherols in human serum.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2009 Apr; 877(11-12):1077-83. doi:
10.1016/j.jchromb.2009.02.051
. [PMID: 19297254] - Vineet Kumar, Anita Rani, Amit Kumar Dixit, Deepak Bhatnagar, G S Chauhan. Relative changes in tocopherols, isoflavones, total phenolic content, and antioxidative activity in soybean seeds at different reproductive stages.
Journal of agricultural and food chemistry.
2009 Apr; 57(7):2705-10. doi:
10.1021/jf803122a
. [PMID: 19256542] - T M Gliozzi, L Zaniboni, A Maldjian, F Luzi, L Maertens, S Cerolini. Quality and lipid composition of spermatozoa in rabbits fed DHA and vitamin E rich diets.
Theriogenology.
2009 Apr; 71(6):910-9. doi:
10.1016/j.theriogenology.2008.10.022
. [PMID: 19121864] - Shyamali Mukherjee, William L Stone, Hongsong Yang, Milton G Smith, Salil K Das. Protection of half sulfur mustard gas-induced lung injury in guinea pigs by antioxidant liposomes.
Journal of biochemical and molecular toxicology.
2009 Mar; 23(2):143-53. doi:
10.1002/jbt.20279
. [PMID: 19367648] - Mohammed Hassan El-Mallah, Safinaz Mohammed El-Shami. Investigation of liquid wax components of Egyptian jojoba seeds.
Journal of oleo science.
2009; 58(11):543-8. doi:
10.5650/jos.58.543
. [PMID: 19844068] - Nizar Nasri, Nizar Tlili, Kamel Ben Ammar, Abdelhamid Khaldi, Bruno Fady, Saida Triki. High tocopherol and triacylglycerol contents in Pinus pinea L. seeds.
International journal of food sciences and nutrition.
2009; 60 Suppl 1(?):161-9. doi:
10.1080/09637480802577854
. [PMID: 19466628] - R Banerji, Aruna Bajpai, S C Verma. Oil and fatty acid diversity in genetically variable clones of Moringa oleifera from India.
Journal of oleo science.
2009; 58(1):9-16. doi:
10.5650/jos.58.9
. [PMID: 19075502] - Zhimin Xu. Comparison of extraction methods for quantifying vitamin E from animal tissues.
Bioresource technology.
2008 Dec; 99(18):8705-9. doi:
10.1016/j.biortech.2008.04.065
. [PMID: 18550368] - Fonghsu Kuo, Balajikarthick Subramanian, Timothy Kotyla, Thomas A Wilson, Subbiah Yoganathan, Robert J Nicolosi. Nanoemulsions of an anti-oxidant synergy formulation containing gamma tocopherol have enhanced bioavailability and anti-inflammatory properties.
International journal of pharmaceutics.
2008 Nov; 363(1-2):206-13. doi:
10.1016/j.ijpharm.2008.07.022
. [PMID: 18718513] - E Mourvaki, G Collodel, E Moretti, I Cosci, C Castellini. Distribution of alpha-, gamma (+beta)- and delta-tocopherol in the seminal plasma, spermatozoa and seminal vesicles of rabbit.
Andrologia.
2008 Oct; 40(5):282-5. doi:
10.1111/j.1439-0272.2008.00854.x
. [PMID: 18811917] - Michele M Schantz, Mary Bedner, Stephen E Long, John L Molloy, Karen E Murphy, Barbara J Porter, Karsten Putzbach, Catherine A Rimmer, Lane C Sander, Katherine E Sharpless, Jeanice B Thomas, Stephen A Wise, Laura J Wood, James H Yen, Takashi Yarita, Agnes NguyenPho, Wendy R Sorenson, Joseph M Betz. Development of saw palmetto (Serenoa repens) fruit and extract standard reference materials.
Analytical and bioanalytical chemistry.
2008 Oct; 392(3):427-38. doi:
10.1007/s00216-008-2297-0
. [PMID: 18677464] - Stephan Ohnmacht, Phillip Nava, Ryan West, Robert Parker, Jeffrey Atkinson. Inhibition of oxidative metabolism of tocopherols with omega-N-heterocyclic derivatives of vitamin E.
Bioorganic & medicinal chemistry.
2008 Aug; 16(16):7631-8. doi:
10.1016/j.bmc.2008.07.020
. [PMID: 18656365] - Subhash Chander, Yijiang Meng, Yirong Zhang, Jianbing Yan, Jiansheng Li. Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm.
Journal of agricultural and food chemistry.
2008 Aug; 56(15):6506-11. doi:
10.1021/jf7037967
. [PMID: 18620402] - Jessica Wiser, Neil E Alexis, Qing Jiang, Weidong Wu, Carole Robinette, Robert Roubey, David B Peden. In vivo gamma-tocopherol supplementation decreases systemic oxidative stress and cytokine responses of human monocytes in normal and asthmatic subjects.
Free radical biology & medicine.
2008 Jul; 45(1):40-9. doi:
10.1016/j.freeradbiomed.2008.03.002
. [PMID: 18405673] - Kelly S Williamson, J Brad Morris, Quentin N Pye, Chandrashekhar D Kamat, Kenneth Hensley. A survey of sesamin and composition of tocopherol variability from seeds of eleven diverse sesame (Sesamum indicum L.) genotypes using HPLC-PAD-ECD.
Phytochemical analysis : PCA.
2008 Jul; 19(4):311-22. doi:
10.1002/pca.1050
. [PMID: 18058795] - Michel Matringe, Brigitte Ksas, Pascal Rey, Michel Havaux. Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves.
Plant physiology.
2008 Jun; 147(2):764-78. doi:
10.1104/pp.108.117614
. [PMID: 18441223] - Dragan Skorić, Sinisa Jocić, Zvonimir Sakac, Nada Lecić. Genetic possibilities for altering sunflower oil quality to obtain novel oils.
Canadian journal of physiology and pharmacology.
2008 Apr; 86(4):215-21. doi:
10.1139/y08-008
. [PMID: 18418432] - T Kotyla, F Kuo, V Moolchandani, T Wilson, R Nicolosi. Increased bioavailability of a transdermal application of a nano-sized emulsion preparation.
International journal of pharmaceutics.
2008 Jan; 347(1-2):144-8. doi:
10.1016/j.ijpharm.2007.06.045
. [PMID: 17706902] - Kazuo Mukai, Aiko Tokunaga, Shingo Itoh, Yu Kanesaki, Aya Ouchi, Keishi Ohara, Shin-ichi Nagaoka, Kouichi Abe. Comparison between the free-radical-scavenging activities with vitamin E and ubiquinol in biological systems based on their reaction rates: a research account.
BioFactors (Oxford, England).
2008; 32(1-4):49-58. doi:
10.1002/biof.5520320107
. [PMID: 19096100] - Segolene Leclercq, Gary A Reineccius, Christian Milo. Effect of type of oil and addition of delta-tocopherol on model flavor compound stability during storage.
Journal of agricultural and food chemistry.
2007 Oct; 55(22):9189-94. doi:
10.1021/jf071686i
. [PMID: 17927195] - Kornél Nagy, Marie-Claude Courtet-Compondu, Birgit Holst, Martin Kussmann. Comprehensive analysis of vitamin E constituents in human plasma by liquid chromatography-mass spectrometry.
Analytical chemistry.
2007 Sep; 79(18):7087-96. doi:
10.1021/ac0708689
. [PMID: 17696496] - David G Stevenson, Fred J Eller, Liping Wang, Jay-Lin Jane, Tong Wang, George E Inglett. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars.
Journal of agricultural and food chemistry.
2007 May; 55(10):4005-13. doi:
10.1021/jf0706979
. [PMID: 17439238] - R Mohamed, J Fernández, M Pineda, M Aguilar. Roselle (Hibiscus sabdariffa) seed oil is a rich source of gamma-tocopherol.
Journal of food science.
2007 Apr; 72(3):S207-11. doi:
10.1111/j.1750-3841.2007.00285.x
. [PMID: 17995816] - Erin M Siegel, Neal E Craft, Eliane Duarte-Franco, Luisa L Villa, Eduardo L Franco, Anna R Giuliano. Associations between serum carotenoids and tocopherols and type-specific HPV persistence: the Ludwig-McGill cohort study.
International journal of cancer.
2007 Feb; 120(3):672-80. doi:
10.1002/ijc.22346
. [PMID: 17096322] - Kazuo Mukai, Aiko Tokunaga, Shingo Itoh, Yu Kanesaki, Keishi Ohara, Shin-Ichi Nagaoka, Kouichi Abe. Structure-activity relationship of the free-radical-scavenging reaction by vitamin E (alpha-, beta-, gamma-, delta-Tocopherols) and ubiquinol-10: pH dependence of the reaction rates.
The journal of physical chemistry. B.
2007 Jan; 111(3):652-62. doi:
10.1021/jp0650580
. [PMID: 17228924] - Feliciano Priego Capote, José Ruiz Jiménez, José María Mata Granados, María Dolores Luque de Castro. Identification and determination of fat-soluble vitamins and metabolites in human serum by liquid chromatography/triple quadrupole mass spectrometry with multiple reaction monitoring.
Rapid communications in mass spectrometry : RCM.
2007; 21(11):1745-54. doi:
10.1002/rcm.3014
. [PMID: 17486676] - Vijay K Singh, Randi L Shafran, William E Jackson, Thomas M Seed, K Sree Kumar. Induction of cytokines by radioprotective tocopherol analogs.
Experimental and molecular pathology.
2006 Aug; 81(1):55-61. doi:
10.1016/j.yexmp.2005.11.002
. [PMID: 16426603] - Marion Dietrich, Maret G Traber, Paul F Jacques, Carroll E Cross, Youqing Hu, Gladys Block. Does gamma-tocopherol play a role in the primary prevention of heart disease and cancer? A review.
Journal of the American College of Nutrition.
2006 Aug; 25(4):292-9. doi:
10.1080/07315724.2006.10719538
. [PMID: 16943450] - Luis Almela, Blas Sánchez-Muñoz, José A Fernández-López, María J Roca, Virginia Rabe. Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material.
Journal of chromatography. A.
2006 Jul; 1120(1-2):221-9. doi:
10.1016/j.chroma.2006.02.056
. [PMID: 16563403] - Ephrem Eggermont. Recent advances in vitamin E metabolism and deficiency.
European journal of pediatrics.
2006 Jul; 165(7):429-34. doi:
10.1007/s00431-006-0084-5
. [PMID: 16491383] - Chih-Lung Lin, Yi-Tzu Hsu, Tzu-Kang Lin, Jason D Morrow, Jee-Ching Hsu, Yung-Hsing Hsu, Tsung-Che Hsieh, Pei-Kwei Tsay, Hsiu-Chuan Yen. Increased levels of F2-isoprostanes following aneurysmal subarachnoid hemorrhage in humans.
Free radical biology & medicine.
2006 Apr; 40(8):1466-73. doi:
10.1016/j.freeradbiomed.2005.12.019
. [PMID: 16631536] - A Heather Eliassen, Graham A Colditz, Karen E Peterson, Jeremy D Furtado, Martha E Fay, Glorian Sorensen, Karen M Emmons. Biomarker validation of dietary intervention in two multiethnic populations.
Preventing chronic disease.
2006 Apr; 3(2):A44. doi:
NULL
. [PMID: 16539785] - Shahrzad Tafazoli, James S Wright, Peter J O'Brien. Prooxidant and antioxidant activity of vitamin E analogues and troglitazone.
Chemical research in toxicology.
2005 Oct; 18(10):1567-74. doi:
10.1021/tx0500575
. [PMID: 16533021] - Bertrand Matthäus, Musa Ozcan. Glucosinolates and fatty acid, sterol, and tocopherol composition of seed oils from Capparis spinosa Var. spinosa and Capparis ovata Desf. Var. canescens (Coss.) Heywood.
Journal of agricultural and food chemistry.
2005 Sep; 53(18):7136-41. doi:
10.1021/jf051019u
. [PMID: 16131121] - Wilailuk Chaiyasit, D Julian McClements, Eric A Decker. The relationship between the physicochemical properties of antioxidants and their ability to inhibit lipid oxidation in bulk oil and oil-in-water emulsions.
Journal of agricultural and food chemistry.
2005 Jun; 53(12):4982-8. doi:
10.1021/jf0501239
. [PMID: 15941345] - Rosa Doblado, Henryk Zielinski, Mariusz Piskula, Halina Kozlowska, Rosario Muñoz, Juana Frías, Concepción Vidal-Valverde. Effect of processing on the antioxidant vitamins and antioxidant capacity of Vigna sinensis Var. Carilla.
Journal of agricultural and food chemistry.
2005 Feb; 53(4):1215-22. doi:
10.1021/jf0492971
. [PMID: 15713044] - Chengwen Li, Meixia Sun, Mingsan Miao. [Effects of packaging on the stability of vitamin E in peach kernels stored at high temperature].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2005 Feb; 28(2):137-40. doi:
"
. [PMID: 15981891] - Chandan K Sen, Savita Khanna, Sashwati Roy. Tocotrienol: the natural vitamin E to defend the nervous system?.
Annals of the New York Academy of Sciences.
2004 Dec; 1031(?):127-42. doi:
10.1196/annals.1331.013
. [PMID: 15753140] - S Anna Pesillo, Lisa M Freeman, John E Rush. Assessment of lipid peroxidation and serum vitamin E concentration in dogs with immune-mediated hemolytic anemia.
American journal of veterinary research.
2004 Dec; 65(12):1621-4. doi:
10.2460/ajvr.2004.65.1621
. [PMID: 15631024] - Sivakumar Raghavan, Herbert O Hultin. Distribution of exogenous delta-tocopherol between the membrane lipids and triacylglycerols of a cod muscle-triacylglycerol model system.
Journal of agricultural and food chemistry.
2004 Oct; 52(20):6294-9. doi:
10.1021/jf040128q
. [PMID: 15453703] - Pavlos F Chatzimichalakis, Victoria F Samanidou, Ioannis N Papadoyannis. Development of a validated liquid chromatography method for the simultaneous determination of eight fat-soluble vitamins in biological fluids after solid-phase extraction.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2004 Jun; 805(2):289-96. doi:
10.1016/j.jchromb.2004.03.009
. [PMID: 15135103] - Joanne M Jordan, Anneclaire J De Roos, Jordan B Renner, Gheorghe Luta, Amy Cohen, Neal Craft, Charles G Helmick, Marc C Hochberg, Lenore Arab. A case-control study of serum tocopherol levels and the alpha- to gamma-tocopherol ratio in radiographic knee osteoarthritis: the Johnston County Osteoarthritis Project.
American journal of epidemiology.
2004 May; 159(10):968-77. doi:
10.1093/aje/kwh133
. [PMID: 15128609] - Lourdes Alvarez-Ayuso, Patricia Calero, Fernando Granado, Eduardo Jorge, Carmen Herrero, Amalia Torralba, Isabel Millán, Martín Santos, Inmaculada Blanco, Begoña Olmedilla, José Luis Castillo-Olivares. Antioxidant effect of gamma-tocopherol supplied by propofol preparations (Diprivan) during ischemia-reperfusion in experimental lung transplantation.
Transplant international : official journal of the European Society for Organ Transplantation.
2004 Feb; 17(2):71-7. doi:
10.1007/s00147-003-0661-8
. [PMID: 14574450] - Malgorzata Nogala-Kalucka, Jozef Korczak, Karl-Heinz Wagner, Ibrahim Elmadfa. Tocopherol composition of deodorization distillates and their antioxidative activity.
Die Nahrung.
2004 Feb; 48(1):34-7. doi:
10.1002/food.200300335
. [PMID: 15053348] - Bettina Isnardy, Karl-Heinz Wagner, Ibrahim Elmadfa. Effects of alpha-, gamma-, and delta-tocopherols on the autoxidation of purified rapeseed oil triacylglycerols in a system containing low oxygen.
Journal of agricultural and food chemistry.
2003 Dec; 51(26):7775-80. doi:
10.1021/jf0348525
. [PMID: 14664544] - Alfonso Ranalli, Lucia Lucera, Stefania Contento. Antioxidizing potency of phenol compounds in olive oil mill wastewater.
Journal of agricultural and food chemistry.
2003 Dec; 51(26):7636-41. doi:
10.1021/jf034879o
. [PMID: 14664521] - Bee-Lan Lee, Ai-Li New, Choon-Nam Ong. Simultaneous determination of tocotrienols, tocopherols, retinol, and major carotenoids in human plasma.
Clinical chemistry.
2003 Dec; 49(12):2056-66. doi:
10.1373/clinchem.2003.022681
. [PMID: 14633878] - Alison L Van Eenennaam, Kim Lincoln, Timothy P Durrett, Henry E Valentin, Christine K Shewmaker, Greg M Thorne, Jian Jiang, Susan R Baszis, Charlene K Levering, Eric D Aasen, Ming Hao, Joshua C Stein, Susan R Norris, Robert L Last. Engineering vitamin E content: from Arabidopsis mutant to soy oil.
The Plant cell.
2003 Dec; 15(12):3007-19. doi:
10.1105/tpc.015875
. [PMID: 14630966] - Abraham M Y Nomura, James Lee, Grant N Stemmermann, Adrian A Franke. Serum vitamins and the subsequent risk of bladder cancer.
The Journal of urology.
2003 Oct; 170(4 Pt 1):1146-50. doi:
10.1097/01.ju.0000086040.24795.ad
. [PMID: 14501712] - Han-Yao Huang, Lawrence J Appel. Supplementation of diets with alpha-tocopherol reduces serum concentrations of gamma- and delta-tocopherol in humans.
The Journal of nutrition.
2003 Oct; 133(10):3137-40. doi:
10.1093/jn/133.10.3137
. [PMID: 14519797] - Amy K McNally, James M Anderson. Foreign body-type multinucleated giant cell formation is potently induced by alpha-tocopherol and prevented by the diacylglycerol kinase inhibitor R59022.
The American journal of pathology.
2003 Sep; 163(3):1147-56. doi:
10.1016/s0002-9440(10)63474-8
. [PMID: 12937156] - Pierre Stocker, Jean-François Lesgards, Nicolas Vidal, Florence Chalier, Michel Prost. ESR study of a biological assay on whole blood: antioxidant efficiency of various vitamins.
Biochimica et biophysica acta.
2003 Apr; 1621(1):1-8. doi:
10.1016/s0304-4165(03)00008-4
. [PMID: 12667604] - G Taibi, C M A Nicotra. Development and validation of a fast and sensitive chromatographic assay for all-trans-retinol and tocopherols in human serum and plasma using liquid-liquid extraction.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2002 Nov; 780(2):261-7. doi:
10.1016/s1570-0232(02)00529-9
. [PMID: 12401351] - Halldor Sigfusson, Herbert O Hultin. Partitioning of exogenous delta-tocopherol between the triacylglycerol and membrane lipid fractions of chicken muscle.
Journal of agricultural and food chemistry.
2002 Nov; 50(24):7120-6. doi:
10.1021/jf0203491
. [PMID: 12428970] - Steven J Britz, Diane F Kremer. Warm temperatures or drought during seed maturation increase free alpha-tocopherol in seeds of soybean (Glycine max [L.] Merr.).
Journal of agricultural and food chemistry.
2002 Oct; 50(21):6058-63. doi:
10.1021/jf0200016
. [PMID: 12358480]