NCBI Taxonomy: 3656

Cucumis melo (ncbi_taxid: 3656)

found 428 associated metabolites at species taxonomy rank level.

Ancestor: Cucumis

Child Taxonomies: Cucumis melo subsp. melo, Cucumis melo subsp. meloides, Cucumis melo subsp. agrestis

Echinocystic

(4aR,5R,6aS,6bR,8aR,10S,12aR,12bR,14bS)-5,10-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552408)


Echinocystic acid is a triterpenoid. Echinocystic acid is a natural product found in Cucurbita foetidissima, Eclipta alba, and other organisms with data available. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties.

   

Adenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.09674980000005)


Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

lupeone

(1S,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,3a,4,5,5a,5b,6,7,7a,8,11a,11b,12,13,13a,13b-octadecahydro-9H-cyclopenta[a]chrysen-9-one

C30H48O (424.37049579999996)


Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

linolenate [alpha or gamma; (18:3n3 or 6)]

(9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid

C18H30O2 (278.224568)


alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.105642)


Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). [Raw Data] CBA25_Isovitexin_neg_20eV_1-7_01_1425.txt [Raw Data] CBA25_Isovitexin_neg_10eV_1-7_01_1369.txt [Raw Data] CBA25_Isovitexin_pos_30eV_1-7_01_1399.txt [Raw Data] CBA25_Isovitexin_neg_40eV_1-7_01_1427.txt [Raw Data] CBA25_Isovitexin_neg_30eV_1-7_01_1426.txt [Raw Data] CBA25_Isovitexin_neg_50eV_1-7_01_1428.txt [Raw Data] CBA25_Isovitexin_pos_20eV_1-7_01_1398.txt [Raw Data] CBA25_Isovitexin_pos_10eV_1-7_01_1358.txt [Raw Data] CBA25_Isovitexin_pos_40eV_1-7_01_1400.txt [Raw Data] CBA25_Isovitexin_pos_50eV_1-7_01_1401.txt Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.

   

Apigenin

5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 4,5,7-Trihydroxyflavone; Pelargidenon 1449;

C15H10O5 (270.052821)


Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Kaempferol

3,4,5,7-Tetrahydroxyflavone, 3,5,7-Trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O6 (286.047736)


Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Quercetin

4H-1-Benzopyran-4-one,2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-, zirconium(2+) salt (1:1)

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Cucurbitacin B

(R,E)-6-((2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C32H46O8 (558.3192516)


Together wth other cucurbitacins, is responsible for the bitter taste and toxic props. of spoilt cucumbers. Cucurbitacin B is found in many foods, some of which are muskmelon, bitter gourd, green vegetables, and cucumber. Cucurbitacin B is found in bitter gourd. Together wth other cucurbitacins, is responsible for the bitter taste and toxic properties of spoilt cucumber Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. (+)-Cucurbitacin B. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6199-67-3 (retrieved 2024-08-12) (CAS RN: 6199-67-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Pinoresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXY-, (1S-(1.ALPHA.,3A.ALPHA.,4.BETA.,6A.ALPHA.))-

C20H22O6 (358.1416312)


Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite. Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available. An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. (+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen. Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available. See also: Acai fruit pulp (part of). An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895 Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Myristic acid

tetradecanoic acid

C14H28O2 (228.20891880000002)


Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992) Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate. Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Myristic acid is a natural product found in Gladiolus italicus, Staphisagria macrosperma, and other organisms with data available. Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia). myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed) See also: Cod Liver Oil (part of); Saw Palmetto (part of). Myristic acid, also known as tetradecanoic acid or C14:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristic acid (its ester is called myristate) is a saturated fatty acid that has 14 carbons; as such, it is a very hydrophobic molecule that is practically insoluble in water. It exists as an oily white crystalline solid. Myristic acid is found in all living organisms ranging from bacteria to plants to animals, and is found in most animal and vegetable fats, particularly butterfat, as well as coconut, palm, and nutmeg oils. Industrially, myristic acid is used to synthesize a variety of flavour compounds and as an ingredient in soaps and cosmetics (Dorland, 28th ed). Within eukaryotic cells, myristic acid is also commonly conjugated to a penultimate N-terminal glycine residue in receptor-associated kinases to confer membrane localization of these enzymes (a post-translational modification called myristoylation via the enzyme N-myristoyltransferase). Myristic acid has a high enough hydrophobicity to allow the myristoylated protein to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Also, this fatty acid is known because it accumulates as fat in the body; however, its consumption also impacts positively on cardiovascular health (see, for example, PMID: 15936650). Myristic acid is named after the scientific name for nutmeg, Myristica fragrans, from which it was first isolated in 1841 by Lyon Playfair. Myristic acid, also known as 14 or N-tetradecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, myristic acid is considered to be a fatty acid lipid molecule. Myristic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Myristic acid can be found in a number of food items such as strawberry, barley, nutmeg, and soy bean, which makes myristic acid a potential biomarker for the consumption of these food products. Myristic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces, as well as throughout most human tissues. Myristic acid exists in all living species, ranging from bacteria to humans. In humans, myristic acid is involved in the fatty acid biosynthesis. Moreover, myristic acid is found to be associated with schizophrenia. Myristic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Myristic acid (IUPAC systematic name: 1-tetradecanoic acid) is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair . A straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. Nutmeg butter has 75\\\% trimyristin, the triglyceride of myristic acid and a source from which it can be synthesised.[13] Besides nutmeg, myristic acid is found in palm kernel oil, coconut oil, butterfat, 8–14\\\% of bovine milk, and 8.6\\\% of breast milk as well as being a minor component of many other animal fats.[9] It is found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[14][15] Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Campesterol

(8R,9S,10S,13R,14S,17R)-17-((2R,5R)-5,6-Dimethylheptan-2-yl)-10,13-dimethyl-4,5,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H48O (400.37049579999996)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Isofucosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((R,E)-5-Isopropylhept-5-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Isofucosterol, also known as delta5-avenasterol, is a phytosterol. Phytosterols, or plant sterols, are compounds that occur naturally and bear a close structural resemblance to cholesterol but have different side-chain configurations. Phytosterols are relevant in pharmaceuticals (production of therapeutic steroids), nutrition (anti-cholesterol additives in functional foods, anti-cancer properties), and cosmetics (creams, lipstick). Phytosterols can be obtained from vegetable oils or from industrial wastes, which gives an added value to the latter. Considerable efforts have been recently dedicated to the development of efficient processes for phytosterol isolation from natural sources. The present work aims to summarize information on the applications of phytosterols and to review recent approaches, mainly from the industry, for the large-scale recovery of phytosterols (PMID: 17123816, 16481154). Isofucosterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Isofucosterol, also known as (24z)-stigmasta-5,24(28)-dien-3-ol or delta5-avenasterol, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, isofucosterol is considered to be a sterol lipid molecule. Isofucosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Isofucosterol can be found in a number of food items such as globe artichoke, gooseberry, deerberry, and ucuhuba, which makes isofucosterol a potential biomarker for the consumption of these food products. Isofucosterol can be found primarily in blood. Moreover, isofucosterol is found to be associated with sitosterolemia. Isofucosterol is a 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. It has a role as an animal metabolite, a plant metabolite, an algal metabolite and a marine metabolite. It is a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Fucosterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1]. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research[1].

   

alpha-Spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). Constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. alpha-Spinasterol is found in many foods, some of which are bitter gourd, towel gourd, muskmelon, and green vegetables. alpha-Spinasterol is found in alfalfa. alpha-Spinasterol is a constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Euphol

(3S,5R,10S,13S,14S)-17-((R)-1,5-Dimethyl-hex-4-enyl)-4,4,10,13,14-pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H50O (426.386145)


Euphol is a triterpenoid. Euphol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Euphorbia subspecies (CCD). Euphol is found in many foods, some of which are cucumber, soy bean, shea tree, and tea. Euphol is found in cucumber. Euphol is a constituent of Euphorbia species (CCD) Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

beta-Carotene

1,3,3-trimethyl-2-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4381776)


Beta-carotene is a cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. It has a role as a biological pigment, a provitamin A, a plant metabolite, a human metabolite, a mouse metabolite, a cofactor, a ferroptosis inhibitor and an antioxidant. It is a cyclic carotene and a carotenoid beta-end derivative. Beta-carotene, with the molecular formula C40H56, belongs to the group of carotenoids consisting of isoprene units. The presence of long chains of conjugated double bonds donates beta-carotene with specific colors. It is the most abundant form of carotenoid and it is a precursor of the vitamin A. Beta-carotene is composed of two retinyl groups. It is an antioxidant that can be found in yellow, orange and green leafy vegetables and fruits. Under the FDA, beta-carotene is considered as a generally recognized as safe substance (GRAS). Beta-Carotene is a natural product found in Epicoccum nigrum, Lonicera japonica, and other organisms with data available. Beta-Carotene is a naturally-occurring retinol (vitamin A) precursor obtained from certain fruits and vegetables with potential antineoplastic and chemopreventive activities. As an anti-oxidant, beta carotene inhibits free-radical damage to DNA. This agent also induces cell differentiation and apoptosis of some tumor cell types, particularly in early stages of tumorigenesis, and enhances immune system activity by stimulating the release of natural killer cells, lymphocytes, and monocytes. (NCI04) beta-Carotene is a metabolite found in or produced by Saccharomyces cerevisiae. A carotenoid that is a precursor of VITAMIN A. Beta carotene is administered to reduce the severity of photosensitivity reactions in patients with erythropoietic protoporphyria (PORPHYRIA, ERYTHROPOIETIC). See also: Lycopene (part of); Broccoli (part of); Lycium barbarum fruit (part of). Beta-Carotene belongs to the class of organic compounds known as carotenes. These are a type of polyunsaturated hydrocarbon molecules containing eight consecutive isoprene units. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Beta-carotene is therefore considered to be an isoprenoid lipid molecule. Beta-carotene is a strongly coloured red-orange pigment abundant in fungi, plants, and fruits. It is synthesized biochemically from eight isoprene units and therefore has 40 carbons. Among the carotenes, beta-carotene is distinguished by having beta-rings at both ends of the molecule. Beta-Carotene is biosynthesized from geranylgeranyl pyrophosphate. It is the most common form of carotene in plants. In nature, Beta-carotene is a precursor (inactive form) to vitamin A. Vitamin A is produed via the action of beta-carotene 15,15-monooxygenase on carotenes. In mammals, carotenoid absorption is restricted to the duodenum of the small intestine and dependent on a class B scavenger receptor (SR-B1) membrane protein, which is also responsible for the absorption of vitamin E. One molecule of beta-carotene can be cleaved by the intestinal enzyme Beta-Beta-carotene 15,15-monooxygenase into two molecules of vitamin A. Beta-Carotene contributes to the orange color of many different fruits and vegetables. Vietnamese gac and crude palm oil are particularly rich sources, as are yellow and orange fruits, such as cantaloupe, mangoes, pumpkin, and papayas, and orange root vegetables such as carrots and sweet potatoes. Excess beta-carotene is predominantly stored in the fat tissues of the body. The most common side effect of excessive beta-carotene consumption is carotenodermia, a physically harmless condition that presents as a conspicuous orange skin tint arising from deposition of the carotenoid in the outermost layer of the epidermis. Yellow food colour, dietary supplement, nutrient, Vitamin A precursor. Nutriceutical with antioxidation props. beta-Carotene is found in many foods, some of which are summer savory, gram bean, sunburst squash (pattypan squash), and other bread product. A cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins

   

Dihydrocucurbitacin B

[(6R)-6-[(2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-hydroxy-2-methyl-5-oxoheptan-2-yl] acetate

C32H48O8 (560.3349008)


23,24-dihydrocucurbitacin B is a 23,24-dihydrocucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at position 5; a hydroxy function at C-25 is acetylated. It is a 23,24-dihydrocucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It is functionally related to a cucurbitacin B. Dihydrocucurbitacin B is a natural product found in Bryonia alba, Citrullus colocynthis, and other organisms with data available. Dihydrocucurbitacin B, a triterpene isolated from Cayaponia tayuya roots, inhibits nuclear factor of activated T cells (NFAT), induces cell cycle arrested in the G0 phase, and inhibits delayed type hypersensitivity[1]. Dihydrocucurbitacin B, a triterpene isolated from Cayaponia tayuya roots, inhibits nuclear factor of activated T cells (NFAT), induces cell cycle arrested in the G0 phase, and inhibits delayed type hypersensitivity[1].

   

beta-Cryptoxanthin

(1R)-3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-3-en-1-ol

C40H56O (552.4330926)


beta-Cryptoxanthin has been isolated from abalone, fish eggs, and many higher plants. beta-Cryptoxanthin is a major source of vitamin A, often second only to beta-carotene, and is present in fruits such as oranges, tangerines, and papayas (PMID: 8554331). Frequent intake of tropical fruits that are rich in beta-cryptoxanthin is associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents. Papaya intake was the best food predictor of plasma beta-cryptoxanthin concentrations. Subjects that frequently consumed (i.e. greater or equal to 3 times/day) tropical fruits with at least 50 micro g/100 g beta-cryptoxanthin (e.g. papaya, tangerine, orange, watermelon) had twofold the plasma beta-cryptoxanthin concentrations of those with intakes of less than 4 times/week (PMID: 12368412). A modest increase in beta-cryptoxanthin intake, equivalent to one glass of freshly squeezed orange juice per day, is associated with a reduced risk of developing inflammatory disorders such as rheumatoid arthritis (PMID: 16087992). Higher prediagnostic serum levels of total carotenoids and beta-cryptoxanthin were associated with lower smoking-related lung cancer risk in middle-aged and older men in Shanghai, China (PMID: 11440962). Consistent with inhibition of the lung cancer cell growth, beta-cryptoxanthin induced the mRNA levels of retinoic acid receptor beta (RAR-beta) in BEAS-2B cells, although this effect was less pronounced in A549 cells. Furthermore, beta-cryptoxanthin transactivated the RAR-mediated transcription activity of the retinoic acid response element. These findings suggest a mechanism of anti-proliferative action of beta-cryptoxanthin and indicate that beta-cryptoxanthin may be a promising chemopreventive agent against lung cancer (PMID: 16841329). Cryptoxanthin is a natural carotenoid pigment. It has been isolated from a variety of sources including the petals and flowers of plants in the genus Physalis, orange rind, papaya, egg yolk, butter, apples, and bovine blood serum. In a pure form, cryptoxanthin is a red crystalline solid with a metallic lustre. It is freely soluble in chloroform, benzene, pyridine, and carbon disulfide. In the human body, cryptoxanthin is converted into vitamin A (retinol) and is therefore considered a provitamin A. As with other carotenoids, cryptoxanthin is an antioxidant and may help prevent free radical damage to cells and DNA, as well as stimulate the repair of oxidative damage to DNA. Structurally, cryptoxanthin is closely related to beta-carotene, with only the addition of a hydroxyl group. It is a member of the class of carotenoids known as xanthophylls. Beta-cryptoxanthin is a carotenol that exhibits antioxidant activity. It has been isolated from fruits such as papaya and oranges. It has a role as a provitamin A, an antioxidant, a biomarker and a plant metabolite. It derives from a hydride of a beta-carotene. beta-Cryptoxanthin is a natural product found in Hibiscus syriacus, Cladonia gracilis, and other organisms with data available. A mono-hydroxylated xanthophyll that is a provitamin A precursor. See also: Corn (part of). A carotenol that exhibits antioxidant activity. It has been isolated from fruits such as papaya and oranges. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins

   

alpha-Carotene

(6R)-1,5,5-trimethyl-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4381776)


alpha-Carotene belongs to the class of organic compounds known as carotenes. These are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. alpha-Carotene is considered to be an isoprenoid lipid molecule. alpha-Carotene is one of the primary isomers of carotene. Plasma levels of alpha-carotene are positively associated with the detection rate of AFB1-DNA adducts in a dose-dependent manner, whereas plasma lycopene level was inversely related to the presence of the adducts in urine (PMID: 9214602). (6R)-beta,epsilon-carotene is an alpha-carotene. It is an enantiomer of a (6S)-beta,epsilon-carotene. alpha-Carotene is a natural product found in Hibiscus syriacus, Scandix stellata, and other organisms with data available. Widespread carotenoid, e.g. in carrots and palm oil. Has vitamin A activity but less than that of b-Carotene A cyclic carotene with a beta- and an epsilon-ring at opposite ends respectively. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Karounidiol

(3r,6bs,8as,11r,12bs,14bs)-11-(hydroxymethyl)-4,4,6b,8a,11,12b,14b-heptamethyl-1,2,3,4,4a,5,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicen-3-ol

C30H48O2 (440.36541079999995)


Karounidiol is an organic hydroxy compound. Karounidiol is a natural product found in Benincasa hispida, Trichosanthes dioica, and other organisms with data available.

   

Trigonelline (N'-methylnicotinate)

Pyridinium, 3-carboxy-1-methyl-, hydroxide, inner salt

C7H7NO2 (137.0476762)


Trigonelline, also known as caffearin or gynesine, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. It is also found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. High amounts of trigonelline have been found in arabica coffee, fenugreeks, and common peas. Another foods such as yellow bell peppers, orange bellpeppers and muskmelons also contain trigonelline but in lower concentrations. Trigonelline has also been detected but not quantified in several different foods, such as rices, triticales, alfalfa, cereals and cereal products, and ryes. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. Alkaloid from fenugreek (Trigonella foenum-graecum) (Leguminosae), and very many other subspecies; also present in coffee beans and many animals. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. It is found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth.; Trigonelline is an alkaloid with chemical formula C7H7NO2. It is an inner salt formed by the addition of a methyl group to the nitrogen atom of niacin. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. N-methylnicotinate is an iminium betaine that is the conjugate base of N-methylnicotinic acid, arising from deprotonation of the carboxy group. It has a role as a plant metabolite, a food component and a human urinary metabolite. It is an iminium betaine and an alkaloid. It is functionally related to a nicotinate. It is a conjugate base of a N-methylnicotinic acid. Trigonelline is a natural product found in Hypoestes phyllostachya, Schumanniophyton magnificum, and other organisms with data available. See also: Fenugreek seed (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 52 KEIO_ID T060 Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis.

   

Squalene

InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24

C30H50 (410.39123)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

CucurbitacinA

[(E,5R)-5-[(2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-9-(hydroxymethyl)-4,4,13,14-tetramethyl-3,11-dioxo-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-5-hydroxy-1,1-dimethyl-4-oxo-hex-2-enyl] acetate

C32H46O9 (574.3141666)


Cucurbitacin A is a cucurbitacin. Cucurbitacin A is a natural product found in Hintonia standleyana, Cucumis prophetarum, and other organisms with data available.

   

Secoisolariciresinol

1,4-Butanediol, 2,3-bis((4-hydroxy-3-methoxyphenyl)methyl)-, (R-(R*,R*))-

C20H26O6 (362.17292960000003)


Secoisolariciresinol, also known as knotolan or secoisolariciresinol, (r*,s*)-isomer, is a member of the class of compounds known as dibenzylbutanediol lignans. Dibenzylbutanediol lignans are lignan compounds containing a 2,3-dibenzylbutane-1,4-diol moiety. Secoisolariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Secoisolariciresinol can be found in a number of food items such as grape, saskatoon berry, asparagus, and sweet potato, which makes secoisolariciresinol a potential biomarker for the consumption of these food products. Secoisolariciresinol can be found primarily in urine. Secoisolariciresinol is a lignan, a type of phenylpropanoid. It is present in the water extract of silver fir wood, where its content is more than 5 \\\\% . (-)-secoisolariciresinol is an enantiomer of secoisolariciresinol having (-)-(2R,3R)-configuration. It has a role as an antidepressant, a plant metabolite and a phytoestrogen. It is an enantiomer of a (+)-secoisolariciresinol. Secoisolariciresinol has been used in trials studying the prevention of Breast Cancer. Secoisolariciresinol is a natural product found in Fitzroya cupressoides, Crossosoma bigelovii, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.

   

Cycloartenol

(3R,6S,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol

C30H50O (426.386145)


Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane. Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)

   

Myricetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-

C15H10O8 (318.037566)


Myricetin, also known as cannabiscetin or myricetol, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, myricetin is considered to be a flavonoid lipid molecule. A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. Myricetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Myricetin is found, on average, in the highest concentration within a few different foods, such as common walnuts, carobs, and fennels and in a lower concentration in welsh onions, yellow bell peppers, and jutes. Myricetin has also been detected, but not quantified in several different foods, such as napa cabbages, sesames, mixed nuts, lichee, and garden cress. Myricetin is a hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. It has a role as a cyclooxygenase 1 inhibitor, an antineoplastic agent, an antioxidant, a plant metabolite, a food component, a hypoglycemic agent and a geroprotector. It is a hexahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a myricetin(1-). Myricetin is a natural product found in Ficus auriculata, Visnea mocanera, and other organisms with data available. Myricetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Quercetin (related). Flavanol found in a wide variety of foodstuffs especially in red table wine, bee pollen, bilberries, blueberries, bog whortleberries, broad beans, Chinese bajberry, corn poppy leaves, cranberries, crowberries, blackcurrants, dock leaves, fennel, grapes, parsley, perilla, rutabaga, dill weed and tea (green and black). Glycosides are also widely distributed. Potential nutriceutical showing anti-HIV activity A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB066_Myricetin_pos_30eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_20eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_40eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_50eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_10eV_CB000028.txt [Raw Data] CB066_Myricetin_neg_10eV_000019.txt [Raw Data] CB066_Myricetin_neg_40eV_000019.txt [Raw Data] CB066_Myricetin_neg_50eV_000019.txt [Raw Data] CB066_Myricetin_neg_20eV_000019.txt [Raw Data] CB066_Myricetin_neg_30eV_000019.txt Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities.

   

Gibberellin A4

NCGC00380182-01_C19H24O5_(1R,2R,5R,8R,9S,10R,12S)-12-Hydroxy-11-methyl-6-methylene-16-oxo-15-oxapentacyclo[9.3.2.1~5,8~.0~1,10~.0~2,8~]heptadecane-9-carboxylic acid

C19H24O5 (332.1623654)


A C19-gibberellin, initially identified in Gibberella fujikuroi and differing from gibberellin A1 by the substitution of the OH at C-7 (gibbane numbering) by H. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 16

   

Gibberellin A3

(1S,2S,4aR,4bR,7S,9aS,10S,10aR)-2,7-dihydroxy-1-methyl-8-methylidene-13-oxo-1,2,4b,5,6,7,8,9,10,10a-decahydro-4a,1-(epoxymethano)-7,9a-methanobenzo[a]azulene-10-carboxylic acid

C19H22O6 (346.1416312)


Gibberellic acid, also known as gibberellin A3, GA, or GA3, is a very potent hormone whose natural occurrence in plants controls their development. Since GA regulates growth, applications of very low concentrations can have a profound effect while too much will have the opposite effect. Gibberellic acid is a hormone found in plants. Gibberellic acid is a simple gibberellin promoting the growth and elongation of cells. It affects the decomposition of plants. It also helps plants grow if used in small amounts but eventually, plants grow a tolerance for it. Gibberellic acid stimulates the cells of germinating seeds to produce mRNA molecules that code for hydrolytic enzymes. Gibberellic acid is a white powder. (NTP, 1992) Gibberellin A3 is a C19-gibberellin that is a pentacyclic diterpenoid responsible for promoting growth and elongation of cells in plants. Initially identified in Gibberella fujikuroi,it differs from gibberellin A1 in the presence of a double bond between C-3 and C-4. It has a role as a plant metabolite and a mouse metabolite. It is a lactone, a gibberellin monocarboxylic acid, an organic heteropentacyclic compound and a C19-gibberellin. It is a conjugate acid of a gibberellin A3(1-). Gibberellic acid is a natural product found in Cocos nucifera, Prunus cerasus, and other organisms with data available. Gibberellins (GAs) are plant hormones that regulate growth and influence various developmental processes, including stem elongation, germination, dormancy, flowering, sex expression, enzyme induction, and leaf and fruit senescence. Gibberellins is found in many foods, some of which are common wheat, potato, sunflower, and common pea. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3262; ORIGINAL_PRECURSOR_SCAN_NO 3260 CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3253; ORIGINAL_PRECURSOR_SCAN_NO 3251 CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3271; ORIGINAL_PRECURSOR_SCAN_NO 3269 CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3249; ORIGINAL_PRECURSOR_SCAN_NO 3246 CONFIDENCE standard compound; INTERNAL_ID 449; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3255; ORIGINAL_PRECURSOR_SCAN_NO 3254 KEIO_ID G074 Gibberellic Acid is named after a fungus Gibberella fujikuroi . Gibberellic Acid regulates processes of plant development and growth, including seed development and germination, stem and root growth, cell division, and flowering time[1]. Gibberellic Acid is named after a fungus Gibberella fujikuroi . Gibberellic Acid regulates processes of plant development and growth, including seed development and germination, stem and root growth, cell division, and flowering time[1].

   

Arachidate (20:0)

n-Eicosanoic acid

C20H40O2 (312.302814)


Arachidic acid, also known as icosanoic acid, is a saturated fatty acid with a 20-carbon chain. It is a minor constituent of butter, perilla oil, peanut oil, corn oil, and cocoa butter. It also constitutes 7.08\\\\% of the fats from the fruit of the durian species Durio graveolens. The salts and esters of arachidic acid are known as arachidates. Its name derives from the Latin arachis that means peanut. It can be formed by the hydrogenation of arachidonic acid. The reduction of arachidic acid yields arachidyl alcohol. Arachidic acid is used for the production of detergents, photographic materials and lubricants. Arachidic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Arachidic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

Tridecanoic acid

(S)-2-Aminotridecanoic acid

C13H26O2 (214.1932696)


Tridecanoic acid, also known as N-tridecanoate or C13:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Tridecanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tridecanoic acid is a potentially toxic compound. Tridecanoic acid is a short-chain fatty acid. Tridecanoic acid is found in many foods, some of which are nutmeg, muskmelon, black elderberry, and coconut. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].

   

Oleic acid

Emersol 221 low titer white oleic acid

C18H34O2 (282.2558664)


Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Linoleic acid

C18:2 9C, 12C Omega6 todos cis-9,12-octadienoico

C18H32O2 (280.2402172)


Linoleic acid is a doubly unsaturated fatty acid, also known as an omega-6 fatty acid, occurring widely in plant glycosides. In this particular polyunsaturated fatty acid (PUFA), the first double bond is located between the sixth and seventh carbon atom from the methyl end of the fatty acid (n-6). Linoleic acid is an essential fatty acid in human nutrition because it cannot be synthesized by humans. It is used in the biosynthesis of prostaglandins (via arachidonic acid) and cell membranes (From Stedman, 26th ed). Linoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5] Linoleic acid is a polyunsaturated, omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from Latin linum 'flax', and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.

   

Dodecanoic acid

dodecanoic acid

C12H24O2 (200.1776204)


Dodecanoic acid, also known as dodecanoate or lauric acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Dodecanoic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Dodecanoic acid is the main fatty acid in coconut oil and in palm kernel oil, and is believed to have antimicrobial properties. It is a white, powdery solid with a faint odour of bay oil. Dodecanoic acid, although slightly irritating to mucous membranes, has a very low toxicity and so is used in many soaps and shampoos. Defoamer, lubricant. It is used in fruit coatings. Occurs as glyceride in coconut oil and palm kernel oil. Simple esters are flavour ingredients Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

Pentadecanoic acid

n-Pentadecanoic acid

C15H30O2 (242.224568)


Pentadecanoic acid, also known as pentadecylic acid or C15:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Pentadecanoic acid (its ester is called pentadecanoate) is a saturated fatty acid that has 15 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. Pentadecanoic acid is found in plants and ruminants. Many "odd" length long-chain fatty acids, such as pentadecanoic acid, are derived from the consumption of cattle fats (milk and meat). Pentadecanoic acid constitutes 1.05\\\\% of milk fat and 0.43\\\\% of ruminant meat fat. The content of pentadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID: 9701185; PMID: 11238766). A fatty acid of exogenous (primarily ruminant) origin. Many "odd" length long chain amino acids are derived from the consumption of dairy fats (milk and meat). Pentadecanoic acid constitutes 1.05\\\\% of milk fat and 0.43\\\\% of ruminant meat fat. The content of heptadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID 9701185; PMID 11238766). Pentadecanoic acid is found in many foods, some of which are common bean, coriander, pepper (c. annuum), and hamburger. CONFIDENCE standard compound; INTERNAL_ID 248 Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.

   

Matairesinol

(3R,4R)-Dihydro-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]-2(3H)-furanone; (-)-Matairesinol; (8R,8R)-(-)-Matairesinol

C20H22O6 (358.1416312)


Matairesinol belongs to the class of organic compounds known as dibenzylbutyrolactone lignans. These are lignan compounds containing a 3,4-dibenzyloxolan-2-one moiety. Matairesinol is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, matairesinol is found, on average, in the highest concentration in a few different foods such as sesame, burdocks, and flaxseeds, and in a lower concentration in oats, asparagus, and poppies. Matairesinol has also been detected, but not quantified in, several different foods, such as silver lindens, tamarinds, cherry tomato, skunk currants, and fireweeds. This could make matairesinol a potential biomarker for the consumption of these foods. Matairesinol is composed of gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). (-)-matairesinol is a lignan that is gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). It has a role as a phytoestrogen, a plant metabolite, an angiogenesis inhibitor and an anti-asthmatic agent. It is a polyphenol, a lignan and a gamma-lactone. Matairesinol is a natural product found in Crossosoma bigelovii, Brassica oleracea var. sabauda, and other organisms with data available. See also: Arctium lappa fruit (part of); Pumpkin Seed (part of). Matairesinol is a plant lignan. It occurs with secoisolariciresinol in numerous foods such as oil seeds, whole grains, vegetables, and fruits. (-)-Matairesinol is found in many foods, some of which are caraway, pecan nut, cereals and cereal products, and longan. A lignan that is gamma-butyrolactone in which the 3 and 4 positions are substituted by 4-hydroxy-3-methoxybenzyl groups (the 3R,4R-diastereomer). Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1]. Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1].

   

Benzyl acetate

Benzyl acetate + glycine combination

C9H10O2 (150.06807600000002)


Benzyl acetate, also known as benzyl ethanoate or fema 2135, belongs to the class of organic compounds known as benzyloxycarbonyls. These are organic compounds containing a carbonyl group substituted with a benzyloxyl group. Benzyl acetate is a sweet, apple, and apricot tasting compound. Benzyl acetate is found, on average, in the highest concentration within sweet basils. Benzyl acetate has also been detected, but not quantified, in several different foods, such as figs, fruits, pomes, tea, and alcoholic beverages. On high concnetrations benzyl acetate is a potentially toxic compound. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. Occurs in jasmine, apple, cherry, guava fruit and peel, wine grape, white wine, tea, plum, cooked rice, Bourbon vanilla, naranjila fruit (Solanum quitoense), Chinese cabbage and quince. Flavouring agent Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1]. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1].

   

Methyl acetate

Ethyl ester OF monoacetic acid

C3H6O2 (74.0367776)


Methyl acetate belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Methyl acetate is present in apple, grape, banana and other fruits. Methyl acetate is a flavouring ingredient and it is an ester that, in the laboratory, is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature. Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants Methyl acetate is an ester that is synthesized from acetic acid and methanol in the presence of strong acids such as sulfuric acid in an esterification reaction. In the presence of strong bases such as sodium hydroxide or strong acids such as hydrochloric acid or sulfuric acid it is hydrolyzed back into methanol and acetic acid, especially at elevated temperature.; Methyl acetate, also known as acetic acid methyl ester or methyl ethanoate, is a clear, flammable liquid with a characteristic, not unpleasant smell like certain glues or nail polish removers. Methyl acetate has characteristics very similar to its analog ethyl acetate. Methyl acetate is used as a solvent in glues, paints, and nail polish removers, in chemical reactions, and for extractions. Methyl acetate is a non-polar (lipophilic) to weakly polar (hydrophilic) aprotic solvent. Methyl acetate has a solubility of 25\\% in water at room temperature. At elevated temperature its solubility in water is much higher. Methyl acetate is not stable in the presence of strong aqueous bases or acids. Methyl acetate is VOC exempt.; The conversion of methyl acetate back into its components, by an acid, is a first-order reaction with respect to the ester. The reaction of methyl acetate and a base, for example sodium hydroxide, is a second-order reaction with respect to both reactants. Methyl acetate is a flavouring agent and can be found in many foods, some of which are apple, grape, banana, orange mint, and ginger.

   

Gibberellin A5

(1R,2R,5S,8S,9S,10R,11R)-5-hydroxy-11-methyl-6-methylidene-16-oxo-15-oxapentacyclo[9.3.2.1(5,8).0(1,10).0(2,8)]heptadec-12-ene-9-carboxylic acid

C19H22O5 (330.1467162)


Gibberellin A5 is a C19-gibberellin initially identified in Gibberella fujikuroi and differing from gibberellin A1 by the absence of the OH at C-2 and the presence of a double bond between C-3 and C-3 (gibbane numbering). It has a role as a plant metabolite and a mouse metabolite. It is a lactone, a C19-gibberellin and a gibberellin monocarboxylic acid. Gibberellin A5 is a natural product found in Prunus persica var. nucipersica, Cucumis melo, and other organisms with data available. A C19-gibberellin initially identified in Gibberella fujikuroi and differing from gibberellin A1 by the absence of the OH at C-2 and the presence of a double bond between C-3 and C-3 (gibbane numbering).

   

Gibberellin A8

2beta-Hydroxygibberellin 1

C19H24O7 (364.1521954)


A C19-gibberellin, initially identified in Phaseolus coccineus. It differs from gibberellin A1 in the presence of an extra beta-OH group at C-3 (gibbane numbering).

   

gibberellin A20

gibberellin A20

C19H24O5 (332.1623654)


A C19-gibberellin that is a pentacyclic diterpenoid responsible for promoting growth and development. Initially identified in Gibberella fujikuroi, it differs from gibberellin A1 in lacking an OH group at C-2 (gibbane numbering).

   

Behenic acid

Docosanoic acid from Rapeseed

C22H44O2 (340.3341124)


Behenic acid, also known as docosanoate or 1-docosanoic acid, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, behenic acid is considered to be a fatty acid lipid molecule. Behenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Behenic acid can be found in a number of food items such as rice, opium poppy, pepper (c. frutescens), and gram bean, which makes behenic acid a potential biomarker for the consumption of these food products. Behenic acid can be found primarily in blood, feces, and urine. Behenic acid (also docosanoic acid) is a carboxylic acid, the saturated fatty acid with formula C21H43COOH. In appearance, it consists of white to cream color crystals or powder with a melting point of 80 °C and boiling point of 306 °C . Behenic acid, also docosanoic acid, is a normal carboxylic acid, a fatty acid with formula C21H43COOH. It is an important constituent of the behen oil extracted from the seeds of the Ben-oil tree, and it is so named from the Persian month Bahman when the roots of this tree were harvested. Behenic acid has been identified in the human placenta (PMID:32033212). Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.

   

Phytoene

(6E,10E,14E,16E,18E,22E,26E)-2,6,10,14,19,23,27,31-Octamethyldotriaconta-2,6,10,14,16,18,22,26,30-nonaene

C40H64 (544.5007744)


Phytoene, also known as all-trans-phytoene or 15-cis-phytoene, is a member of the class of compounds known as carotenes. Carotenes are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Thus, phytoene is considered to be an isoprenoid lipid molecule. Phytoene can be found in a number of food items such as turmeric, garden onion, winter squash, and coconut, which makes phytoene a potential biomarker for the consumption of these food products. Phytoene can be found primarily in blood and breast milk. Phytoene (FY-toe-een) is a 40-carbon intermediate in the biosynthesis of carotenoids. The synthesis of phytoene is the first committed step in the synthesis of carotenoids in plants. Phytoene is produced from two molecules of geranylgeranyl pyrophosphate (GGPP) by the action of the enzyme phytoene synthase. The two GGPP molecules are condensed together followed by removal of diphosphate and proton shift leading to the formation of phytoene . Phytoene, also known as 7,7,8,8,11,11,12,12-octahydrocarotene, is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

all-trans-Phytofluene

(6E,10E,12E,14E,16E,18E,22E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene

C40H62 (542.4851252)


all-trans-Phytofluene is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important. (PMID: 1416048, 15003396). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids 7,7,8,8,11,12-Hexahydro-Carotene is a carotenoid found in human fluids.

   

7,7',8,8'-Tetrahydrolycopene

(6E,10Z,12E,14E,16E,18E,20E,22Z,26E)-2,6,10,14,19,23,27,31-Octamethyldotriaconta-2,6,10,12,14,16,18,20,22,26,30-undecaene

C40H60 (540.469476)


7,7,8,8-Tetrahydrolycopene, also known as zeta-carotene, is a carotenoid found in human serum and breast milk (PMID: 9164160). Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). 7,7,8,8-Tetrahydrolycopene is found in root vegetables and is a constituent of carrot oil and many other natural products. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Benzaldehyde

Phenylmethanal benzenecarboxaldehyde

C7H6O (106.0418626)


Benzaldehyde is occasionally found as a volatile component of urine. Benzaldehyde is an aromatic aldehyde used in cosmetics as a denaturant, a flavoring agent, and as a fragrance. Currently used in only seven cosmetic products, its highest reported concentration of use was 0.5\\% in perfumes. Benzaldehyde is a generally regarded as safe (GRAS) food additive in the United States and is accepted as a flavoring substance in the European Union. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde. Benzaldehyde is absorbed through skin and by the lungs, distributes to all well-perfused organs, but does not accumulate in any specific tissue type. After being metabolized to benzoic acid, conjugates are formed with glycine or glucuronic acid, and excreted in the urine. Several studies have suggested that Benzaldehyde can have carcinostatic or antitumor properties. Overall, at the concentrations used in cosmetics, Benzaldehyde was not considered a carcinogenic risk to humans. Although there are limited irritation and sensitization data available for Benzaldehyde, the available dermal irritation and sensitization data and ultraviolet (UV) absorption and phototoxicity data demonstrating no adverse reactions to Benzoic Acid support the safety of Benzaldehyde as currently used in cosmetic products. (PMID:16835129, Int J Toxicol. 2006;25 Suppl 1:11-27.). Found in plants, especies in almond kernelsand is) also present in strawberry jam, leek, crispbread, cheese, black tea and several essential oils. Parent and derivs. (e.g. glyceryl acetal) are used as flavourings

   

1-Nonanol

pelargonic alcohol

C9H20O (144.151407)


1-Nonanol is found in citrus. 1-Nonanol is widespread in nature. 1-Nonanol occurs in oils of orange, citronella and lemon. Also found in cheese, prickly pears and bread. 1-Nonanol is a straight chain fatty alcohol with nine carbon atoms and the molecular formula CH3(CH2)8OH. It is a colorless to slightly yellow liquid with a citrus odor similar to citronella oil Widespread in nature. Occurs in oils of orange, citronella and lemonand is also found in cheese, prickly pears and bread. Flavouring agent

   

n-Butyl acetate

Butyl ester OF acetic acid

C6H12O2 (116.08372519999999)


n-Butyl acetate is a flavouring ingredient used in apple flavours. n-Butyl acetate, also known as butyl ethanoate, is an organic compound commonly used as a solvent in the production of lacquers and other products. It is also used as a synthetic fruit flavoring in foods such as candy, ice cream, cheeses, and baked goods. Butyl acetate is found in many types of fruit, where along with other chemicals it imparts characteristic flavors. Apples, especially of the Red Delicious variety, are flavored in part by this chemical. It is a colourless flammable liquid with a sweet smell of banana. Flavouring ingredient used in apple flavours

   

Ethyl acetate

Ethyl ester OF acetic acid

C4H8O2 (88.0524268)


Ethyl acetate, also known as 1-acetoxyethane or acetic ester, belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Ethyl acetate exists in all eukaryotes, ranging from yeast to humans. Ethyl acetate is a sweet, anise, and balsam tasting compound. Ethyl acetate is found, on average, in the highest concentration within a few different foods, such as milk (cow), pineapples, and sweet oranges and in a lower concentration in safflowers. Ethyl acetate has also been detected, but not quantified, in several different foods, such as alcoholic beverages, oxheart cabbages, agaves, chervils, ryes, and peach. It is used in artificial fruit essences. In the field of entomology, ethyl acetate is an effective asphyxiant for use in insect collecting and study. Because it is not hygroscopic, ethyl acetate also keeps the insect soft enough to allow proper mounting suitable for a collection. In a killing jar charged with ethyl acetate, the vapors will kill the collected (usually adult) insect quickly without destroying it. In organic and in natural products chemistry ethyl acetate is often used as a solvent for reactions or extractions. Ethyl acetate is a potentially toxic compound. Ethyl acetate, with regard to humans, has been found to be associated with several diseases such as perillyl alcohol administration for cancer treatment, crohns disease, nonalcoholic fatty liver disease, and pervasive developmental disorder not otherwise specified; ethyl acetate has also been linked to the inborn metabolic disorder celiac disease. Found in cereal crops, radishes, fruit juices, beer, wine, spirits etc. and produced by Anthemis nobilis (Roman chamomile) and Rubus subspecies It is used in artificial fruit essences. It is used as a solvent in the manufacture of modified hop extract and decaffeinated tea or coffeeand is also used for colour and inks used to mark fruit or vegetables

   

Gibberellin A34

2EC,3EC,4aI<<-Trihydroxy-1EC-methyl-8-methylenegibbane-1I<<,10EC-dicarboxylic acid 1,4a-lactone

C19H24O6 (348.1572804)


   

Acetaldehyde

Acetic aldehyde

C2H4O (44.0262134)


Acetaldehyde, also known as ethanal, belongs to the class of organic compounds known as short-chain aldehydes. These are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Acetaldehyde exists in all living species, ranging from bacteria to humans. Within humans, acetaldehyde participates in a number of enzymatic reactions. In particular, acetaldehyde can be biosynthesized from ethanol which is mediated by the enzyme alcohol dehydrogenase 1B. Acetaldehyde can also be converted to acetic acid by the enzyme aldehyde dehydrogenase (mitochondrial) and aldehyde dehydrogenase X (mitochondrial). The main method of production is the oxidation of ethylene by the Wacker process, which involves oxidation of ethylene using a homogeneous palladium/copper system: 2 CH2CH2 + O2 → 2 CH3CHO. In the 1970s, the world capacity of the Wacker-Hoechst direct oxidation process exceeded 2 million tonnes annually. In humans, acetaldehyde is involved in disulfiram action pathway. Acetaldehyde is an aldehydic, ethereal, and fruity tasting compound. Outside of the human body, acetaldehyde is found, on average, in the highest concentration in a few different foods, such as sweet oranges, pineapples, and mandarin orange (clementine, tangerine) and in a lower concentration in . acetaldehyde has also been detected, but not quantified in several different foods, such as malabar plums, malus (crab apple), rose hips, natal plums, and medlars. This could make acetaldehyde a potential biomarker for the consumption of these foods. In condensation reactions, acetaldehyde is prochiral. Acetaldehyde is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Acetaldehyde has been found to be associated with several diseases such as alcoholism, ulcerative colitis, nonalcoholic fatty liver disease, and crohns disease; also acetaldehyde has been linked to the inborn metabolic disorders including aldehyde dehydrogenase deficiency (III) sulfate is used to reoxidize the mercury back to the mercury. Acetaldehyde was first observed by the Swedish pharmacist/chemist Carl Wilhelm Scheele (1774); it was then investigated by the French chemists Antoine François, comte de Fourcroy and Louis Nicolas Vauquelin (1800), and the German chemists Johann Wolfgang Döbereiner (1821, 1822, 1832) and Justus von Liebig (1835). At room temperature, acetaldehyde (CH3CHO) is more stable than vinyl alcohol (CH2CHOH) by 42.7 kJ/mol: Overall the keto-enol tautomerization occurs slowly but is catalyzed by acids. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Acetaldehyde is also created by thermal degradation or ultraviolet photo-degradation of some thermoplastic polymers during or after manufacture. The water industry generally recognizes 20–40 ppb as the taste/odor threshold for acetaldehyde. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity. Flavouring agent and adjuvant used to impart orange, apple and butter flavours; component of food flavourings added to milk products, baked goods, fruit juices, candy, desserts and soft drinks [DFC]

   

Ethanol

Ethyl alcohol in alcoholic beverages

C2H6O (46.0418626)


Ethanol is a clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in alcoholic beverages. Indeed, ethanol has widespread use as a solvent of substances intended for human contact or consumption, including scents, flavorings, colorings, and medicines. Ethanol has a depressive effect on the central nervous system and because of its psychoactive effects, it is considered a drug. Ethanol has a complex mode of action and affects multiple systems in the brain, most notably it acts as an agonist to the GABA receptors. Death from ethanol consumption is possible when blood alcohol level reaches 0.4\\%. A blood level of 0.5\\% or more is commonly fatal. Levels of even less than 0.1\\% can cause intoxication, with unconsciousness often occurring at 0.3-0.4 \\%. Ethanol is metabolized by the body as an energy-providing carbohydrate nutrient, as it metabolizes into acetyl CoA, an intermediate common with glucose metabolism, that can be used for energy in the citric acid cycle or for biosynthesis. Ethanol within the human body is converted into acetaldehyde by alcohol dehydrogenase and then into acetic acid by acetaldehyde dehydrogenase. The product of the first step of this breakdown, acetaldehyde, is more toxic than ethanol. Acetaldehyde is linked to most of the clinical effects of alcohol. It has been shown to increase the risk of developing cirrhosis of the liver,[77] multiple forms of cancer, and alcoholism. Industrially, ethanol is produced both as a petrochemical, through the hydration of ethylene, and biologically, by fermenting sugars with yeast. Small amounts of ethanol are endogenously produced by gut microflora through anaerobic fermentation. However most ethanol detected in biofluids and tissues likely comes from consumption of alcoholic beverages. Absolute ethanol or anhydrous alcohol generally refers to purified ethanol, containing no more than one percent water. Absolute alcohol is not intended for human consumption. It often contains trace amounts of toxic benzene (used to remove water by azeotropic distillation). Consumption of this form of ethanol can be fatal over a short time period. Generally absolute or pure ethanol is used as a solvent for lab and industrial settings where water will disrupt a desired reaction. Pure ethanol is classed as 200 proof in the USA and Canada, equivalent to 175 degrees proof in the UK system. Ethanol is a general biomarker for the consumption of alcohol. Ethanol is also a metabolite of Hansenula and Saccharomyces (PMID: 14613880) (https://ac.els-cdn.com/S0079635206800470/1-s2.0-S0079635206800470-main.pdf?_tid=4d340044-3230-4141-88dd-deec4d2e35bd&acdnat=1550288012_0c4a20fe963843426147979d376cf624). Intoxicating constituent of all alcoholic beverages. It is used as a solvent and vehicle for food dressings and flavourings. Antimicrobial agent, e.g for pizza crusts prior to baking. extraction solvent for foodstuffs. Widely distributed in fruits and other foods V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AZ - Nerve depressants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D000890 - Anti-Infective Agents D012997 - Solvents

   

24-Methylenecycloartan-3-ol

(1S,3R,6S,8R,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methyl-5-methylideneheptan-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol

C31H52O (440.4017942)


24-methylenecycloartan-3-ol belongs to cycloartanols and derivatives class of compounds. Those are steroids containing a cycloartanol moiety. 24-methylenecycloartan-3-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 24-methylenecycloartan-3-ol can be found in a number of food items such as oregon yampah, common persimmon, pineapple, and climbing bean, which makes 24-methylenecycloartan-3-ol a potential biomarker for the consumption of these food products.

   

beta-Ionone

InChI=1/C13H20O/c1-10-6-5-9-13(3,4)12(10)8-7-11(2)14/h7-8H,5-6,9H2,1-4H3/b8-7

C13H20O (192.151407)


Beta-ionone is a colorless to light yellow liquid with an odor of cedar wood. In very dilute alcoholic solution the odor resembles odor of violets. Used in perfumery. Beta-ionone is an ionone that is but-3-en-2-one substituted by a 2,6,6-trimethylcyclohex-1-en-1-yl group at position 4. It has a role as an antioxidant and a fragrance. beta-Ionone is a natural product found in Nepeta nepetella, Vitis rotundifolia, and other organisms with data available. beta-Ionone is a metabolite found in or produced by Saccharomyces cerevisiae. beta-Ionone, also known as (e)-b-ionone or trans-beta-ionone, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Found in many essential oils including oil of Boronia megastigma (brown boronia) and coml. ionone. Flavouring agent An ionone that is but-3-en-2-one substituted by a 2,6,6-trimethylcyclohex-1-en-1-yl group at position 4. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1]. β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1].

   

Cinnamyl acetate

(2Z)-3-Phenylprop-2-en-1-yl acetic acid

C11H12O2 (176.0837252)


Constituent of Cassia and basil oilsand is also present in guava fruit and peel, starfruit, melon and strawberry jam. Flavouring ingredient. Cinnamyl acetate is found in many foods, some of which are chinese cinnamon, fruits, sweet bay, and ceylon cinnamon. Cinnamyl acetate is found in ceylan cinnamon. Cinnamyl acetate is a constituent of Cassia and basil oils. Also present in guava fruit and peel, starfruit, melon and strawberry jam. Cinnamyl acetate is a flavouring ingredient Cinnamyl acetate has a wide application in the flavor and fragrance industry[1]. Cinnamyl acetate is a new broad spectrum antibacterial agent[2]. Cinnamyl acetate has a wide application in the flavor and fragrance industry[1]. Cinnamyl acetate is a new broad spectrum antibacterial agent[2].

   

24-Methylenecholesterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methyl-5-methylideneheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548466)


24-Methylenecholesterol, also known as chalinasterol or ostreasterol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 24-methylenecholesterol is considered to be a sterol lipid molecule. 24-Methylenecholesterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 24-Methylenecholesterol is involved in the biosynthesis of steroids. 24-Methylenecholesterol is converted from 5-dehydroepisterol by 7-dehydrocholesterol reductase (EC 1.3.1.21). 24-Methylenecholesterol is converted into campesterol by delta24-sterol reductase (EC 1.3.1.72). 24-methylenecholesterol is a 3beta-sterol having the structure of cholesterol with a methylene group at C-24. It has a role as a mouse metabolite. It is a 3beta-sterol and a 3beta-hydroxy-Delta(5)-steroid. It is functionally related to a cholesterol. 24-Methylenecholesterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol having the structure of cholesterol with a methylene group at C-24. Constituent of clams and oysters 24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].

   

3-Phenylpropyl acetate

laquo gammaraquo -Phenylpropyl acetate

C11H14O2 (178.09937440000002)


3-Phenylpropyl acetate is found in alcoholic beverages. 3-Phenylpropyl acetate is a flavouring ingredient. 3-Phenylpropyl acetate is present in guava fruit and peel, melon, rum and cassia leaf. 3-Phenylpropyl acetate is a flavouring ingredient. It is found in many foods, some of which are chinese cinnamon, fruits, ceylon cinnamon, and alcoholic beverages.

   

15-cis-Phytoene

(6E,10E,14E,16Z,18E,22E,26E)-2,6,10,14,19,23,27,31-Octamethyldotriaconta-2,6,10,14,16,18,22,26,30-nonaene

C40H64 (544.5007744)


15-cis-Phytoene is found in cauliflower. 15-cis-Phytoene is isolated from tomato (Lycopersicon esculentum var. `Tangella). 7,7,8,8,11,11,12,12-Octahydrocarotene, is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

9-cis-beta-Carotene

1,3,3-trimethyl-2-[(1E,3Z,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4381776)


9-cis-beta-Carotene is a cyclic carotene having the structure of beta-carotene but with a cis double bond at the 9,10-position. It is found in human serum and breast milk (PMID: 9164160). Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396).

   

Dihydrobrassicasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S)-5,6-Dimethylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H48O (400.37049579999996)


24-epicampesterol is a 3beta-sterol, a member of phytosterols, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. 22,23-Dihydrobrassicasterol is a natural product found in Euphorbia fischeriana, Sambucus chinensis, and other organisms with data available. Occurs in Physalis peruviana (Cape gooseberry). Dihydrobrassicasterol is found in many foods, some of which are watermelon, muskmelon, fruits, and cucumber. Dihydrobrassicasterol is found in cucumber. Dihydrobrassicasterol occurs in Physalis peruviana (Cape gooseberry

   

Tirucallol

(3S,5R,10S,13S,14S,17S)-4,4,10,13,14-pentamethyl-17-((S)-6-methylhept-5-en-2-yl)-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H50O (426.386145)


Tirucallol is a triterpenoid. Tirucallol is a natural product found in Euphorbia oxyphylla, Euphorbia caducifolia, and other organisms with data available. Constituent of gum mastic and pistachio nut resin. Tirucallol is found in many foods, some of which are soy bean, tea, cucumber, and muskmelon. Tirucallol is found in cucumber. Tirucallol is a constituent of gum mastic and pistachio nut resin. Tirucallol, a tetracyclic triterpene, is isolated from Euphorbia lacteal latex. Tirucallol has topical anti-inflammatory effect. Tirucallol can suppress ear edema in the mouse model and inhibit nitrite production in lipopolysaccharide-stimulated macrophages[1]. Tirucallol, a tetracyclic triterpene, is isolated from Euphorbia lacteal latex. Tirucallol has topical anti-inflammatory effect. Tirucallol can suppress ear edema in the mouse model and inhibit nitrite production in lipopolysaccharide-stimulated macrophages[1].

   

Ethyl decanoate

Ethyl ester OF decanoic acid

C12H24O2 (200.1776204)


Present in sweet and sour cherry, pineapple, blackberry, plum, quince, cape gooseberry, pawpaw, crispbread, wines, spirits, cerimon (Monstera deliciosa) and roasted filbert. Flavouring agent. Ethyl decanoate is found in many foods, some of which are fruits, german camomile, nuts, and sweet marjoram. Ethyl decanoate, also known as ethyl caprate or ethyl capric acid, belongs to the class of organic compounds known as fatty acid esters. These are carboxylic ester derivatives of a fatty acid. Ethyl decanoate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral.

   

Heptadecanoic acid

Margaric acid, nickel (2+) salt

C17H34O2 (270.2558664)


Heptadecanoic acid, or margaric acid, is a saturated fatty acid. It occurs as a trace component of the fat and milkfat of ruminants, but it does not occur in any natural animal or vegetable fat at concentrations over half a percent. Salts and esters of heptadecanoic acid are called heptadecanoates (Wikipedia). Heptadecanoic acid is found in many foods, some of which are dandelion, potato, ginger, and green bean. Heptadecanoic acid is a constituent of Erythrina crista-galli trunkwood and bark. Common constituent of lipids, e.g. present in Physalia physalis (Portuguese-man-of-war). Heptadecanoic acid is a fatty acid of exogenous (primarily ruminant) origin. Many "odd" length long chain amino acids are derived from the consumption of dairy fats (milk and meat). Heptadecanoic acid constitutes 0.61\\\\% of milk fat and 0.83\\\\% of ruminant meat fat. The content of heptadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID 9701185). Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

1-Hexanol

1-Hexanol, aluminum salt

C6H14O (102.10445940000001)


1-Hexanol is an organic alcohol with a six carbon chain and a condensed structural formula of CH3(CH2)5OH. This colorless liquid is slightly soluble in water, but miscible with ether and ethanol. Two additional straight chain isomers of 1-hexanol exist, 2-hexanol and 3-hexanol, both of which differ by the location of the hydroxyl group. Many isomeric alcohols have the formula C6H13OH. 1-hexanol is believed to be a component of the odour of freshly mowed grass. It is used in the perfume industry and as a flavouring agent. 1-Hexanol is found in many foods, some of which are lemon, tea, yellow bell pepper, and hyssop. 1-Hexanol is a common constituent of essential oils (e.g. orange peel oil). 1-Hexanol is an organic alcohol with a six carbon chain and a condensed structural formula of CH3(CH2)5OH. This colorless liquid is slightly soluble in water, but miscible with ether and ethanol. Two additional straight chain isomers of 1-hexanol exist, 2-hexanol and 3-hexanol, both of which differ by the location of the hydroxyl group. Many isomeric alcohols have the formula C6H13OH. 1-hexanol is believed to be a component of the odour of freshly mown grass. It is used in the perfume industry. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Hexyl acetate

1-Octanamine, hydrochloride

C8H16O2 (144.1150236)


Hexyl acetate, also known as N-hexyl ethanoate or hexyl acetic acid, belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). The acetate ester of hexan-1-ol. Hexyl acetate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hexyl acetate is a sweet, apple, and banana tasting compound. Hexyl acetate is found, on average, in the highest concentration within highbush blueberries. Hexyl acetate has also been detected, but not quantified, in several different foods, such as alcoholic beverages, pears, oats, roman camomiles, and sweet cherries. This could make hexyl acetate a potential biomarker for the consumption of these foods. Hexyl acetate is used in fruit essences and fruit aroma concentrates. It is found in wines, black tea, soya bean, roman camomile, peach, purple mangosteen, and muskmelon.

   

2-Nonenal

2-Nonenal, (trans)-isomer

C9H16O (140.1201086)


(E)-2-Nonenal is found in alcoholic beverages. (E)-2-Nonenal is widespread in nature, in beer, coffee, watermelon, cucumbers, redcurrants, orris oil, palm oil, potatoes etc. (E)-2-Nonenal is a flavouring ingredien. It has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). 2-Nonenal is an unsaturated aldehyde which some research has associated with human body odor alterations during aging. The substance is also an important aroma component of aged beer and buckwheat. The odor of this substance is perceived as orris, fat and cucumber. 2-Nonenal is found in lemon.

   

Isovitexin 2'-O-glucoside

6-[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C27H30O15 (594.158463)


Constituent of Oxalis acetosella (wood sorrel) and many other plants. Isovitexin 2-glucoside is found in tea, muskmelon, and cucumber. Isovitexin 2-O-galactoside is found in cereals and cereal products. Isovitexin 2-O-galactoside is isolated from Secale cereale (rye). Meloside A (Isovitexin 2''-O-glucoside) is a phenylpropanoid isolated from barley with antioxidant activity. In barley, phenylpropanoids have been described as having protective properties against excess UV-B radiation and have been linked to resistance to pathogens[1][2].

   

3beta-24-Methylenecycloartan-3-ol

7,7,12,16-tetramethyl-15-(6-methyl-5-methylideneheptan-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

C31H52O (440.4017942)


3beta-24-Methylenecycloartan-3-ol is a constituent of rice bran oil. Constituent of rice bran oil

   

Heptyl acetate

Acetic acid N-heptyl ester

C9H18O2 (158.1306728)


Heptyl acetate, also known as heptanyl acetate and acetate C-7, is a colorless alcohol-soluble liquid that is the ester formed by the condensation of 1-heptanol and acetic acid. It can be found in alcoholic beverages. Heptyl acetate is present in apple, apricot, banana, orange peel, lemon peel, melon, Bartlett pears, other fruits, heated beef fat, ginger, wines and spirits. Present in apple, apricot, banana, orange peel, lemon peel, melon, Bartlett pears, other fruits, heated beef fat, ginger, wines and spirits. Flavouring ingredient

   

(3Z,6Z)-3,6-Nonadien-1-ol

(3Z,6Z)-nona-3,6-dien-1-ol

C9H16O (140.1201086)


(3Z,6Z)-3,6-Nonadien-1-ol is found in fruits. (3Z,6Z)-3,6-Nonadien-1-ol is found in melon and cucumber. (3Z,6Z)-3,6-Nonadien-1-ol is a food flavou Found in melon and cucumber. Food flavour

   

Benzyl propionate

Propionic acid, benzyl ester (6ci,7ci,8ci)

C10H12O2 (164.0837252)


Benzyl propionate is found in muskmelon. Benzyl propionate is used in fruit flavouring It is used in fruit flavourings. Benzyl propionate is found in muskmelon.

   

Propyl acetate

Acetic acid, N-propyl ester

C5H10O2 (102.068076)


Propyl acetate, also known as 1-acetoxypropane or propyl ethanoate, belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). It is formed by the esterification of acetic acid and 1-propanol (known as a condensation reaction), often via Fischer–Speier esterification, with sulfuric acid as a catalyst and water produced as a byproduct. This clear, colorless liquid is known by its characteristic odor of pears. Propyl acetate is a drug. Propyl acetate is a bitter, celery, and fruity tasting compound. It has been detected, but not quantified, in several different foods, such as muskmelons, figs, apples, pineapples, and cocoa beans. Due to this fact, it is commonly used in fragrances and as a flavor additive. Propyl acetate has been found to be associated with the diseases such as nonalcoholic fatty liver disease; also propyl acetate has been linked to the inborn metabolic disorders including celiac disease. Flavouring agent. Propyl acetate is found in many foods, some of which are fig, apple, papaya, and cocoa bean.

   

Nonyl acetate

Nonyl alcohol, acetate (6ci)

C11H22O2 (186.1619712)


Nonyl acetate is found in alcoholic beverages. Nonyl acetate is found in citrus peel oils, kumquat peel oil, wine grapes, apple, melon, milk, beer, gruyere cheese and pepino fruits (Solanum muricaturm). Found in citrus peel oils, kumquat peel oil, wine grapes, apple, melon, milk, beer, gruyere cheese and pepino fruits (Solanum muricaturm)

   

Ethyl 3-(methylthio)propanoate

Propionic acid, 3-(methylthio)-, ethyl ester

C6H12O2S (148.0557972)


Isolated from pineapple (Ananas comosus), melon, passion fruit and other fruitsand is) also present in alcoholic beverages and Parmesan cheese. Flavouring ingredient. Ethyl 3-(methylthio)propanoate is found in many foods, some of which are milk and milk products, pineapple, fruits, and alcoholic beverages. Ethyl 3-(methylthio)propanoate is found in alcoholic beverages. Ethyl 3-(methylthio)propanoate is isolated from pineapple (Ananas comosus), melon, passion fruit and other fruits. Also present in alcoholic beverages and Parmesan cheese. Ethyl 3-(methylthio)propanoate is a flavouring ingredient.

   

Octyl acetate

Acetic acid N-octyl ester

C10H20O2 (172.14632200000003)


Octyl acetate is found in alcoholic beverages. Octyl acetate is present in citrus peel oils, wheat bread, cheddar cheese, wines, banana, sour cherry and other foodstuffs. Octyl acetate is a flavour ingredient Octyl acetate, or octyl ethanoate, is an ester that is formed from octanol (octyl alcohol) and acetic acid. It is the basis for artificial orange flavoring. Present in citrus peel oils, wheat bread, cheddar cheese, wines, banana, sour cherry and other foodstuffs. Flavour ingredient Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1]. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1].

   

Ethyl 2-methylbutyrate

Butyric acid, 2-methyl-, ethyl ester (8ci)

C7H14O2 (130.09937440000002)


Ethyl 2-methylbutyrate is found in bilberry. Ethyl 2-methylbutyrate is found in many fruits, e.g.raw and cooked apple, apricot, orange, grapefruit. Ethyl 2-methylbutyrate is a flavouring agent. Ethyl 2-methylbutyrate is used in fruit flavouring. Found in many fruits, e.g.raw and cooked apple, apricot, orange, grapefruit. Flavouring agent. It is used in fruit flavouring.

   

Phytofluene

(6E,10E,12E,14E,16Z,18E,22E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene

C40H62 (542.4851252)


Phytofluene is a carotenoid pigment with an orange colour found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis (Wikipedia).

   

Linolenelaidic acid

(9E,12E,15E)-9,12,15-Octadecatrienoic acid

C18H30O2 (278.224568)


Linolenelaidic acid is found in fats and oils. Linolenelaidic acid is isolated from seed oil of safflower (Carthamus tinctorius Isolated from seed oil of safflower (Carthamus tinctorius). Linolenelaidic acid is found in fats and oils.

   

Ethyl 2-(methylthio)acetate

Acetic acid, (methylthio)-, ethyl ester

C5H10O2S (134.04014800000002)


Ethyl 2-(methylthio)acetate is found in fruits. Ethyl 2-(methylthio)acetate is found in melon, durian and other fruits. Ethyl 2-(methylthio)acetate is a flavouring agent. Found in melon, durian and other fruits. Flavouring agent

   

Octadec-9-enoic Acid

Delta(9)-Octadecenoic acid

C18H34O2 (282.2558664)


Octadec-9-enoic Acid, also known as 18:1, N-9 or Delta(9)-Octadecenoic acid, is classified as a member of the Long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Octadec-9-enoic Acid is considered to be practically insoluble (in water) and acidic. Octadec-9-enoic Acid can be synthesized from octadec-9-ene. It is also a parent compound for other transformation products, including but not limited to, 1-octadec-9-enoylglycero-3-phosphate, N-(2-hydroxy-1-methylethyl)-9-octadecenamide, and sterculic acid

   

13-cis-beta-Carotene

1,3,3-trimethyl-2-[(1E,3E,5E,7Z,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4381776)


13-cis-beta-Carotene is a cyclic carotene having the structure of β-carotene but with a cis double bond at the 13,14-position. It is found in human serum and breast milk (PMID: 9164160). Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds and crustacea. Animals are unable to synthesise carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important. (PMID: 1416048, 15003396) Constituent of carrots and other plant subspecies (13Z)-beta-Carotene is found in many foods, some of which are green bell pepper, red bell pepper, loquat, and papaya.

   

9Z,12E-Octadecadienoic acid

Linoleic acid, potassium salt, (Z,Z)-isomer

C18H32O2 (280.2402172)


   

Squalen

2,6,10,15,19,23-Hexamethyltetracosa-2,6,10,14,18,22-hexaene

C30H50 (410.39123)


   

Heptadec-2-enoic acid

Heptadec-2-enoic acid

C17H32O2 (268.2402172)


Heptadecenoic acid, also known as heptadecenoate, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Heptadecenoic acid is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Heptadecenoic acid can be found in a number of food items such as common buckwheat, dandelion, italian sweet red pepper, and black walnut, which makes heptadecenoic acid a potential biomarker for the consumption of these food products.

   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.105642)


   

Spinosterol

(1R,2S,5S,7S,11R,14R,15R)-14-[(2R,3E,5S)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-5-ol

C29H48O (412.37049579999996)


Spinosterol, also known as spinasterol, (3beta,5alpha,22e,24r)-isomer, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, spinosterol is considered to be a sterol lipid molecule. Spinosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Spinosterol can be found in wild celery, which makes spinosterol a potential biomarker for the consumption of this food product. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Gibberellin A4

4aalpha,4bbeta-Gibbane-1alpha,10beta-dicarboxylic acid, 2beta,4a-dihydroxy-1-methyl-8-methylene-, 1,4a-lactone

C19H24O5 (332.1623654)


Gibberellin a4 is a member of the class of compounds known as c19-gibberellin 6-carboxylic acids. C19-gibberellin 6-carboxylic acids are c19-gibberellins with a carboxyl group at the 6-position. Gibberellin a4 is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Gibberellin a4 can be found in a number of food items such as passion fruit, dandelion, mamey sapote, and vanilla, which makes gibberellin a4 a potential biomarker for the consumption of these food products. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D005875 - Gibberellins

   

Gibberellin A5

5-Hydroxy-11-methyl-6-methylidene-16-oxo-15-oxapentacyclo[9.3.2.15,8.01,10.02,8]heptadec-12-ene-9-carboxylic acid

C19H22O5 (330.1467162)


Gibberellin a5 is a member of the class of compounds known as c19-gibberellin 6-carboxylic acids. C19-gibberellin 6-carboxylic acids are c19-gibberellins with a carboxyl group at the 6-position. Gibberellin a5 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Gibberellin a5 can be found in a number of food items such as tea, apricot, common pea, and sweet cherry, which makes gibberellin a5 a potential biomarker for the consumption of these food products.

   

C14:0

Tetradecanoic acid

C14H28O2 (228.20891880000002)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Linoleate

cis-9, cis-12-octadecadienoic acid

C18H32O2 (280.2402172)


COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

C17:0

HEPTADECANOIC ACID

C17H34O2 (270.2558664)


Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

Oleate

cis-9-octadecenoic acid

C18H34O2 (282.2558664)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Apigenin

5,7,4-Trihydroxyflavone

C15H10O5 (270.052821)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.058 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.059 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Swartziol

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-5,7,4-Trihydroxyflavonol

C15H10O6 (286.047736)


Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

zeta-Carotene

7,8,7,8-Tetrahydro-psi-psi-carotene

C40H60 (540.469476)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 5 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.

   

Kaempferol

Kaempferol

C15H10O6 (286.047736)


Annotation level-3 Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.010 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.011 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2141; CONFIDENCE confident structure IPB_RECORD: 3341; CONFIDENCE confident structure IPB_RECORD: 3321; CONFIDENCE confident structure CONFIDENCE confident structure; IPB_RECORD: 3321 IPB_RECORD: 141; CONFIDENCE confident structure Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

multiflorenol

multiflorenol

C30H50O (426.386145)


   

Lupenone

(1R,3aR,4S,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-one

C30H48O (424.37049579999996)


Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Arvenin II

23,24-dihydrocucurbitacin B 2-O-beta-D-glucoside

C38H58O13 (722.3877218)


Arvenin II is a natural product found in Picrorhiza kurrooa, Citrullus colocynthis, and Cucumis melo with data available.

   

Cucurbitacin B

acetic acid [(E,5R)-5-[(2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-3,11-diketo-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-5-hydroxy-4-keto-1,1-dimethyl-hex-2-enyl] ester

C32H46O8 (558.3192516)


Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].

   

phytofluene

(12E,16E,18E,22E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene

C40H62 (542.4851252)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Phytofluene is a carotenoid pigment with an orange color found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. It is formed from phytoene in a desaturation reaction leading to the formation of five conjugated double bonds. In the following step, addition of carbon-carbon conjugated double bonds leads to the formation of z-carotene and appearance of visible color.; Phytofluene is a carotenoid pigment with an orange color found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. Phytofluene is found in many foods, some of which are bitter gourd, yellow bell pepper, caraway, and pepper (c. annuum).

   

Octyl acetate

Octyl acetate

C10H20O2 (172.14632200000003)


The acetate ester of octan-1-ol. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1]. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1].

   

Benzyl acetate

Benzyl acetate

C9H10O2 (150.06807600000002)


The acetate ester of benzyl alcohol. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1]. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1].

   

Adenosine

Adenosine

C10H13N5O4 (267.09674980000005)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058913 - Purinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C - Cardiovascular system > C01 - Cardiac therapy Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C10H13N5O4; Bottle Name:Adenosine; PRIME Parent Name:Adenosine; PRIME in-house No.:0040 R0018, Purines MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OIRDTQYFTABQOQ_STSL_0143_Adenosine_0500fmol_180430_S2_LC02_MS02_33; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.113 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.109 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.097 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.096 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2621; CONFIDENCE confident structure Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Myricetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)- (9CI)

C15H10O8 (318.037566)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.783 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.784 Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities.

   

Linolenic Acid

α-Linolenic acid

C18H30O2 (278.224568)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.566 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.567 α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Secoisolariciresinol

(-)-Secoisolariciresinol

C20H26O6 (362.17292960000003)


Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 0.816 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.813 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.806 Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.

   

Matairesinol

NCGC00169701-03_C20H22O6_2(3H)-Furanone, dihydro-3,4-bis[(4-hydroxy-3-methoxyphenyl)methyl]-, (3R,4R)-

C20H22O6 (358.1416312)


Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 17 INTERNAL_ID 17; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 0.920 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.921 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1]. Matairesinol confers anti-allergic effects in an allergic dermatitis mouse model. DfE-induced changes in IL-4 and IFN-γ mRNA expression in the ears of NC/Nga mice were reversed by matairesinol application[1].

   

β-Carotene

1-(1,2,3,4,5-Pentahydroxypent-1-yl)-1,2,3,4-tetrahydro-beta-carboline-3-carboxylate

C40H56 (536.4381776)


The novel carbohydrate-derived b-carboline, 1-pentahydroxypentyl-1,2,3,4-tetrahydro-b-carboline-3-carboxylic acid, was identified in fruit- and vegetable-derived products such as juices, jams, and tomato sauces. This compound occurred as two diastereoisomers, a cis isomer (the major compound) and a trans isomer, ranging from undetectable amounts to 6.5 ug/g. Grape, tomato, pineapple, and tropical juices exhibited the highest amount of this alkaloid (up to 3.8 mg/L), whereas apple, banana, and peach juices showed very low or nondetectable levels. This tetrahydro-b-carboline was also found in jams (up to 0.45 ug/g), and a relative high amount was present in tomato concentrate (6.5 ug/g) and sauce (up to 1.8 ug/g). This b-carboline occurred in fruit-derived products as a glycoconjugate from a chemical condensation of d-glucose and l-tryptophan that is highly favored at low pH values and high temperature. Production, processing treatments, and storage of fruit juices and jams can then release this b-carboline. Fruit-derived products and other foods containing this compound might be an exogenous dietary source of this glucose-derived tetrahydro-b-carboline.(PMID: 12137498) [HMDB] Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.

   

PENTADECANOIC ACID

PENTADECANOIC ACID

C15H30O2 (242.224568)


A straight-chain saturated fatty acid containing fifteen-carbon atoms. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.

   

Myristic Acid

Tetradecanoic acid

C14H28O2 (228.20891880000002)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Tridecylic acid

TRIDECANOIC ACID

C13H26O2 (214.1932696)


A C13 straight-chain saturated fatty acid. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].

   

Behenic acid

Docosanoic acid

C22H44O2 (340.3341124)


A straight-chain, C22, long-chain saturated fatty acid. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.

   

Margaric acid

HEPTADECANOIC ACID

C17H34O2 (270.2558664)


A C17 saturated fatty acid and trace component of fats in ruminants. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

Oleic acid

cis-9-Octadecenoic acid

C18H34O2 (282.2558664)


An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

9-cis-β-Carotene

(9Z)-beta,beta-Carotene

C40H56 (536.4381776)


(9z)-beta,beta-carotene, also known as (9z)-β,β-carotene or 9-cis-β-carotene, is a member of the class of compounds known as carotenes. Carotenes are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family (9z)-beta,beta-carotene can be found in guava, which makes (9z)-beta,beta-carotene a potential biomarker for the consumption of this food product (9z)-beta,beta-carotene can be found primarily in blood and breast milk.

   

Lauric acid

Dodecanoic acid

C12H24O2 (200.1776204)


Lauric acid, systematically dodecanoic acid, is a saturated fatty acid with a 12-carbon atom chain, thus having many properties of medium-chain fatty acids.[6] It is a bright white, powdery solid with a faint odor of bay oil or soap. The salts and esters of lauric acid are known as laurates. Lauric acid, as a component of triglycerides, comprises about half of the fatty-acid content in coconut milk, coconut oil, laurel oil, and palm kernel oil (not to be confused with palm oil),[10][11] Otherwise, it is relatively uncommon. It is also found in human breast milk (6.2\\\\% of total fat), cow's milk (2.9\\\\%), and goat's milk (3.1\\\\%). Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

ch3cho

Acetaldehyde [UN1089] [Flammable liquid]

C2H4O (44.0262134)


The aldehyde formed from acetic acid by reduction of the carboxy group. It is the most abundant carcinogen in tobacco smoke.

   

Arachidic acid

Arachidic acid

C20H40O2 (312.302814)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

benzaldehyde

benzaldehyde-carbonyl-13c

C7H6O (106.0418626)


An arenecarbaldehyde that consists of benzene bearing a single formyl substituent; the simplest aromatic aldehyde and parent of the class of benzaldehydes.

   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

C21H20O10 (432.105642)


   

FA 18:3

(-)-lamenallenic acid;(-)-octadeca-5,6-trans-16-trienoic acid

C18H30O2 (278.224568)


CONFIDENCE standard compound; INTERNAL_ID 143 COVID info from WikiPathways D - Dermatologicals Same as: D07213 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

euphol

(3S,5R,10S,13S,14S)-17-((R)-1,5-Dimethyl-hex-4-enyl)-4,4,10,13,14-pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H50O (426.386145)


Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1].

   

Hexalin

Hexyl alcohol (natural)

C6H14O (102.10445940000001)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Hexyl acetate

Hexyl acetate

C8H16O2 (144.1150236)


The acetate ester of hexan-1-ol.

   

Heptylacetat

Heptyl acetate

C9H18O2 (158.1306728)


   

NONYL ACETATE

NONYL ACETATE

C11H22O2 (186.1619712)


The acetate ester of nonan-1-ol.

   

benzyl propanoate

Propionic acid, benzyl ester (6ci,7ci,8ci)

C10H12O2 (164.0837252)


   

Ethyl caprate

Ethyl ester OF decanoic acid

C12H24O2 (200.1776204)


A fatty acid ethyl ester of decanoic acid.

   

Ethyl &alpha

Butyric acid, 2-methyl-, ethyl ester (8ci)

C7H14O2 (130.09937440000002)


   

Propyl acetate

Acetic acid, N-propyl ester

C5H10O2 (102.068076)


An acetate ester obtained by the formal condensation of acetic acid with propanol.

   

FEMA 3835

Acetic acid, (methylthio)-, ethyl ester

C5H10O2S (134.04014800000002)


   

FEMA 3343

Propionic acid, 3-(methylthio)-, ethyl ester

C6H12O2S (148.0557972)


   

C12:0

Laurostearic acid

C12H24O2 (200.1776204)


Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

C13:0

TRIDECANOIC ACID

C13H26O2 (214.1932696)


Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].

   

C20:0

n-Eicosanoic acid

C20H40O2 (312.302814)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

C22:0

Docosanoic acid

C22H44O2 (340.3341124)


Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.

   

SFE 8:0

Propyl 3-methylbutanoate

C8H16O2 (144.1150236)


   

SFE 9:0

N-caproic acid isopropyl ester

C9H18O2 (158.1306728)


   

SFE 11:0

Octanoic acid,1-methylethyl ester

C11H22O2 (186.1619712)


   

SFE 10:0

n-Caproic acid n-butyl ester

C10H20O2 (172.14632200000003)


A fatty acid ethyl ester resulting from the formal condensation of octanoic acid with ethanol. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1]. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1].

   

SFE 12:0

Butanoic acid, octylester

C12H24O2 (200.1776204)


   

spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-[(E,1R,4S)-4-ethyl-1,5-dimethyl-hex-2-enyl]-10,13-dimethyl-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Phytoene

(6E,10E,14E,16E,18E,22E,26E)-2,6,10,14,19,23,27,31-Octamethyldotriaconta-2,6,10,14,16,18,22,26,30-nonaene

C40H64 (544.5007744)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Neo-beta-carotene

(13Z)-beta,beta-Carotene

C40H56 (536.4381776)


   

1-Nonanol

nonan-1-ol

C9H20O (144.151407)


   

β-Ionone

beta-Ionone

C13H20O (192.151407)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1]. β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1].

   

Versulin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxyphenyl)- (9CI)

C15H10O5 (270.052821)


Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

WLN: QV19

InChI=1\C20H40O2\c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22\h2-19H2,1H3,(H,21,22

C20H40O2 (312.302814)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.042651)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

AI3-11269

4-02-00-00165 (Beilstein Handbook Reference)

C10H20O2 (172.14632200000003)


Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1]. Octyl acetate is one of major components of essential oils in the vittae, or oil tubes, of the wild parsnip (Pastinaca sativa). Octyl acetate has antioxidant activity[1].

   

Cognac oil

9,12-Octadecadienoic acid, (Z,Z)-, labeled with carbon-14

C18H32O2 (280.2402172)


An octadecadienoic acid in which the two double bonds are at positions 9 and 12 and have Z (cis) stereochemistry. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Caryophyllin

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

C-1297

[2-((1-OXODODECANOXY-(2-HYDROXY-3-PROPANYL))-PHOSPHONATE-OXY)-ETHYL]-TRIMETHYLAMMONIUM

C12H24O2 (200.1776204)


Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

Behensaeure

N-Docosanoic acid

C22H44O2 (340.3341124)


Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Hexanol

4-01-00-01694 (Beilstein Handbook Reference)

C6H14O (102.10445940000001)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Red oil

4-02-00-01641 (Beilstein Handbook Reference)

C18H34O2 (282.2558664)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

LS-27

InChI=1\C7H6O\c8-6-7-4-2-1-3-5-7\h1-6

C7H6O (106.0418626)


   

Acetidin

Ethyl acetate [UN1173] [Flammable liquid]

C4H8O2 (88.0524268)


   

Spirt

Anti-EphB1 (ELK Receptor)-CY antibody produced in sheep

C2H6O (46.0418626)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AZ - Nerve depressants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D000890 - Anti-Infective Agents D012997 - Solvents

   

LS-684

4-02-00-00143 (Beilstein Handbook Reference)

C6H12O2 (116.08372519999999)


   

Crodacid

4-02-00-01126 (Beilstein Handbook Reference)

C14H28O2 (228.20891880000002)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

AI3-36441

4-02-00-01147 (Beilstein Handbook Reference)

C15H30O2 (242.224568)


Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.

   

AI3-36481

4-02-00-01193 (Beilstein Handbook Reference)

C17H34O2 (270.2558664)


Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

CHEBI:19809

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5S)-5,6-dimethylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H48O (400.37049579999996)


   

Arbo 8

(R-(R*,R*))-2,3-Bis((4-hydroxy-3-methoxyphenyl)methyl)butane-1,4-diol

C20H26O6 (362.17292960000003)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.

   

Devoton

Methyl acetate [UN1231] [Flammable liquid]

C3H6O2 (74.0367776)


   

LS-871

InChI=1\C13H20O\c1-10-6-5-9-13(3,4)12(10)8-7-11(2)14\h7-8H,5-6,9H2,1-4H3\b8-7

C13H20O (192.151407)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1]. β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1].

   

E160A

1,3,3-trimethyl-2-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethyl-1-cyclohexenyl)octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]cyclohexene

C40H56 (536.4381776)


D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins

   

Echinocystic acid

aster saponin F_qt

C30H48O4 (472.3552408)


Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties. Echinocystic acid is a pentacyclic triterpene extracted from the fruit of Honey Locust. It has strong antioxidant, anti-inflammatory and anti-tumor properties.

   

Nonanol

InChI=1\C9H20O\c1-2-3-4-5-6-7-8-9-10\h10H,2-9H2,1H

C9H20O (144.151407)


   

AI3-01996

InChI=1\C9H10O2\c1-8(10)11-7-9-5-3-2-4-6-9\h2-6H,7H2,1H

C9H10O2 (150.06807600000002)


Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1]. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1].

   

Tridecanoic acid

tridecanoic acid

C13H26O2 (214.1932696)


Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1]. Tridecanoic acid (N-Tridecanoic acid), a 13-carbon medium-chain saturated fatty acid, can serve as an antipersister and antibiofilm agent that may be applied to research bacterial infections. Tridecanoic acid inhibits Escherichia coli persistence and biofilm formation[1].

   

13327-56-5

Propionic acid, 3-(methylthio)-, ethyl ester

C6H12O2S (148.0557972)


   

Ostreasterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methyl-5-methylidene-heptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548466)


24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].

   

WLN: 9VO2

4-02-00-01044 (Beilstein Handbook Reference)

C12H24O2 (200.1776204)


   

AI3-11583

Nonyl alcohol, acetate (6ci)

C11H22O2 (186.1619712)


   

13201-14-4

acetic acid [(5R)-5-[(2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-3,11-diketo-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthren-17-yl]-5-hydroxy-4-keto-1,1-dimethyl-hexyl] ester

C32H48O8 (560.3349008)


Dihydrocucurbitacin B, a triterpene isolated from Cayaponia tayuya roots, inhibits nuclear factor of activated T cells (NFAT), induces cell cycle arrested in the G0 phase, and inhibits delayed type hypersensitivity[1]. Dihydrocucurbitacin B, a triterpene isolated from Cayaponia tayuya roots, inhibits nuclear factor of activated T cells (NFAT), induces cell cycle arrested in the G0 phase, and inhibits delayed type hypersensitivity[1].

   

WLN: 6OV1

4-02-00-00159 (Beilstein Handbook Reference)

C8H16O2 (144.1150236)


   

AI3-18533

acetic acid 3-phenylpropyl ester

C11H14O2 (178.09937440000002)


   

WLN: 7OV1

4-02-00-00162 (Beilstein Handbook Reference)

C9H18O2 (158.1306728)


   

9-cis-beta-Carotene

1,3,3-trimethyl-2-[(1E,3Z,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4381776)


9-cis-beta-Carotene is a cyclic carotene having the structure of beta-carotene but with a cis double bond at the 9,10-position. It is found in human serum and breast milk (PMID: 9164160). Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). cis-Carotene is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds and crustacea. Animals are unable to synthesise carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important. (PMID: 1416048, 15003396) [HMDB]

   

Non-2-enal

(E)-2-Nonenal

C9H16O (140.1201086)


Widespread in nature, in beer, coffee, watermelon, cucumbers, redcurrants, orris oil, palm oil, potatoes etc. Flavouring ingredient. (E)-2-Nonenal is found in many foods, some of which are coffee and coffee products, lovage, muskmelon, and fruits.

   

alpha-Spinasterol

14-[(3E)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-5-ol

C29H48O (412.37049579999996)


Constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. alpha-Spinasterol is found in many foods, some of which are bitter gourd, towel gourd, muskmelon, and green vegetables. alpha-Spinasterol is found in alfalfa. alpha-Spinasterol is a constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Isomultiflorenol

Isomultiflorenol

C30H50O (426.386145)


   

Cuc B

(R,E)-6-((2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C32H46O8 (558.3192516)


Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available. A cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5].

   

Spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

ethanol

ethanol

C2H6O (46.0418626)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AZ - Nerve depressants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes A primary alcohol that is ethane in which one of the hydrogens is substituted by a hydroxy group. D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D000890 - Anti-Infective Agents D012997 - Solvents

   

ETHYL ACETATE

ETHYL ACETATE

C4H8O2 (88.0524268)


The acetate ester formed between acetic acid and ethanol.

   

METHYL ACETATE

METHYL ACETATE

C3H6O2 (74.0367776)


   

3-Phenylpropyl acetate

Benzenepropanol,1-acetate

C11H14O2 (178.09937440000002)


The acetate ester of 3-phenylpropan-1-ol.

   

24-methylenecycloartanol

24-methylenecycloartanol

C31H52O (440.4017942)


A pentacyclic triterpenoid that is (9beta)-24-methylene-9,19-cyclolanostane which carries a hydroxy group at position 3beta. It is isolated from several plant species including Euphorbia, Epidendrum, Psychotria and Sideritis.

   

15-cis-Phytoene

15-cis-Phytoene

C40H64 (544.5007744)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

nonalol

pelargonic alcohol

C9H20O (144.151407)


A nonanol that is nonane substituted by a hydroxy group at position 1. It has been isolated as a component of volatile oils from plants like Hordeum vulgare.

   

Butyl acetate

n-Butyl acetate

C6H12O2 (116.08372519999999)


The acetate ester of butanol.

   

1-Hexanol

1-Hexanol

C6H14O (102.10445940000001)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Ethyl 2-methylbutyrate

Ethyl 2-methylbutanoate

C7H14O2 (130.09937440000002)


A fatty acid ethyl ester obtained by the formal condensation of 2-methylbutyric acid with ethanol. It is a constituent of the aroma of wines, strawberries, blueberries, and apples.

   
   

Ethyl 3-methylthiopropionate

Ethyl 3-(methylthio)propionate

C6H12O2S (148.0557972)


A carboxylic ester obtained by the formal condensation of the carboxy group of 3-(methylthio)propionic acid with ethanol.

   

(z,z)-3,6-nonadien-1-ol

(3Z,6Z)-3,6-Nonadien-1-ol

C9H16O (140.1201086)


   

Ibr-clc

9-cis-phytofluene

C40H62 (542.4851252)