Myricetin (BioDeep_00000001126)
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite Antitumor activity BioNovoGene_Lab2019
代谢物信息卡片
化学式: C15H10O8 (318.037566)
中文名称: 杨梅酮, 杨梅素
谱图信息:
最多检出来源 Viridiplantae(plant) 0.09%
分子结构信息
SMILES: c1(cc(c2c(c1)oc(c(c2=O)O)c1cc(c(c(c1)O)O)O)O)O
InChI: InChI=1/C15H10O8/c16-6-3-7(17)11-10(4-6)23-15(14(22)13(11)21)5-1-8(18)12(20)9(19)2-5/h1-4,16-20,22H
描述信息
Myricetin, also known as cannabiscetin or myricetol, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, myricetin is considered to be a flavonoid lipid molecule. A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. Myricetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Myricetin is found, on average, in the highest concentration within a few different foods, such as common walnuts, carobs, and fennels and in a lower concentration in welsh onions, yellow bell peppers, and jutes. Myricetin has also been detected, but not quantified in several different foods, such as napa cabbages, sesames, mixed nuts, lichee, and garden cress.
Myricetin is a hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. It has a role as a cyclooxygenase 1 inhibitor, an antineoplastic agent, an antioxidant, a plant metabolite, a food component, a hypoglycemic agent and a geroprotector. It is a hexahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a myricetin(1-).
Myricetin is a natural product found in Ficus auriculata, Visnea mocanera, and other organisms with data available.
Myricetin is a metabolite found in or produced by Saccharomyces cerevisiae.
See also: Quercetin (related).
Flavanol found in a wide variety of foodstuffs especially in red table wine, bee pollen, bilberries, blueberries, bog whortleberries, broad beans, Chinese bajberry, corn poppy leaves, cranberries, crowberries, blackcurrants, dock leaves, fennel, grapes, parsley, perilla, rutabaga, dill weed and tea (green and black). Glycosides are also widely distributed. Potential nutriceutical showing anti-HIV activity
A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants.
COVID info from PDB, Protein Data Bank
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
[Raw Data] CB066_Myricetin_pos_30eV_CB000028.txt
[Raw Data] CB066_Myricetin_pos_20eV_CB000028.txt
[Raw Data] CB066_Myricetin_pos_40eV_CB000028.txt
[Raw Data] CB066_Myricetin_pos_50eV_CB000028.txt
[Raw Data] CB066_Myricetin_pos_10eV_CB000028.txt
[Raw Data] CB066_Myricetin_neg_10eV_000019.txt
[Raw Data] CB066_Myricetin_neg_40eV_000019.txt
[Raw Data] CB066_Myricetin_neg_50eV_000019.txt
[Raw Data] CB066_Myricetin_neg_20eV_000019.txt
[Raw Data] CB066_Myricetin_neg_30eV_000019.txt
Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities.
Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities.
同义名列表
57 个代谢物同义名
4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-; 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-1-benzopyran-4-one; 4H-1-Benzopyran-4-one,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-; 3,5,7-Trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one #; 3,5,7-Trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one; 3,4,5-trihydroxy-2-(3,4,5-trihydroxyphenyl)chromen-7-one; 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)chromen-4-one; Myricetin, primary pharmaceutical reference standard; 3,3′,4′,5,5′,7-Hexahydroxyflavone; 3,3,4,4,5,7-Hexahydro-2-phenyl-4H-chromen-4-one; Myricetin from Myrica cerifera leaf and bark; 3,3,4,5,5,7-hexahydroxy-(8CI)- flavone; C07E0ED2-ABF6-4BD3-A2B2-A98CAEF20FD1; 3,5,7,3’,4’,5’-Hexahydroxyflavone; 3,3’,4’,5,5’,7-Hexahydroxyflavone; FLAVONE, 3,3,4,5,5,7-HEXAHYDROXY-; Myricetin, >=96.0\\%, crystalline; Flavone,3,4,5,5,7-hexahydroxy-; 3,3,4,5,5,7-hexahydroxyflavone; 3,5,7,3,4,5-Hexahydroxyflavone; Myricetin, analytical standard; 3,7,3,4,5-Hexahydroxyflavone; IKMDFBPHZNJCSN-UHFFFAOYSA-N; Myricetin, >=96.0\\% (HPLC); Myricetin (Cannabiscetin); 3,3,4,5,5,7-hexOH-Flavone; Prestwick0_000465; Prestwick3_000465; Prestwick2_000465; Prestwick1_000465; Spectrum4_001272; Spectrum5_000692; MYRICETIN [HSDB]; MYRICETIN [INCI]; UNII-76XC01FTOJ; MYRICETIN [MI]; DivK1c_006627; Lopac0_000740; cannabiscetin; MEGxp0_000357; BPBio1_000628; KBio2_004549; KBio1_001571; KBio2_007117; ACon1_000267; NCI60_003870; KBio2_001981; Tox21_500740; 76XC01FTOJ; Myricetin; Myricitin; Myricetol; C15H10O8; Myrc; 4gqr; 2o63; 3 3 4 5 5 7-hexahydroxyflavone
数据库引用编号
48 个数据库交叉引用编号
- ChEBI: CHEBI:18152
- KEGG: C10107
- PubChem: 5281672
- HMDB: HMDB0002755
- Metlin: METLIN3448
- DrugBank: DB02375
- ChEMBL: CHEMBL164
- Wikipedia: Myricetin
- LipidMAPS: LMPK12110001
- MeSH: myricetin
- ChemIDplus: 0000529442
- MetaCyc: MYRICETIN
- KNApSAcK: C00001071
- foodb: FDB012724
- chemspider: 4444991
- CAS: 529-44-2
- MoNA: PR040040
- MoNA: PS040601
- MoNA: PS040604
- MoNA: PR040038
- MoNA: FIO00193
- MoNA: PS040602
- MoNA: PS040609
- MoNA: PS040607
- MoNA: FIO00192
- MoNA: FIO00189
- MoNA: FIO00191
- MoNA: FIO00194
- MoNA: PR020006
- MoNA: FIO00186
- MoNA: PS040603
- MoNA: PS040610
- MoNA: PR040039
- MoNA: FIO00190
- MoNA: PS040608
- MoNA: PR040037
- MoNA: FIO00188
- MoNA: FIO00187
- MoNA: FIO00185
- medchemexpress: HY-15097
- PMhub: MS000000021
- MetaboLights: MTBLC18152
- PubChem: 12293
- PDB-CCD: MYC
- 3DMET: B01120
- NIKKAJI: J1.585G
- RefMet: Myricetin
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-750
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
407 个相关的物种来源信息
- 183220 - Abelmoschus manihot (L)Medic.: -
- 1170222 - Abelmoschus moschatus:
- 342581 - Abies spectabilis: 10.1248/CPB.58.1646
- 3631 - Abutilon theophrasti: 10.1007/BF01012523
- 204988 - Acacia adunca: 10.1039/CT9028101160
- 3809 - Acacia confusa: 10.1021/NP990482W
- 205042 - Acacia dealbata: 10.1039/CT9028101160
- 420411 - Acacia saligna: 10.1039/CT9028101160
- 3625 - Actinidia chinensis:
- 105301 - Allium angulosum: 10.1021/JF00062A017
- 4679 - Allium cepa:
- 166970 - Allium ericetorum: 10.1021/JF00062A017
- 35875 - Allium fistulosum: 10.1002/JSFA.955
- 74896 - Allium neapolitanum: 10.1021/JF00062A017
- 105309 - Allium ramosum: 10.1021/JF00062A017
- 74900 - Allium schoenoprasum:
- 171929 - Anacardium occidentale:
- 4615 - Ananas comosus: 10.1021/JF061478A
- 40922 - Anethum graveolens: 10.1556/AALIM.29.2000.4.4
- 4045 - Apium graveolens:
- 377125 - Apocynum venetum L.: -
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14594
- 3818 - Arachis hypogaea: 10.1021/JF061478A
- 1009002 - Ardisia paniculata:
- 71835 - Armeria maritima: 10.1016/0305-1978(95)97456-7
- 3704 - Armoracia rusticana:
- 2651882 - Artabotrys blumei: 10.1055/S-2006-957860
- 225833 - Artabotrys hexapetalus: 10.1055/S-2006-957860
- 72333 - Artemisia afra: 10.1021/NP000005+
- 1227617 - Artemisia assoana: 10.1021/NP000005+
- 206550 - Artemisia biennis: 10.1021/NP000005+
- 1227627 - Artemisia klotzchiana: 10.1021/NP000005+
- 72354 - Artemisia tournefortiana: 10.1021/NP000005+
- 4686 - Asparagus officinalis: 10.1371/JOURNAL.PONE.0219973
- 124943 - Azadirachta indica: 10.1002/CHIN.200352233
- 199392 - Baeckea frutescens: 10.1016/J.FITOTE.2009.09.013
- 3645 - Bertholletia excelsa: 10.1021/JF061478A
- 161934 - Beta vulgaris:
- 3714 - Brassica oleracea var. alboglabra: 10.1002/(SICI)1097-0010(200004)80:5<561::AID-JSFA574>3.0.CO;2-#
- 3715 - Brassica oleracea var. botrytis:
- 3716 - Brassica oleracea var. capitata:
- 109379 - Brassica oleracea var. gongylodes: 10.1556/AALIM.29.2000.4.4
- 36774 - Brassica oleracea var. italica:
- 1216010 - Brassica oleracea var. sabauda:
- 3713 - Brassica oleracea var. viridis:
- 3711 - Brassica rapa: 10.1017/S0007114511004272
- 319147 - Bridelia ferruginea:
- 1027102 - Byrsonima coccolobifolia: 10.1021/NP400717M
- 4442 - Camellia sinensis:
- 4072 - Capsicum annuum:
- 626687 - Caragana aurantiaca: 10.1007/BF00597817
- 47643 - Caragana frutex: 10.1007/BF00597817
- 283153 - Caragana jubata: 10.1007/BF00597817
- 626692 - Caragana spinosa: 10.1007/S10600-012-0124-5
- 32201 - Carya illinoinensis: 10.1021/JF061478A
- 123405 - Catha edulis: 10.5040/9781474215718.CH-010
- 4058 - Catharanthus roseus: 10.1016/S0031-9422(02)00483-1
- 3322 - Cedrus deodara: 10.1007/S10600-011-0040-0
- 2054445 - Ceratostigma willmottianum:
- 13413 - Cercidiphyllum japonicum: 10.1055/S-2002-35657
- 13415 - Chamaecyparis obtusa: 10.1002/CJOC.201180280
- 136720 - Chondropetalum: 10.1016/S0031-9422(00)83536-0
- 397098 - Cinnamomum tamala: 10.1007/SPRINGERREFERENCE_68290
- 191224 - Cistus creticus: 10.1021/NP50071A039
- 335173 - Cistus ladanifer: 10.1016/0031-9422(92)80355-I
- 335179 - Cistus laurifolius: 10.1016/S0031-9422(00)89780-0
- 558547 - Citrus deliciosa: 10.1556/AALIM.31.2002.1.7
- 37334 - Citrus maxima: 10.1021/JF00032A015
- 171251 - Citrus medica: 10.1021/JF00032A015
- 85571 - Citrus reticulata: 10.1556/AALIM.31.2002.1.7
- 13443 - Coffea arabica: 10.1021/JF00032A015
- 13450 - Corylus:
- 13451 - Corylus avellana: 10.1007/BF00598319
- 3656 - Cucumis melo: 10.1556/AALIM.31.2002.1.7
- 3659 - Cucumis sativus:
- 3661 - Cucurbita maxima: 10.1556/AALIM.31.2002.1.7
- 13469 - Cupressus sempervirens: 10.1007/BF02275745
- 36609 - Cydonia: 10.1556/AALIM.31.2002.1.7
- 4039 - Daucus carota:
- 60422 - Davidsonia pruriens: 10.1016/0031-9422(77)83041-0
- 35874 - Dioscorea bulbifera:
- 413747 - Diospyros glaucifolia: 10.3987/COM-03-9882
- 2855400 - Diospyros japonica: 10.3987/COM-03-9882
- 55363 - Diospyros lotus:
- 233684 - Diploknema butyracea: 10.5586/ASBP.1991.010
- 311262 - Elegia deusta: 10.1016/S0031-9422(00)83536-0
- 311264 - Elegia hookeriana: 10.1016/S0031-9422(00)83536-0
- 311265 - Elegia microcarpa: 10.1016/S0031-9422(00)83536-0
- 311266 - Elegia mucronata: 10.1016/S0031-9422(00)83536-0
- 311267 - Elegia nuda: 10.1016/S0031-9422(00)83536-0
- 311268 - Elegia recta: 10.1016/S0031-9422(00)83536-0
- 2595069 - Embelia schimperi: 10.1016/S0031-9422(96)00706-6
- 191066 - Empetrum nigrum: 10.1081/JLC-100100418
- 236730 - Endosamara racemosa: 10.1016/0031-9422(89)80141-4
- 210355 - Epilobium hirsutum:
- 270439 - Erica manipuliflora: 10.1021/NP50121A012
- 1830100 - Erica verticillata: 10.1021/NP50121A012
- 34316 - Eucalyptus camaldulensis: 10.1016/0031-9422(93)85448-Z
- 34317 - Eucalyptus globulus: 10.1016/0031-9422(73)80517-5
- 183838 - Eucalyptus melliodora: 10.1016/0031-9422(73)80517-5
- 1711506 - Eucalyptus resinifera: 10.1016/0031-9422(73)80517-5
- 262447 - Eugenia axillaris: 10.1016/0305-1978(92)90062-I
- 2217936 - Eugenia hirta: 10.1016/0305-1978(92)90062-I
- 1453390 - Eugenia prasina: 10.1016/0305-1978(92)90062-I
- 375223 - Eugenia punicifolia: 10.1016/0305-1978(92)90062-I
- 119951 - Eugenia uniflora:
- 526197 - Euphorbia lunulata: 10.3390/MOLECULES16108305
- 154596 - Fagopyrum megacarpum: 10.1248/CPB.54.136
- 100541 - Ficus auriculata: 10.1055/S-0031-1282668
- 3494 - Ficus carica: 10.1556/AALIM.31.2002.1.7
- 57917 - Filipendula ulmaria: 10.1515/ZNC-2001-9-1012
- 3746 - Fragaria:
- 202327 - Geranium Wilfordii Maxim.: -
- 3311 - Ginkgo biloba:
- 578546 - Guiera senegalensis: 10.1007/0-387-28822-8_8
- 180125 - Halophila johnsonii: 10.1016/J.PHYTOCHEM.2008.07.007
- 2907093 - Heterotheca canescens: 10.1021/NP50021A021
- 183260 - Hibiscus sabdariffa: 10.1002/PTR.1628
- 193516 - Hippophae rhamnoides: 10.1007/BF00565207
- 9606 - Homo sapiens: -
- 99292 - Hovenia dulcis: 10.1248/BPB.20.381
- 79362 - Hydrophyllum tenuipes: 10.1002/J.1537-2197.1979.TB06321.X
- 4134 - Hydrophyllum virginianum: 10.1002/J.1537-2197.1979.TB06321.X
- 210378 - Hypericum ascyron: 10.1021/NP040024+
- 673928 - Hypericum hirsutum: 10.1021/NP040024+
- 1136989 - Hypericum laricifolium: 10.1021/NP040024+
- 1136997 - Hypericum montbretii: 10.3109/13880209109082884
- 673930 - Hypericum oblongifolium: 10.1021/NP040024+
- 65561 - Hypericum perforatum:
- 1137022 - Hypericum scabrum: 10.1021/NP040024+
- 162812 - Intsia bijuga: 10.1016/0031-9422(73)80461-3
- 576999 - Intsia palembanica: 10.1016/0031-9422(73)80461-3
- 91099 - Jovibarba heuffelii: 10.1016/0031-9422(95)00573-0
- 91218 - Juglans mandshurica: 10.1007/BF02976598
- 16719 - Juglans nigra: 10.1016/S0031-9422(00)88569-6
- 51240 - Juglans regia:
- 4236 - Lactuca sativa:
- 2039850 - Lagochilus platycalyx: 10.1007/BF00636587
- 3854 - Lathyrus aphaca: 10.1111/J.1469-8137.1960.TB06211.X
- 29752 - Lathyrus nissolia: 10.1111/J.1469-8137.1960.TB06211.X
- 4138 - Leonurus japonicus: 10.1055/S-0035-1545201
- 688283 - Lespedeza juncea: 10.1007/S10600-008-9091-2
- 1072387 - Limonium aureum: 10.1007/S10600-006-0089-3
- 114150 - Limonium axillare:
- 1288431 - Limonium bellidifolium: 10.1007/BF01374035
- 1288433 - Limonium caspium: 10.1007/BF01374035
- 46094 - Limonium gmelinii: 10.1007/S10600-005-0012-3
- 293752 - Limonium sinense:
- 2500775 - Linaria macroura: 10.1007/BF00579788
- 34305 - Lotus japonicus:
- 118937 - Lotus maritimus: 10.1016/S0031-9422(00)94254-7
- 347387 - Lotus polyphyllus: 10.1016/S0031-9422(00)94254-7
- 4329 - Macadamia: 10.1021/JF061478A
- 388575 - Machaerina rubiginosa: 10.1016/S0031-9422(00)84889-X
- 317856 - Madhuca longifolia: 10.1016/S0031-9422(00)90058-X
- 992730 - Maesa lanceolata:
- 3750 - Malus domestica:
- 283210 - Malus pumila:
- 70936 - Medicago arabica:
- 70938 - Medicago blancheana:
- 66808 - Medicago bonarotiana: 10.1139/B88-058
- 70939 - Medicago brachycarpa:
- 66809 - Medicago cancellata:
- 1445415 - Medicago citrina: 10.1139/B88-058
- 66812 - Medicago cretacea:
- 3878 - Medicago falcata:
- 66814 - Medicago hybrida:
- 70950 - Medicago intertexta:
- 70952 - Medicago laciniata:
- 47085 - Medicago lupulina:
- 70958 - Medicago monantha:
- 70959 - Medicago monspeliaca:
- 75627 - Medicago murex:
- 70962 - Medicago orbicularis:
- 70963 - Medicago orthoceras: 10.1139/B88-058
- 70965 - Medicago polyceratia:
- 47084 - Medicago polymorpha:
- 70968 - Medicago radiata:
- 70971 - Medicago rotata:
- 3879 - Medicago sativa:
- 36901 - Medicago scutellata:
- 3880 - Medicago truncatula:
- 70980 - Medicago turbinata: 10.1139/B88-058
- 73757 - Melaleuca ericifolia: 10.1016/J.PHYTOCHEM.2007.03.010
- 164942 - Melaleuca quinquenervia: 10.1002/CHIN.200117207
- 354501 - Melicope pteleifolia: 10.1016/S0031-9422(00)97768-9
- 1155344 - Melilotus altissimus: 10.1139/B88-058
- 78528 - Melilotus italicus: 10.1139/B88-058
- 1279044 - Melilotus messanensis: 10.1139/B88-058
- 47083 - Melilotus officinalis: 10.1139/B88-058
- 861159 - Melilotus sulcatus: 10.1139/B88-058
- 1632804 - Melilotus wolgicus: 10.1139/B88-058
- 696524 - Microtea debilis: 10.1021/NP970025K
- 76306 - Mimosa pudica: 10.1016/S0305-1978(01)00086-2
- 1272984 - Moquilea pyrifolia: 10.1016/0031-6865(96)00009-X
- 385002 - Morella esculenta: 10.1248/CPB.58.1408
- 385008 - Morella nana: 10.3184/030823409X447754
- 262757 - Morella rubra:
- 3735 - Moringa oleifera: 10.1007/S11746-002-0542-2
- 4640 - Musa:
- 883795 - Myrcia splendens:
- 262756 - Myrica nagi: 10.1039/CT8966901287
- 59982 - Myrsine africana: 10.1016/S0031-9422(96)00329-9
- 119949 - Myrtus communis:
- 36012 - Nageia nagi: 10.1039/CT8966901287
- 345095 - Nekemias cantoniensis: 10.1177/1934578X1501000302
- 416090 - Nekemias grossedentata: 10.1007/S10600-017-2124-Y
- 28933 - Nothofagus antarctica:
- 264924 - Nymphaea lotus: 10.1016/S0031-9422(03)00238-3
- 1616377 - Nymphaea nouchali var. caerulea: 10.1016/J.PHYTOCHEM.2008.04.009
- 4419 - Nymphaea odorata: 10.1021/NP020442J
- 3953 - Oenothera speciosa: 10.3390/MOLECULES14041456
- 1479707 - Oxytropis falcata: 10.1007/S10600-009-9291-4
- 157632 - Paronychia kapela: 10.1023/B:CONC.0000033945.16862.19
- 4041 - Pastinaca sativa: 10.1556/AALIM.29.2000.4.4
- 1592172 - Patersonia occidentalis: 10.1515/ZNC-1985-5-608
- 292518 - Patersonia sericea: 10.1515/ZNC-1985-5-608
- 59871 - Pelargonium reniforme: 10.1016/J.PHYMED.2006.11.021
- 321567 - Peltophorum africanum: 10.1055/S-0028-1097578
- 3435 - Persea americana: 10.1021/JF061478A
- 4043 - Petroselinum crispum:
- 3885 - Phaseolus vulgaris:
- 116726 - Phedimus aizoon: 10.1007/S10600-005-0148-1
- 91120 - Phedimus kamtschaticus: 10.1016/J.PHYTOCHEM.2007.05.031
- 42345 - Phoenix dactylifera: 10.1556/AALIM.31.2002.1.7
- 3329 - Picea abies:
- 375272 - Pimenta dioica: 10.1021/NP0705615
- 3337 - Pinus: 10.1021/JF061478A
- 88726 - Pinus brutia:
- 1193841 - Pinus brutia var. eldarica: 10.1016/S0305-1978(97)00049-5
- 3339 - Pinus contorta: 10.1016/S0021-9673(01)81355-8
- 71633 - Pinus halepensis:
- 55513 - Pistacia vera:
- 3888 - Pisum sativum: 10.1021/JF00024A011
- 33090 - Plants: -
- 58046 - Platycladus orientalis: 10.1016/0031-9422(73)85143-X
- 58046 - Platycladus orientalis (L.) Franco: -
- 2807301 - Plinia pinnata: 10.1016/S0031-9422(00)90500-4
- 351344 - Populus angustifolia: 10.1515/ZNC-1997-7-817
- 46147 - Portulaca oleracea: 10.1021/JF00024A011
- 207717 - Prosopis reptans: 10.1016/0305-1978(75)90037-X
- 36596 - Prunus armeniaca:
- 42229 - Prunus avium:
- 140311 - Prunus cerasus: 10.1556/AALIM.31.2002.1.7
- 3758 - Prunus domestica:
- 3755 - Prunus dulcis:
- 3760 - Prunus persica:
- 3355 - Pseudolarix amabilis:
- 22663 - Punica granatum:
- 23211 - Pyrus communis:
- 41679 - Raphanus sativus var. niger: 10.1556/AALIM.29.2000.4.4
- 240228 - Raphanus sativus var. sativus:
- 318879 - Rhododendron abietifolium: 10.1016/S0031-9422(00)81226-1
- 228355 - Rhododendron acuminatum: 10.1016/S0031-9422(00)81226-1
- 313316 - Rhododendron adenopodum: 10.1016/S0031-9422(00)81226-1
- 2878209 - Rhododendron aurigeranum: 10.1016/S0031-9422(00)81226-1
- 940862 - Rhododendron bagobonum: 10.1016/S0031-9422(00)81226-1
- 2872542 - Rhododendron beyerinckianum: 10.1016/S0031-9422(00)81226-1
- 940863 - Rhododendron brookeanum: 10.1016/S0031-9422(00)81226-1
- 940864 - Rhododendron buxifolium: 10.1016/S0031-9422(00)81226-1
- 2873472 - Rhododendron christianae: 10.1016/S0031-9422(00)81226-1
- 313322 - Rhododendron crassifolium: 10.1016/S0031-9422(00)81226-1
- 228361 - Rhododendron culminicola: 10.1016/S0031-9422(00)81226-1
- 880079 - Rhododendron dauricum: 10.1007/BF02329610
- 880079 - Rhododendron dauricum L.: -
- 344754 - Rhododendron decorum: 10.1007/S10600-009-9245-X
- 2878215 - Rhododendron dianthosmum: 10.1016/S0031-9422(00)81226-1
- 2946219 - Rhododendron durionifolium: 10.1016/S0031-9422(00)81226-1
- 134444 - Rhododendron ellipticum: 10.1016/0031-9422(94)00905-9
- 228363 - Rhododendron gracilentum: 10.1016/S0031-9422(00)81226-1
- 2946436 - Rhododendron hooglandii: 10.1016/S0031-9422(00)81226-1
- 228365 - Rhododendron inconspicuum: 10.1016/S0031-9422(00)81226-1
- 318897 - Rhododendron intranervatum: 10.1016/S0031-9422(00)81226-1
- 321365 - Rhododendron irroratum: 10.1007/S10600-008-0028-6
- 228366 - Rhododendron jasminiflorum: 10.1016/S0031-9422(00)81226-1
- 49624 - Rhododendron javanicum: 10.1016/S0031-9422(00)81226-1
- 174249 - Rhododendron kawakamii: 10.1016/S0031-9422(00)81226-1
- 228367 - Rhododendron konori: 10.1016/S0031-9422(00)81226-1
- 228368 - Rhododendron laetum: 10.1016/S0031-9422(00)81226-1
- 2873484 - Rhododendron lanceolatum: 10.1016/S0031-9422(00)81226-1
- 184576 - Rhododendron latoucheae:
- 880082 - Rhododendron ledebourii: 10.1007/BF02329610
- 49625 - Rhododendron leptanthum: 10.1016/S0031-9422(00)81226-1
- 228370 - Rhododendron leucogigas: 10.1016/S0031-9422(00)81226-1
- 49467 - Rhododendron luteum: 10.1007/BF00683855
- 2800032 - Rhododendron macgregoriae: 10.1016/S0031-9422(00)81226-1
- 49626 - Rhododendron moulmainense: 10.1016/0031-9422(94)00905-9
- 105903 - Rhododendron mucronulatum: 10.1007/BF02329610
- 2878219 - Rhododendron nieuwenhuisii: 10.1016/S0031-9422(00)81226-1
- 940876 - Rhododendron orbiculatum: 10.1016/S0031-9422(00)81226-1
- 318911 - Rhododendron phaeochitum: 10.1016/S0031-9422(00)81226-1
- 1685497 - Rhododendron planecostatum: 10.1016/S0031-9422(00)81226-1
- 228375 - Rhododendron pneumonanthum: 10.1016/S0031-9422(00)81226-1
- 318890 - Rhododendron polyanthemum: 10.1016/S0031-9422(00)81226-1
- 940879 - Rhododendron praetervisum: 10.1016/S0031-9422(00)81226-1
- 228378 - Rhododendron rarum: 10.1016/S0031-9422(00)81226-1
- 228379 - Rhododendron retusum: 10.1016/S0031-9422(00)81226-1
- 318902 - Rhododendron robinsonii: 10.1016/S0031-9422(00)81226-1
- 940883 - Rhododendron rugosum: 10.1016/S0031-9422(00)81226-1
- 2873492 - Rhododendron searleanum: 10.1016/S0031-9422(00)81226-1
- 880084 - Rhododendron sichotense: 10.1007/BF02329610
- 1080742 - Rhododendron simiarum: 10.1016/S0031-9422(00)81226-1
- 182159 - Rhododendron spinuliferum: 10.1007/S10600-009-9410-2
- 940887 - Rhododendron stapfianum: 10.1016/S0031-9422(00)81226-1
- 1685496 - Rhododendron stenophyllum: 10.1016/S0031-9422(00)81226-1
- 940888 - Rhododendron suaveolens: 10.1016/S0031-9422(00)81226-1
- 228384 - Rhododendron superbum: 10.1016/S0031-9422(00)81226-1
- 318912 - Rhododendron vitis-idaea: 10.1016/S0031-9422(00)81226-1
- 318909 - Rhododendron womersleyi: 10.1016/S0031-9422(00)81226-1
- 2873496 - Rhododendron wrightianum: 10.1016/S0031-9422(00)81226-1
- 940890 - Rhododendron yelliottii: 10.1016/S0031-9422(00)81226-1
- 228389 - Rhododendron zoelleri: 10.1016/S0031-9422(00)81226-1
- 298661 - Rhus coriaria:
- 134913 - Ribes alpinum: 10.1248/CPB.49.768
- 78511 - Ribes nigrum:
- 175228 - Ribes rubrum:
- 135518 - Ribes uva-crispa: 10.1556/AALIM.31.2002.1.7
- 23216 - Rubus:
- 32247 - Rubus idaeus:
- 75718 - Salix sachalinensis: 10.3987/COM-90-5425
- 1052904 - Scutellaria amoena: 10.1248/CPB.54.435
- 298678 - Searsia lancea: 10.1016/S0031-9422(00)80124-7
- 23029 - Sedum album: 10.1016/0031-9422(95)00573-0
- 1155362 - Sedum anglicum: 10.1016/0031-9422(95)00573-0
- 1239892 - Sedum brevifolium: 10.1016/0031-9422(95)00573-0
- 2726413 - Sedum crassularia: 10.1016/0031-9422(95)00573-0
- 91130 - Sedum farinosum: 10.1016/0031-9422(95)00573-0
- 1155363 - Sedum forsterianum: 10.1016/0031-9422(95)00573-0
- 1532438 - Sedum grisebachii: 10.1016/0031-9422(95)00573-0
- 91136 - Sedum laconicum: 10.1016/0031-9422(95)00573-0
- 2726419 - Sedum litoreum:
- 204003 - Sedum meyeri-johannis: 10.1016/0031-9422(95)00573-0
- 1239909 - Sedum montanum: 10.1016/0031-9422(95)00573-0
- 91141 - Sedum multiceps: 10.1016/0031-9422(95)00573-0
- 1239910 - Sedum ochroleucum: 10.1016/0031-9422(95)00573-0
- 91145 - Sedum rupestre: 10.1016/0031-9422(95)00573-0
- 28519 - Sedum sediforme: 10.1016/0031-9422(95)00573-0
- 91147 - Sedum sexangulare: 10.1016/0031-9422(95)00573-0
- 1239923 - Sedum ursi: 10.1016/0031-9422(95)00573-0
- 91149 - Sedum urvillei: 10.1016/0031-9422(95)00573-0
- 1532444 - Sempervivum altum: 10.1016/0031-9422(95)00573-0
- 1534600 - Sempervivum arachnoideum: 10.1016/0031-9422(95)00573-0
- 1538662 - Sempervivum borissovae: 10.1016/0031-9422(95)00573-0
- 1534602 - Sempervivum calcareum: 10.1016/0031-9422(95)00573-0
- 1532445 - Sempervivum caucasicum: 10.1016/0031-9422(95)00573-0
- 28520 - Sempervivum ciliosum: 10.1016/0031-9422(95)00573-0
- 1532446 - Sempervivum dzhavachischvilii: 10.1016/0031-9422(95)00573-0
- 1538667 - Sempervivum furseorum: 10.1016/0031-9422(95)00573-0
- 1534604 - Sempervivum grandiflorum: 10.1016/0031-9422(95)00573-0
- 2338865 - Sempervivum heuffelii: 10.1016/0031-9422(95)00573-0
- 1538670 - Sempervivum ingwersenii: 10.1016/0031-9422(95)00573-0
- 1538738 - Sempervivum leucanthum: 10.1016/0031-9422(95)00573-0
- 91153 - Sempervivum marmoreum: 10.1016/0031-9422(95)00573-0
- 1239926 - Sempervivum montanum: 10.1016/0031-9422(95)00573-0
- 1532447 - Sempervivum ossetiense: 10.1016/0031-9422(95)00573-0
- 1538673 - Sempervivum pumilum: 10.1016/0031-9422(95)00573-0
- 91155 - Sempervivum tectorum: 10.1016/0031-9422(95)00573-0
- 1538745 - Sempervivum thompsonianum: 10.1016/0031-9422(95)00573-0
- 4081 - Solanum lycopersicum:
- 195583 - Solanum lycopersicum var. cerasiforme: 10.1021/JF960339Y
- 4113 - Solanum tuberosum:
- 3562 - Spinacia oleracea:
- 1886 - Streptomyces albidoflavus:
- 1888 - Streptomyces albus:
- 1902 - Streptomyces coelicolor:
- 219868 - Syzygium aromaticum:
- 260142 - Syzygium cumini:
- 1042139 - Syzygium grande: 10.1016/0305-1978(92)90062-I
- 334483 - Syzygium jambos: 10.1016/0305-1978(92)90062-I
- 260143 - Syzygium samarangense:
- 334508 - Syzygium zeylanicum: 10.1016/0305-1978(92)90062-I
- 40788 - Tiarella trifoliata: 10.1016/0305-1978(82)90020-5
- 690252 - Toxicodendron wallichii: 10.1021/NP50045A034
- 361561 - Trifolium aureum: 10.1016/S0031-9422(00)98014-2
- 3899 - Trifolium repens: 10.1016/S0031-9422(00)98014-2
- 200961 - Trigonella balansae: 10.1139/B88-058
- 119381 - Trigonella calliceras: 10.1139/B88-058
- 200965 - Trigonella corniculata: 10.1139/B88-058
- 78533 - Trigonella cretica: 10.1139/B88-058
- 1603844 - Uvaria macrophylla: 10.3987/COM-11-12354
- 472369 - Vaccinium angustifolium:
- 69266 - Vaccinium corymbosum:
- 190531 - Vaccinium deliciosum: 10.1021/JF0307595
- 13750 - Vaccinium macrocarpon:
- 180763 - Vaccinium myrtillus:
- 190544 - Vaccinium ovalifolium: 10.1021/JF0307595
- 84019 - Vaccinium ovatum: 10.1021/JF0307595
- 516948 - Vaccinium oxycoccos:
- 180766 - Vaccinium parvifolium: 10.1021/JF0307595
- 190548 - Vaccinium uliginosum:
- 180772 - Vaccinium vitis-idaea:
- 207708 - Vachellia aroma: 10.1039/CT9028101160
- 154495 - Vicia amurensis: 10.1016/0305-1978(91)90115-G
- 84681 - Vicia bithynica: 10.1016/0305-1978(91)90115-G
- 3906 - Vicia faba:
- 85131 - Vicia johannis: 10.1016/0305-1978(91)90115-G
- 1007890 - Visnea mocanera: 10.1021/JF9505335
- 96939 - Vitis riparia: 10.1016/0305-1978(87)90085-8
- 103349 - Vitis rotundifolia: 10.1016/0305-1978(87)90085-8
- 29760 - Vitis vinifera:
- 754105 - Vitis vulpina: 10.1016/0305-1978(87)90085-8
- 549619 - Warburgia ugandensis: 10.1016/S0031-9422(03)00374-1
- 122950 - Witsenia maura: 10.1515/ZNC-1985-5-608
- 99658 - Xanthoceras sorbifolium: 10.1021/NP9902441
- 326968 - Ziziphus jujuba: 10.1055/S-2007-969308
- 33090 - 杨梅: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ahsas Goyal, Om Sikarwar, Aanchal Verma, Kunal Solanki, Neetu Agrawal, Nandini Dubey, Harlokesh Narayan Yadav. Unveiling myricetin's pharmacological potency: A comprehensive exploration of the molecular pathways with special focus on PI3K/AKT and Nrf2 signaling.
Journal of biochemical and molecular toxicology.
2024 Jun; 38(6):e23739. doi:
10.1002/jbt.23739
. [PMID: 38769721] - Pengfei Hao, Chaoyun Zhang, Hua Bian, Yixian Li. The mechanism of action of myricetin against lung adenocarcinoma based on bioinformatics, in silico and in vitro experiments.
Naunyn-Schmiedeberg's archives of pharmacology.
2024 Jun; 397(6):4089-4104. doi:
10.1007/s00210-023-02859-x
. [PMID: 38015259] - Anna Balykina, Lidia Naida, Kürsat Kirkgöz, Viacheslav O Nikolaev, Ekaterina Fock, Michael Belyakov, Anastasiia Whaley, Andrei Whaley, Valentina Shpakova, Natalia Rukoyatkina, Stepan Gambaryan. Antiplatelet Effects of Flavonoid Aglycones Are Mediated by Activation of Cyclic Nucleotide-Dependent Protein Kinases.
International journal of molecular sciences.
2024 Apr; 25(9):. doi:
10.3390/ijms25094864
. [PMID: 38732081] - Arwa R Althaher, Sawsan A Oran, Mirna W Awadallah, Hanan H Ameen, Reham F Shehabi, Laurance M S Bourghli, Andrea Mastinu. Chemical Composition, Antioxidant, and Antibacterial Activity of Ruta chalepensis L. Ethanolic Extract.
Chemistry & biodiversity.
2024 Apr; 21(4):e202400026. doi:
10.1002/cbdv.202400026
. [PMID: 38372467] - Ningning Yuan, Jianxin Diao, Jiamei Dong, Yangtian Yan, Yuchi Chen, Shihua Yan, Changshun Liu, Zhuoen He, Jinyue He, Chi Zhang, Hao Wang, Mingqing Wang, Fei He, Wei Xiao. Targeting ROCK1 in diabetic kidney disease: Unraveling mesangial fibrosis mechanisms and introducing myricetin as a novel antagonist.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 Jan; 171(?):116208. doi:
10.1016/j.biopha.2024.116208
. [PMID: 38286036] - Chunmei Yuan, Jiao Tian, Qing Zhou, Hui Xin, Yi Liu, Tianyu Deng, Wei Zeng, Zhilin Sun, Wei Xue. Myricetin derivatives containing the benzoxazinone moiety discovered as potential anti-tobacco mosaic virus agents.
Fitoterapia.
2023 Dec; 173(?):105812. doi:
10.1016/j.fitote.2023.105812
. [PMID: 38168568] - Yajie Wang, Regina Kratzer, Michael Murkovic, Manuel Eibinger, Eduardo Machado Charry, Shuqin Li, Tingting Zhang, Xiaoyu Zhang, Min Zhang, Haixia Chen. Fabrication and characterization of a novel zein/pectin/pumpkin seed oil Pickering emulsion and the effects of myricetin on oxidation stability.
International journal of biological macromolecules.
2023 Dec; 253(Pt 7):127386. doi:
10.1016/j.ijbiomac.2023.127386
. [PMID: 37838112] - Miaohe Zhang, Shuang Feng, Shuai Chen, Yuanxiang Zhou, Chenyu Gong, Wei Xue. Synthesis, antibacterial and antifungal activity of myricetin derivatives containing piperidine and amide fragments.
Pest management science.
2023 Dec; 79(12):4795-4808. doi:
10.1002/ps.7675
. [PMID: 37477984] - S Nandi, Sampath Kumar B, P S P Gupta, S Mondal, V Girish Kumar. Influence of phenolic flavonols (Kaempferol, Querectin and Myricetin) on the survival and growth of ovine preantral follicles and granulosa cells cultured in vitro.
Theriogenology.
2023 Oct; 214(?):266-272. doi:
10.1016/j.theriogenology.2023.10.023
. [PMID: 37948816] - Kathrin Geiger, Axel Muendlein, Andreas Leiherer, Stella Gaenger, Eva Maria Brandtner, Martin Wabitsch, Peter Fraunberger, Heinz Drexel, Christine Heinzle. Myricetin attenuates hypoxia-induced inflammation in human adipocytes.
Molecular biology reports.
2023 Oct; ?(?):. doi:
10.1007/s11033-023-08865-9
. [PMID: 37843712] - Wen-Chung Huang, Shu-Ju Wu, Kuo-Wei Yeh, Tse-Hung Huang, Chian-Jiun Liou. Protective effects of myricetin on airway inflammation and oxidative stress in ovalbumin-induced asthma mice.
The Journal of nutritional biochemistry.
2023 Oct; 123(?):109485. doi:
10.1016/j.jnutbio.2023.109485
. [PMID: 37844766] - Mengjiao Jian, Shuyi Li, Zhenzhou Zhu, Na Zhang, Qianchun Deng, Giancarlo Cravotto. Combination modes impact on the stability of β-carotene-loaded emulsion constructed by soy protein isolate, β-glucan and myricetin ternary complex.
Food research international (Ottawa, Ont.).
2023 10; 172(?):113173. doi:
10.1016/j.foodres.2023.113173
. [PMID: 37689925] - Tian Mao, Junchi Fan. Myricetin Protects Against Rat Intervertebral Disc Degeneration Partly Through the Nrf2/HO-1/NF-κB Signaling Pathway.
Biochemical genetics.
2023 Jul; ?(?):. doi:
10.1007/s10528-023-10456-z
. [PMID: 37507641] - Anchal Trivedi, Adria Hasan, Rumana Ahmad, Sahabjada Siddiqui, Aditi Srivastava, Aparna Misra, Snober S Mir. Flavonoid Myricetin as Potent Anticancer Agent: A Possibility towards Development of Potential Anticancer Nutraceuticals.
Chinese journal of integrative medicine.
2023 Jun; ?(?):. doi:
10.1007/s11655-023-3701-5
. [PMID: 37340205] - Fang Liu, Xiao Cao, Tao Zhang, Li Xing, Zhiling Sun, Wei Zeng, Hui Xin, Wei Xue. Synthesis and Biological Activity of Myricetin Derivatives Containing Pyrazole Piperazine Amide.
International journal of molecular sciences.
2023 Jun; 24(13):. doi:
10.3390/ijms241310442
. [PMID: 37445627] - Shilpa Sharma, Vijay Raj Tomar, Shashank Deep. Myricetin: A Potent Anti-Amyloidogenic Polyphenol against Superoxide Dismutase 1 Aggregation.
ACS chemical neuroscience.
2023 Jun; ?(?):. doi:
10.1021/acschemneuro.3c00276
. [PMID: 37314311] - Małgorzata Olszowy-Tomczyk, Dorota Wianowska. Antioxidant Properties of Selected Flavonoids in Binary Mixtures-Considerations on Myricetin, Kaempferol and Quercetin.
International journal of molecular sciences.
2023 Jun; 24(12):. doi:
10.3390/ijms241210070
. [PMID: 37373218] - Ipek Bayram, Artiona Laze, Eric A Decker. Synergistic Mechanisms of Interactions between Myricetin or Taxifolin with α-Tocopherol in Oil-in-Water Emulsions.
Journal of agricultural and food chemistry.
2023 Jun; ?(?):. doi:
10.1021/acs.jafc.3c01226
. [PMID: 37279160] - Lei Gao, Zhiping Tang, Tianbo Li, Jiangning Wang. Myricetin exerts anti-biofilm activity and attenuates osteomyelitis by inhibiting the TLR2/MAPK pathway in experimental mice.
Microbial pathogenesis.
2023 May; ?(?):106165. doi:
10.1016/j.micpath.2023.106165
. [PMID: 37224983] - Hudan Pan, Jinlian He, Zifeng Yang, Xiaojun Yao, Han Zhang, Runfeng Li, Yao Xiao, Caiping Zhao, Haiming Jiang, Yuntao Liu, Zhanguo Li, Bin Guo, Chuanhai Zhang, Run-Ze Li, Liang Liu. Myricetin possesses the potency against SARS-CoV-2 infection through blocking viral-entry facilitators and suppressing inflammation in rats and mice.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 May; 116(?):154858. doi:
10.1016/j.phymed.2023.154858
. [PMID: 37224774] - Suneel Kumar, Nitin Swamy, Hardeep Singh Tuli, Seema Rani, Abhijeet Garg, Deepa Mishra, Hadi Sajid Abdulabbas, Sardul Singh Sandhu. Myricetin: a potential plant-derived anticancer bioactive compound-an updated overview.
Naunyn-Schmiedeberg's archives of pharmacology.
2023 Apr; ?(?):. doi:
10.1007/s00210-023-02479-5
. [PMID: 37083713] - Yunlin Cao, Ruining Zhang, Mengyun Xing, Chuanhong Ren, Jiajia Li, Jiafei Qian, Yuyang Mei, Xiaochun Yang, Chongde Sun, Donald Grierson, Kunsong Chen, Changjie Xu, Xian Li. Synergistic actions of three MYB transcription factors underpins the high accumulation of myricetin in Morella rubra.
The Plant journal : for cell and molecular biology.
2023 Apr; ?(?):. doi:
10.1111/tpj.16247
. [PMID: 37058123] - Pengfei Liu, Yunfeng Zhou, Junzhuo Shi, Feng Wang, Xiaojia Yang, Xuhui Zheng, Yanran Wang, Yangyang He, Xinmei Xie, Xiaobin Pang. Myricetin improves pathological changes in 3×Tg-AD mice by regulating the mitochondria-NLRP3 inflammasome-microglia channel by targeting P38 MAPK signaling pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Apr; 115(?):154801. doi:
10.1016/j.phymed.2023.154801
. [PMID: 37086707] - Jibin Liu, Abdulla Al Mamun Bhuyan, Ke Ma, Xuexue Zhu, Kuo Zhou, Florian Lang. Myricetin-induced suicidal erythrocyte death.
Molecular biology reports.
2023 Mar; ?(?):. doi:
10.1007/s11033-023-08350-3
. [PMID: 36905403] - Na Nie, Zhuolun Li, Wenhuan Li, Xiao Huang, Zuli Jiang, Yan Shen. Myricetin ameliorates experimental autoimmune myocarditis in mice by modulating immune response and inhibiting MCP-1 expression.
European journal of pharmacology.
2023 Mar; 942(?):175549. doi:
10.1016/j.ejphar.2023.175549
. [PMID: 36708976] - Ling Gu, Zhihui Li, Xiongfei Zhang, Meijuan Chen, Xu Zhang. Identification of MAP Kinase Kinase 3 as a protein target of myricetin in non-small cell lung cancer cells.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Mar; 161(?):114460. doi:
10.1016/j.biopha.2023.114460
. [PMID: 36870282] - Fang Liu, Xiao Cao, Li Xing, Bangcan He, Nian Zhang, Wei Zeng, Hui Xin, Wei Xue. Design, Synthesis, Biological Activity Evaluation and Action Mechanism of Myricetin Derivatives Containing Thiazolebisamide.
Chemistry & biodiversity.
2023 Mar; 20(3):e202201103. doi:
10.1002/cbdv.202201103
. [PMID: 36683342] - Jinfang Zhang, Baht Aray, Yan Zhang, Yinglu Bai, Tao Yuan, Shilan Ding, Yanyu Xue, Xiulan Huang, Zhiyong Li. Synergistic effect of cucurbitacin E and myricetin on Anti-Non-Small cell lung cancer: Molecular mechanism and therapeutic potential.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Mar; 111(?):154619. doi:
10.1016/j.phymed.2022.154619
. [PMID: 36706697] - Rongsheng Chen, Xiaobo Zhang, Xitian Zhu, Changsheng Wang, Weihong Xu. Myricetin alleviated hydrogen peroxide-induced cellular senescence of nucleus pulposus cell through regulating SERPINE1.
Journal of orthopaedic surgery and research.
2023 Feb; 18(1):143. doi:
10.1186/s13018-022-03463-0
. [PMID: 36849986] - Devi Nallappan, Kien Chai Ong, Uma Devi Palanisamy, Kek Heng Chua, Umah Rani Kuppusamy. Myricetin derivative-rich fraction from Syzygium malaccense prevents high-fat diet-induced obesity, glucose intolerance and oxidative stress in C57BL/6J mice.
Archives of physiology and biochemistry.
2023 Feb; 129(1):186-197. doi:
10.1080/13813455.2020.1808019
. [PMID: 32813560] - Xiaonan Zhang, Lubin Zhang, Yingdi Zhang, Tingting Xiong, Yaqian Niu, Yan Huang. Extracting myricetin and dihydromyricetin simultaneously from Hovenia acerba seed by Ultrasound-Assisted extraction on a lab and small Pilot-Scale.
Ultrasonics sonochemistry.
2023 Feb; 93(?):106304. doi:
10.1016/j.ultsonch.2023.106304
. [PMID: 36682213] - Tian Xie, Ruijie Pan, Wenzhuo Huang, Sheng Dong, Shizhen Wu, Yuhui Ye. Myricetin alleviates H2O2-induced senescence and apoptosis in rat nucleus pulposus-derived mesenchymal stem cells.
Folia histochemica et cytobiologica.
2023; 61(2):98-108. doi:
10.5603/fhc.a2023.0007
. [PMID: 37435897] - Fahad A Al-Abbasi, Imran Kazmi. Therapeutic role of kaempferol and myricetin in streptozotocin-induced diabetes synergistically via modulation in pancreatic amylase, glycogen storage and insulin secretion.
Molecular and cellular biochemistry.
2022 Dec; ?(?):. doi:
10.1007/s11010-022-04629-4
. [PMID: 36583792] - Etimad Huwait, Rehab Almassabi, Sanaa Almowallad, Salma Saddeek, Sajjad Karim, Gauthaman Kalamegam, Zeenat Mirza. Microarray Expression Profile of Myricetin-Treated THP-1 Macrophages Exhibits Alterations in Atherosclerosis-Related Regulator Molecules and LXR/RXR Pathway.
International journal of molecular sciences.
2022 Dec; 24(1):. doi:
10.3390/ijms24010278
. [PMID: 36613720] - Chen Wang, Yunlong Yan, Min Huang, Guangming Ma, Li Wang, Xin Xie, Wei Xue, Xiangyang Li. Myricetin Derivative LP11 Targets Cucumber Mosaic Virus 2b Protein to Achieve In Vivo Antiviral Activity in Plants.
Journal of agricultural and food chemistry.
2022 Dec; 70(49):15360-15370. doi:
10.1021/acs.jafc.2c05536
. [PMID: 36448924] - Fangfang Cai, Bibao Li, Jiang Li, Yong Ding, Dandan Xu, Fei Huang. Myricetin is effective and selective in inhibiting imatinib-resistant chronic myeloid leukemia stem and differentiated cells through targeting eIF4E.
Anti-cancer drugs.
2022 Nov; ?(?):. doi:
10.1097/cad.0000000000001421
. [PMID: 36730418] - Syed Tauqeer Anwer, Mohammad Mobashir, Omer I Fantoukh, Bushra Khan, Khalid Imtiyaz, Irshad Hussain Naqvi, M Moshahid Alam Rizvi. Synthesis of Silver Nano Particles Using Myricetin and the In-Vitro Assessment of Anti-Colorectal Cancer Activity: In-Silico Integration.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911024
. [PMID: 36232319] - Hadis Alidadi, Atefeh Ashtari, Azin Samimi, Masoud Ali Karami, Layasadat Khorsandi. Myricetin loaded in solid lipid nanoparticles induces apoptosis in the HT-29 colorectal cancer cells via mitochondrial dysfunction.
Molecular biology reports.
2022 Sep; 49(9):8537-8545. doi:
10.1007/s11033-022-07683-9
. [PMID: 35767106] - Jing Fan, Qiang Zhang, Xin-Huai Zhao, Na Zhang. The Impact of Heat Treatment of Quercetin and Myricetin on their Activities to Alleviate the Acrylamide-Induced Cytotoxicity and Barrier Loss in IEC-6 Cells.
Plant foods for human nutrition (Dordrecht, Netherlands).
2022 Sep; 77(3):436-442. doi:
10.1007/s11130-022-00994-z
. [PMID: 35916997] - Zhiqi Zhao, Yizhang Chen, Xiaoqiong Li, Liying Zhu, Xin Wang, Li Li, Haibiao Sun, Xiaoqiang Han, Jinjun Li. Myricetin relieves the symptoms of type 2 diabetes mice and regulates intestinal microflora.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Sep; 153(?):113530. doi:
10.1016/j.biopha.2022.113530
. [PMID: 36076610] - Akinwunmi O Adeoye, John A Falode, Olabimpe C Oladipupo, Tajudeen O Obafemi, Babatunde J Oso, Ige F Olaoye. Modulation of mitochondrial permeability transition pore opening by Myricetin and prediction of its-drug-like potential using in silico approach.
Drug and chemical toxicology.
2022 Aug; ?(?):1-11. doi:
10.1080/01480545.2022.2117372
. [PMID: 36036089] - Dian-Dong Hou, Ya-Jing Gu, De-Cheng Wang, Yuan Niu, Zi-Ran Xu, Zhuo-Qun Jin, Xin-Xin Wang, Si-Jia Li. Therapeutic effects of myricetin on atopic dermatitis in vivo and in vitro.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Jul; 102(?):154200. doi:
10.1016/j.phymed.2022.154200
. [PMID: 35671605] - Da-Bin Pyeon, Seung-Eun Lee, Jae-Wook Yoon, Hyo-Jin Park, Seung-Hwan Oh, Do-Geon Lee, Eun-Young Kim, Se-Pill Park. Comparison of the improving embryo development effects of Sasa quelpaertensis Nakai extract, p-coumaric acid, and myricetin on porcine oocytes according to their antioxidant capacities.
Theriogenology.
2022 Jun; 185(?):97-108. doi:
10.1016/j.theriogenology.2022.03.009
. [PMID: 35395590] - John Bradley Morris, Brandon D Tonnis, Ming Li Wang, Uttam Bhattarai. Genetic Diversity for Quercetin, Myricetin, Cyanidin, and Delphinidin Concentrations in 38 Blackeye Pea (Vigna unguiculata L. Walp.) Genotypes for Potential Use as a Functional Health Vegetable.
Journal of dietary supplements.
2022 May; ?(?):1-16. doi:
10.1080/19390211.2022.2077881
. [PMID: 35615864] - Tripti Halder, Bharat Patel, Niyati Acharya. Design and optimization of myricetin encapsulated nanostructured lipid carriers: In-vivo assessment against cognitive impairment in amyloid beta (1-42) intoxicated rats.
Life sciences.
2022 May; 297(?):120479. doi:
10.1016/j.lfs.2022.120479
. [PMID: 35288172] - Anand Kumar Sahu, Ashok Kumar Mishra. Photophysical Behavior of Plant Flavonols Galangin, Kaempferol, Quercetin, and Myricetin in Homogeneous Media and the DMPC Model Membrane: Unveiling the Influence of the B-Ring Hydroxylation of Flavonols.
The journal of physical chemistry. B.
2022 04; 126(15):2863-2875. doi:
10.1021/acs.jpcb.2c00929
. [PMID: 35404618] - Xichuan Li, Ce Wang, Jinqian Chen, Xia Hu, Hao Zhang, Zhiying Li, Bei Lan, Wei Zhang, Yanjun Su, Chunze Zhang. Potential interactions among myricetin and dietary flavonols through the inhibition of human UDP-glucuronosyltransferase in vitro.
Toxicology letters.
2022 Apr; 358(?):40-47. doi:
10.1016/j.toxlet.2022.01.007
. [PMID: 35063619] - Huajian Li, Haoran Li, Shan Jiang, Jing Xu, Yifang Cui, Hong Wang, Long Dai, Yongqiang Lin, Jiayu Zhang. Study of the metabolism of myricetin in rat urine, plasma and feces by ultra-high-performance liquid chromatography.
Biomedical chromatography : BMC.
2022 Mar; 36(3):e5281. doi:
10.1002/bmc.5281
. [PMID: 34792824] - Shuwei Peng, Chunlin Fang, Heng He, Xu Song, Xinghong Zhao, Yuanfeng Zou, Lixia Li, Renyong Jia, Zhongqiong Yin. Myricetin exerts its antiviral activity against infectious bronchitis virus by inhibiting the deubiquitinating activity of papain-like protease.
Poultry science.
2022 Mar; 101(3):101626. doi:
10.1016/j.psj.2021.101626
. [PMID: 34995876] - Heung-Shick Lee, Younhee Kim. Myricetin Disturbs the Cell Wall Integrity and Increases the Membrane Permeability of Candida albicans.
Journal of microbiology and biotechnology.
2022 Jan; 32(1):37-45. doi:
10.4014/jmb.2110.10014
. [PMID: 34750288] - Sheikh Bilal Ahmad, Shahzada Mudaisr Rashid, Adil Farooq Wali, Shafat Ali, Muneeb U Rehman, Mir Tahir Maqbool, Ahmed Nadeem, Sheikh Fayaz Ahmad, Nahid Siddiqui. Myricetin (3,3',4',5,5',7-hexahydroxyflavone) prevents ethanol-induced biochemical and inflammatory damage in the liver of Wistar rats.
Human & experimental toxicology.
2022 Jan; 41(?):9603271211066843. doi:
10.1177/09603271211066843
. [PMID: 35156864] - Yilong Liu, Ruoqi Wang, Chuanhong Ren, Yifeng Pan, Jiajia Li, Xiaoyong Zhao, Changjie Xu, Kunsong Chen, Xian Li, Zhiwei Gao. Two Myricetin-Derived Flavonols from Morella rubra Leaves as Potent α-Glucosidase Inhibitors and Structure-Activity Relationship Study by Computational Chemistry.
Oxidative medicine and cellular longevity.
2022; 2022(?):9012943. doi:
10.1155/2022/9012943
. [PMID: 35498126] - Xiaominting Song, Huanan Rao, Chuanjie Guo, Bo Yang, Yali Ren, Miao Wang, Yuzhi Li, Zhixing Cao, Jin Pei. Myricetin exhibit selective anti-lymphoma activity by targeting BTK and is effective via oral administration in vivo.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2021 Dec; 93(?):153802. doi:
10.1016/j.phymed.2021.153802
. [PMID: 34710755] - Yumei Qian, Fang Zhao, Jing Wang, Hongxia Li, Lisheng Xu, Weiwei Wang, Weixiong Yu, Lingling Shan. Myricetin-Based Self-Assembled Nanoparticles for Tumor Synergistic Therapy by Antioxidation Pathway.
Journal of biomedical nanotechnology.
2021 Dec; 17(12):2399-2412. doi:
10.1166/jbn.2021.3197
. [PMID: 34974863] - Jing Jin, Yi-Qing Lv, Wei-Zhong He, Da Li, Ying Ye, Zai-Fa Shu, Jing-Na Shao, Jia-Hao Zhou, Ding-Mi Chen, Qing-Sheng Li, Jian-Hui Ye. Screening the Key Region of Sunlight Regulating the Flavonoid Profiles of Young Shoots in Tea Plants (Camellia sinensis L.) Based on a Field Experiment.
Molecules (Basel, Switzerland).
2021 Nov; 26(23):. doi:
10.3390/molecules26237158
. [PMID: 34885740] - Nazmun Nahar, Suhaila Mohamed, Noordin Mohamed Mustapha, Lau Seng Fong, Nur Iliyani Mohd Ishak. Gallic acid and myricetin-rich Labisia pumila extract mitigated multiple diabetic eye disorders in rats.
Journal of food biochemistry.
2021 11; 45(11):e13948. doi:
10.1111/jfbc.13948
. [PMID: 34622461] - Guanghong Chen, Honglin Xu, Yuting Wu, Xin Han, Lingpeng Xie, Guoyong Zhang, Bin Liu, YingChun Zhou. Myricetin suppresses the proliferation and migration of vascular smooth muscle cells and inhibits neointimal hyperplasia via suppressing TGFBR1 signaling pathways.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2021 Nov; 92(?):153719. doi:
10.1016/j.phymed.2021.153719
. [PMID: 34500301] - Fatih Karadeniz, Jung Hwan Oh, Hyun Jin Jo, Youngwan Seo, Chang-Suk Kong. Myricetin 3-O-β-D-Galactopyranoside Exhibits Potential Anti-Osteoporotic Properties in Human Bone Marrow-Derived Mesenchymal Stromal Cells via Stimulation of Osteoblastogenesis and Suppression of Adipogenesis.
Cells.
2021 10; 10(10):. doi:
10.3390/cells10102690
. [PMID: 34685670] - Ha-Neul Choi, Jin-Yeong Shin, Jung-In Kim. Ameliorative Effect of Myricetin on Nonalcoholic Fatty Liver Disease in ob/ob Mice.
Journal of medicinal food.
2021 Oct; 24(10):1092-1099. doi:
10.1089/jmf.2021.k.0090
. [PMID: 34668765] - Mengyun Xing, Yunlin Cao, Chuanhong Ren, Yilong Liu, Jiajia Li, Donald Grierson, Cathie Martin, Chongde Sun, Kunsong Chen, Changjie Xu, Xian Li. Elucidation of myricetin biosynthesis in Morella rubra of the Myricaceae.
The Plant journal : for cell and molecular biology.
2021 10; 108(2):411-425. doi:
10.1111/tpj.15449
. [PMID: 34331782] - Yuan Xiong, Guang-Hao Zhu, Ya-Ni Zhang, Qing Hu, Hao-Nan Wang, Hao-Nan Yu, Xiao-Ya Qin, Xiao-Qing Guan, Yan-Wei Xiang, Hui Tang, Guang-Bo Ge. Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: Inhibition potentials, covalent binding sites and inhibitory mechanisms.
International journal of biological macromolecules.
2021 Sep; 187(?):976-987. doi:
10.1016/j.ijbiomac.2021.07.167
. [PMID: 34333006] - Mehmet Berköz, Seda Ünal, Fahri Karayakar, Oruç Yunusoğlu, Ferbal Özkan-Yılmaz, Arzu Özlüer-Hunt, Ali Aslan. Prophylactic effect of myricetin and apigenin against lipopolysaccharide-induced acute liver injury.
Molecular biology reports.
2021 Sep; 48(9):6363-6373. doi:
10.1007/s11033-021-06637-x
. [PMID: 34401985] - Wen-Long Sun, Xin-Yu Li, Hao-Yue Dou, Xu-Dong Wang, Jing-Da Li, Liang Shen, Hong-Fang Ji. Myricetin supplementation decreases hepatic lipid synthesis and inflammation by modulating gut microbiota.
Cell reports.
2021 08; 36(9):109641. doi:
10.1016/j.celrep.2021.109641
. [PMID: 34469716] - Zheng-Wen Yu, Ni Zhang, Chun-Yan Jiang, Shao-Xiong Wu, Xia-Yu Feng, Xiao-Ying Feng. Exploring the genes involved in biosynthesis of dihydroquercetin and dihydromyricetin in Ampelopsis grossedentata.
Scientific reports.
2021 08; 11(1):15596. doi:
10.1038/s41598-021-95071-x
. [PMID: 34341423] - Halil Ibrahim Guler, Gizem Tatar, Oktay Yildiz, Ali Osman Belduz, Sevgi Kolayli. Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by molecular docking study.
Archives of microbiology.
2021 Aug; 203(6):3557-3564. doi:
10.1007/s00203-021-02351-1
. [PMID: 33950349] - Atsushi Michael Kimura, Mayumi Tsuji, Taro Yasumoto, Yukiko Mori, Tatsunori Oguchi, Yuya Tsuji, Masakazu Umino, Asami Umino, Toru Nishikawa, Shiro Nakamura, Tomio Inoue, Yuji Kiuchi, Masahito Yamada, David B Teplow, Kenjiro Ono. Myricetin prevents high molecular weight Aβ1-42 oligomer-induced neurotoxicity through antioxidant effects in cell membranes and mitochondria.
Free radical biology & medicine.
2021 08; 171(?):232-244. doi:
10.1016/j.freeradbiomed.2021.05.019
. [PMID: 34015458] - Devi Nallappan, Kek Heng Chua, Kien Chai Ong, Chun Wie Chong, Cindy Shuan Ju Teh, Uma Devi Palanisamy, Umah Rani Kuppusamy. Amelioration of high-fat diet-induced obesity and its associated complications by a myricetin derivative-rich fraction from Syzygium malaccense in C57BL/6J mice.
Food & function.
2021 Jul; 12(13):5876-5891. doi:
10.1039/d1fo00539a
. [PMID: 34019055] - Fatma M Elessawy, Albert Vandenberg, Anas El-Aneed, Randy W Purves. An Untargeted Metabolomics Approach for Correlating Pulse Crop Seed Coat Polyphenol Profiles with Antioxidant Capacity and Iron Chelation Ability.
Molecules (Basel, Switzerland).
2021 Jun; 26(13):. doi:
10.3390/molecules26133833
. [PMID: 34201792] - Haixia Su, Sheng Yao, Wenfeng Zhao, Yumin Zhang, Jia Liu, Qiang Shao, Qingxing Wang, Minjun Li, Hang Xie, Weijuan Shang, Changqiang Ke, Lu Feng, Xiangrui Jiang, Jingshan Shen, Gengfu Xiao, Hualiang Jiang, Leike Zhang, Yang Ye, Yechun Xu. Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease.
Nature communications.
2021 06; 12(1):3623. doi:
10.1038/s41467-021-23751-3
. [PMID: 34131140] - Mehmet Berköz, Serap Yalın, Ferbal Özkan-Yılmaz, Arzu Özlüer-Hunt, Mirosław Krośniak, Renata Francik, Oruç Yunusoğlu, Abdullah Adıyaman, Hava Gezici, Ayhan Yiğit, Seda Ünal, Davut Volkan, Metin Yıldırım. Protective effect of myricetin, apigenin, and hesperidin pretreatments on cyclophosphamide-induced immunosuppression.
Immunopharmacology and immunotoxicology.
2021 Jun; 43(3):353-369. doi:
10.1080/08923973.2021.1916525
. [PMID: 33905277] - Huijuan Ma, Xiaodong Song, Ping Huang, Weiwei Zhang, Xinyue Ling, Xiaoning Yang, Wenwei Wu, Huan Xu, Wei Wang. Myricetin protects natural killer cells from arsenite induced DNA damage by attenuating oxidative stress and retaining poly(ADP-Ribose) polymerase 1 activity.
Mutation research. Genetic toxicology and environmental mutagenesis.
2021 May; 865(?):503337. doi:
10.1016/j.mrgentox.2021.503337
. [PMID: 33865543] - Muhammad Umar Ijaz, Haseeb Anwar, Shabnoor Iqbal, Hammad Ismail, Asma Ashraf, Shama Mustafa, Abdul Samad. Protective effect of myricetin on nonylphenol-induced testicular toxicity: biochemical, steroidogenic, hormonal, spermatogenic, and histological-based evidences.
Environmental science and pollution research international.
2021 May; 28(18):22742-22757. doi:
10.1007/s11356-020-12296-5
. [PMID: 33423203] - Caio Fernando Ferreira Coêlho, Ivana Letícia Santos Souza, Vinicyus Teles Chagas, Nathalee Liberal Xavier Ribeiro, Bruno Araújo Serra Pinto, Lucas Martins França, Antonio Marcus de Andrade Paes. Myricetin improves metabolic outcomes but not cognitive deficit associated to metabolic syndrome in male mice.
Food & function.
2021 Apr; 12(8):3586-3596. doi:
10.1039/d1fo00073j
. [PMID: 33900338] - Mei Chen, Xuemei Tang, Tingting Liu, Feng Peng, Qing Zhou, Hui Luo, Ming He, Wei Xue. Antimicrobial evaluation of myricetin derivatives containing benzimidazole skeleton against plant pathogens.
Fitoterapia.
2021 Mar; 149(?):104804. doi:
10.1016/j.fitote.2020.104804
. [PMID: 33309970] - Xiao-Yuan Guo, Yi-Qing Lv, Ying Ye, Ze-Ye Liu, Xin-Qiang Zheng, Jian-Liang Lu, Yue-Rong Liang, Jian-Hui Ye. Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves.
Food chemistry.
2021 Mar; 339(?):128088. doi:
10.1016/j.foodchem.2020.128088
. [PMID: 32979714] - Kouadio Ibrahime Sinan, Gunes Ak, Ouattara Katinan Etienne, József Jekő, Zoltán Cziáky, Katalin Gupcsó, Maria João Rodrigues, Luisa Custodio, Mohamad Fawzi Mahomoodally, Jugreet B Sharmeen, Luigi Brunetti, Sheila Leone, Lucia Recinella, Annalisa Chiavaroli, Giustino Orlando, Luigi Menghini, Massimo Tacchini, Claudio Ferrante, Gokhan Zengin. Deeper Insights on Alchornea cordifolia (Schumach. & Thonn.) Müll.Arg Extracts: Chemical Profiles, Biological Abilities, Network Analysis and Molecular Docking.
Biomolecules.
2021 02; 11(2):. doi:
10.3390/biom11020219
. [PMID: 33557215] - Xiaominting Song, Lu Tan, Miao Wang, Chaoxiang Ren, Chuanjie Guo, Bo Yang, Yali Ren, Zhixing Cao, Yuzhi Li, Jin Pei. Myricetin: A review of the most recent research.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Feb; 134(?):111017. doi:
10.1016/j.biopha.2020.111017
. [PMID: 33338751] - Assad Ullah, Aftab Ahmad Anjum, Masood Rabbani, Muhammad Nawaz, Muhammad Ashraf, Muhammad Ijaz, Asad Ali, Anjum Rashid, Imran Najeeb, Asim Pervez. Phytochemical composition and In-vitro activity of ethanolic extract of Eucalyptus globulus leaves against multidrug resistant poultry pathogens.
Cellular and molecular biology (Noisy-le-Grand, France).
2021 Jan; 67(1):159-164. doi:
10.14715/cmb/2021.67.1.24
. [PMID: 34817352] - Mario D'Ambrosio, Elisabetta Bigagli, Lorenzo Cinci, Antonella Gori, Cecilia Brunetti, Francesco Ferrini, Cristina Luceri. Ethyl acetate extract from Cistus x incanus L. leaves enriched in myricetin and quercetin derivatives, inhibits inflammatory mediators and activates Nrf2/HO-1 pathway in LPS-stimulated RAW 264.7 macrophages.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2021 Jan; 76(1-2):79-86. doi:
10.1515/znc-2020-0053
. [PMID: 33027057] - Richa Dubey, Shruti H Kulkarni, Sarath Chandra Dantu, Rajlaxmi Panigrahi, Devika M Sardesai, Nikita Malik, Jhankar D Acharya, Jeetender Chugh, Shilpy Sharma, Ashutosh Kumar. Myricetin protects pancreatic β-cells from human islet amyloid polypeptide (hIAPP) induced cytotoxicity and restores islet function.
Biological chemistry.
2021 01; 402(2):179-194. doi:
10.1515/hsz-2020-0176
. [PMID: 33544469] - Pooja M, Gangavaram Jyothi Reddy, Kanipakam Hema, Sujatha Dodoala, Bharathi Koganti. Unravelling high-affinity binding compounds towards transmembrane protease serine 2 enzyme in treating SARS-CoV-2 infection using molecular modelling and docking studies.
European journal of pharmacology.
2021 Jan; 890(?):173688. doi:
10.1016/j.ejphar.2020.173688
. [PMID: 33130280] - Padmini Rajendran, Uma Maheshwari, Arun Muthukrishnan, Razia Muthuswamy, Krishnan Anand, Balasubramani Ravindran, Premnath Dhanaraj, Balasubramaninan Balamuralikrishnan, Soon Woong Chang, Woo Jin Chung. Myricetin: versatile plant based flavonoid for cancer treatment by inducing cell cycle arrest and ROS-reliant mitochondria-facilitated apoptosis in A549 lung cancer cells and in silico prediction.
Molecular and cellular biochemistry.
2021 Jan; 476(1):57-68. doi:
10.1007/s11010-020-03885-6
. [PMID: 32851589] - Shabana Akhtar, Mojgan Najafzadeh, Mohammad Isreb, Lisa Newton, Rajendran C Gopalan, Diana Anderson. Anticancer potential of myricetin bulk and nano forms in vitro in lymphocytes from myeloma patients.
Archives of toxicology.
2021 01; 95(1):337-343. doi:
10.1007/s00204-020-02938-5
. [PMID: 33128380] - Shiamala Devi Ramaiya, Huei Hong Lee, Yong Jun Xiao, Nur Shahirah Shahbani, Muta Harah Zakaria, Japar Sidik Bujang. Organic cultivation practices enhanced antioxidant activities and secondary metabolites in giant granadilla (Passiflora quadrangularis L.).
PloS one.
2021; 16(7):e0255059. doi:
10.1371/journal.pone.0255059
. [PMID: 34310644] - Haibo Xu, Qian Qi, Xixin Yan. Myricetin ameliorates sepsis-associated acute lung injury in a murine sepsis model.
Naunyn-Schmiedeberg's archives of pharmacology.
2021 01; 394(1):165-175. doi:
10.1007/s00210-020-01880-8
. [PMID: 32458011] - Junyi Huang, Ziyu He, Runqing Cheng, Zhuo Cheng, Shanshan Wang, Xianyong Wu, Bing Niu, Garry X Shen, Xianyan Liao. Assessment of binding interaction dihydromyricetin and myricetin with bovine lactoferrin and effects on antioxidant activity.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2020 Dec; 243(?):118731. doi:
10.1016/j.saa.2020.118731
. [PMID: 32827907] - Vladimir Chobot, Franz Hadacek, Gert Bachmann, Wolfram Weckwerth, Lenka Kubicova. In Vitro Evaluation of Pro- and Antioxidant Effects of Flavonoid Tricetin in Comparison to Myricetin.
Molecules (Basel, Switzerland).
2020 Dec; 25(24):. doi:
10.3390/molecules25245850
. [PMID: 33322312] - Abdelsamed I Elshamy, Naglaa M Ammar, Heba A Hassan, Walaa A El-Kashak, Salim S Al-Rejaie, Ahmed M Abd-ElGawad, Abdel-Razik H Farrag. Topical Wound Healing Activity of Myricetin Isolated from Tecomaria capensis v. aurea.
Molecules (Basel, Switzerland).
2020 Oct; 25(21):. doi:
10.3390/molecules25214870
. [PMID: 33105570] - Ismail Yener, Safak Ozhan Kocakaya, Abdulselam Ertas, Bahadır Erhan, Erhan Kaplaner, Elif Varhan Oral, Tugba Yilmaz-Ozden, Mustafa Abdullah Yilmaz, Mehmet Ozturk, Ufuk Kolak. Selective in vitro and in silico enzymes inhibitory activities of phenolic acids and flavonoids of food plants: Relations with oxidative stress.
Food chemistry.
2020 Oct; 327(?):127045. doi:
10.1016/j.foodchem.2020.127045
. [PMID: 32464460] - Kristýna Káňová, Lucie Petrásková, Helena Pelantová, Zuzana Rybková, Kateřina Malachová, Josef Cvačka, Vladimír Křen, Kateřina Valentová. Sulfated Metabolites of Luteolin, Myricetin, and Ampelopsin: Chemoenzymatic Preparation and Biophysical Properties.
Journal of agricultural and food chemistry.
2020 Oct; 68(40):11197-11206. doi:
10.1021/acs.jafc.0c03997
. [PMID: 32910657] - Uma Priya Mohan, Bhaskaran Sriram, Theivendren Panneerselvam, Sankarganesh Devaraj, Davoodbasha MubarakAli, Pavadai Parasuraman, Ponnusamy Palanisamy, Adhvitha Premanand, Sankarganesh Arunachalam, Selvaraj Kunjiappan. Utilization of plant-derived Myricetin molecule coupled with ultrasound for the synthesis of gold nanoparticles against breast cancer.
Naunyn-Schmiedeberg's archives of pharmacology.
2020 10; 393(10):1963-1976. doi:
10.1007/s00210-020-01874-6
. [PMID: 32468137] - Shuwei Zhang, Liubang Xiao, Lishuang Lv, Shengmin Sang. Trapping Methylglyoxal by Myricetin and Its Metabolites in Mice.
Journal of agricultural and food chemistry.
2020 Sep; 68(35):9408-9414. doi:
10.1021/acs.jafc.0c03471
. [PMID: 32786863] - Choongjin Ban, Joon-Bum Park, Sora Cho, Hye Rin Kim, Yong Joon Kim, Young Jin Choi, Woo-Jae Chung, Dae-Hyuk Kweon. Reduction of focal sweating by lipid nanoparticle-delivered myricetin.
Scientific reports.
2020 08; 10(1):13132. doi:
10.1038/s41598-020-69985-x
. [PMID: 32753614] - Yasaman Taheri, Hafiz Ansar Rasul Suleria, Natália Martins, Oksana Sytar, Ahmet Beyatli, Balakyz Yeskaliyeva, Gulnaz Seitimova, Bahare Salehi, Prabhakar Semwal, Sakshi Painuli, Anuj Kumar, Elena Azzini, Miquel Martorell, William N Setzer, Alfred Maroyi, Javad Sharifi-Rad. Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications.
BMC complementary medicine and therapies.
2020 Aug; 20(1):241. doi:
10.1186/s12906-020-03033-z
. [PMID: 32738903] - Chang Xu, Yi-Long Liu, Zhi-Wei Gao, Hua-Min Jiang, Chang-Jie Xu, Xian Li. [Pharmacological activities of myricetin and its glycosides].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2020 Aug; 45(15):3575-3583. doi:
10.19540/j.cnki.cjcmm.20200426.605
. [PMID: 32893546] - Xiaojing Lin, Cheng-Hsien Lin, Ruoxu Liu, Chenyi Li, Shuxin Jiao, Xueqing Yi, M J Walker, Xiao-Ming Xu, Tingbao Zhao, Po-Chang Huang, Gang Sun. Myricetin against myocardial injury in rat heat stroke model.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2020 Jul; 127(?):110194. doi:
10.1016/j.biopha.2020.110194
. [PMID: 32371315] - Raluca Stefanescu, Gabriela Dumitriṭa Stanciu, Andrei Luca, Luminita Paduraru, Bogdan-Ionel Tamba. Secondary Metabolites from Plants Possessing Inhibitory Properties against Beta-Amyloid Aggregation as Revealed by Thioflavin-T Assay and Correlations with Investigations on Transgenic Mouse Models of Alzheimer's Disease.
Biomolecules.
2020 06; 10(6):. doi:
10.3390/biom10060870
. [PMID: 32517180] - Fei Mo, Jia Ma, Xianwei Yang, Peipei Zhang, Qingqing Li, Jiye Zhang. In vitro and in vivo effects of the combination of myricetin and miconazole nitrate incorporated to thermosensitive hydrogels, on C. albicans biofilms.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2020 Jun; 71(?):153223. doi:
10.1016/j.phymed.2020.153223
. [PMID: 32460204] - Noha Nafee, Dina M Gaber, Ahmed O Elzoghby, Maged W Helmy, Osama Y Abdallah. Promoted Antitumor Activity of Myricetin against Lung Carcinoma Via Nanoencapsulated Phospholipid Complex in Respirable Microparticles.
Pharmaceutical research.
2020 Apr; 37(4):82. doi:
10.1007/s11095-020-02794-z
. [PMID: 32291520]