Vanillic acid (BioDeep_00000000082)

 

Secondary id: BioDeep_00000400495, BioDeep_00000859393

human metabolite PANOMIX_OTCML-2023 blood metabolite natural product BioNovoGene_Lab2019


代谢物信息卡片


4-hydroxy-3-methoxybenzoic acid

化学式: C8H8O4 (168.0423)
中文名称: 香草酸
谱图信息: 最多检出来源 Homo sapiens(blood) 32.88%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

Vanillic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/vanillic_acid (retrieved 2025-01-08) (BioDeep RN: BioDeep_00000000082). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: c1(c(cc(cc1)C(=O)O)OC)O
InChI: InChI=1S/C8H8O4/c1-12-7-4-5(8(10)11)2-3-6(7)9/h2-4,9H,1H3,(H,10,11)

描述信息

Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070).
Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266).
Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate.
Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available.
Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae.
A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13).
A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3.

Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].
Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

同义名列表

58 个代谢物同义名

InChI=1/C8H8O4/c1-12-7-4-5(8(10)11)2-3-6(7)9/h2-4,9H,1H3,(H,10,11; Vanillic acid, certified reference material, TraceCERT(R); Vanillic acid, Vetec(TM) reagent grade, 97\\%; 4-HYDROXY-3-METHOXYBENZOIC ACID [FHFI]; Vanillic acid, purum, >=97.0\\% (HPLC); 3E9555E5-85F5-4FCE-A429-5182E959C6A3; Protocatechuic acid, 3-methyl ester; Benzoic acid, 4-hydroxy-3-methoxy-; Protocatechuic acid 3-methyl ester; Acid, p-Hydroxy-m-methoxy-benzoic; Acid, 4-Hydroxy-3-methoxybenzoic; 4-hydroxy-3-methoxy benzoic acid; p-Hydroxy-m-methoxy-benzoic Acid; p Hydroxy m methoxy benzoic Acid; M-METHOXY-P-HYDROXY-BENZOIC ACID; 4- hydroxy-3-methoxybenzoic acid; 4-hydroxyl-3-methoxybenzoic acid; 4-hydroxy-3-methoxy-Benzoic acid; 4-Hydroxy-3-methoxybenzoic Acid; 3-Methoxy-4-hydroxybenzoic acid; 4 Hydroxy 3 methoxybenzoic Acid; 4-hydroxy-3methoxy benzoic acid; 4-Hydroxy-3-methoxybenzoicacid; 4-hydroxy-3-methoxy-Benzoate; 4-Hydroxy-3-methoxybenzoate; 3-Methoxy-4-hydroxybenzoate; DROXIDOPA METABOLITE (VA); Vanillic acid, >=97\\%, FG; m-Anisic acid, 4-hydroxy-; 2-METHOXY-4-CARBOXYPHENOL; Methylprotocatechuic acid; 4-hydroxy-m-Anisic acid; VANILLIC ACID [INCI]; 4-hydroxy-m-Anisate; Vanillic acid, 97\\%; VANILLIC ACID [MI]; Vanillic acid (M2); Vanillic Acid,(S); Acide vanillique; WLN: QVR DQ CO1; p-Vanillic acid; UNII-GM8Q3JM2Y8; Acid, Vanillic; Vanillic Acid; Vanillinsaure; Vanilic acid; VanillicAcid; p-Vanillate; GM8Q3JM2Y8; Vanillate; AI3-19542; VA (VAN); Vanillic; VNL; VA; Vanillic acid; Vanillic acid; Vanillate



数据库引用编号

32 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

1 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1458 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 AKT1, BCL2, CASP3, CAT, GPX1, HPGDS, MAPK8, MTOR, NFE2L2, PIK3CA, PTGS2, SYK, TYR, XDH
Peripheral membrane protein 3 ACHE, MTOR, PTGS2
Endoplasmic reticulum membrane 4 BCL2, HMOX1, MTOR, PTGS2
Nucleus 9 ACHE, AKT1, BCL2, CASP3, HMOX1, MAPK8, MTOR, NFE2L2, SYK
cytosol 14 AKT1, BCL2, CASP3, CAT, GPT, GPX1, HMOX1, HPGDS, MAPK8, MTOR, NFE2L2, PIK3CA, SYK, XDH
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
centrosome 1 NFE2L2
nucleoplasm 7 AKT1, CASP3, HMOX1, HPGDS, MAPK8, MTOR, NFE2L2
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 4 ACHE, AKT1, SYK, TNF
Cytoplasmic side 2 HMOX1, MTOR
lamellipodium 2 AKT1, PIK3CA
Golgi apparatus membrane 1 MTOR
Synapse 2 ACHE, MAPK8
cell cortex 1 AKT1
cell surface 2 ACHE, TNF
glutamatergic synapse 2 AKT1, CASP3
Golgi apparatus 2 ACHE, NFE2L2
Golgi membrane 2 INS, MTOR
lysosomal membrane 1 MTOR
neuromuscular junction 1 ACHE
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 2 NFE2L2, SYK
Lysosome 2 MTOR, TYR
plasma membrane 6 ACHE, AKT1, NFE2L2, PIK3CA, SYK, TNF
Membrane 6 ACHE, AKT1, BCL2, CAT, HMOX1, MTOR
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 2 CAT, GPT
Lysosome membrane 1 MTOR
endoplasmic reticulum 3 BCL2, HMOX1, PTGS2
extracellular space 6 ACHE, HMOX1, IL6, INS, TNF, XDH
perinuclear region of cytoplasm 4 ACHE, HMOX1, PIK3CA, TYR
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, CAT, GPX1
protein-containing complex 5 AKT1, BCL2, CAT, PTGS2, SYK
intracellular membrane-bounded organelle 3 CAT, HPGDS, TYR
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TYR
Secreted 3 ACHE, IL6, INS
extracellular region 5 ACHE, CAT, IL6, INS, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
mitochondrial matrix 2 CAT, GPX1
Extracellular side 1 ACHE
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
Melanosome membrane 1 TYR
cell-cell junction 1 AKT1
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 1 TNF
pore complex 1 BCL2
focal adhesion 1 CAT
spindle 1 AKT1
Peroxisome 2 CAT, XDH
basement membrane 1 ACHE
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 1 NFE2L2
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
Lipid-anchor, GPI-anchor 1 ACHE
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
endosome lumen 1 INS
Melanosome 1 TYR
side of membrane 1 ACHE
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Single-pass type IV membrane protein 1 HMOX1
synaptic cleft 1 ACHE
protein-DNA complex 1 NFE2L2
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
early phagosome 1 SYK
Cytoplasmic vesicle, phagosome 1 MTOR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
T cell receptor complex 1 SYK
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
B cell receptor complex 1 SYK
[Isoform H]: Cell membrane 1 ACHE
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Jin Li, Jianli Fu, Yanzhe Shang, Wenping Wei, Ping Zhang, Xue Wang, Bang-Ce Ye. Metabolic Engineering of Pseudomonas putida KT2440 for De Novo Biosynthesis of Vanillic Acid. Journal of agricultural and food chemistry. 2024 Feb; 72(8):4217-4224. doi: 10.1021/acs.jafc.3c07828. [PMID: 38356383]
  • Shahab Ghaderi, Parsa Gholipour, Alireza Komaki, Siamak Shahidi, Faezeh Seif, Mohammad Bahrami-Tapehebur, Iraj Salehi, Mohammad Zarei, Abdolrahman Sarihi, Masome Rashno. Underlying mechanisms behind the neuroprotective effect of vanillic acid against diabetes-associated cognitive decline: An in vivo study in a rat model. Phytotherapy research : PTR. 2024 Jan; ?(?):. doi: 10.1002/ptr.8111. [PMID: 38185917]
  • Eman S Alamri, Haddad A El Rabey. The Protective Effects of Vanillic Acid and Vanillic Acid-Coated Silver Nanoparticles (AgNPs) in Streptozotocin-Induced Diabetic Rats. Journal of diabetes research. 2024; 2024(?):4873544. doi: 10.1155/2024/4873544. [PMID: 38577302]
  • Yan Wang, Chao-Bing Luo, Yuan-Qiu Li. Biofuneling lignin-derived compounds into lipids using a newly isolated Citricoccus sp. P2. Bioresource technology. 2023 Nov; 387(?):129669. doi: 10.1016/j.biortech.2023.129669. [PMID: 37573985]
  • Jieyi Wu, Zhaohui Song, Nan Cai, Ningning Cao, Qingguo Wang, Xuefeng Xiao, Xiaokun Yang, Yi He, Shuxuan Zou. Pharmacokinetics, tissue distribution and excretion of six bioactive components from total glucosides picrorhizae rhizoma, as simultaneous determined by a UHPLC-MS/MS method. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2023 Jul; 1227(?):123830. doi: 10.1016/j.jchromb.2023.123830. [PMID: 37459691]
  • Chunliu Wang, Jie Zhou, Shixiang Wang, Yang Liu, Kaihua Long, Tingting Sun, Wenbing Zhi, Yang Yang, Hong Zhang, Ye Zhao, Xiaopu Zheng, Xiaohui Zheng, Ye Li, Pu Jia. Guanxining injection alleviates fibrosis in heart failure mice and regulates SLC7A11/GPX4 axis. Journal of ethnopharmacology. 2023 Jun; 310(?):116367. doi: 10.1016/j.jep.2023.116367. [PMID: 36914037]
  • Mohammad Shabani, Zhaleh Jamali, Deniz Bayrami, Ahmad Salimi. Vanillic acid alleviates methamphetamine-induced mitochondrial toxicity in cardiac mitochondria via antioxidant activity and inhibition of MPT Pore opening: an in-vitro study. BMC pharmacology & toxicology. 2023 05; 24(1):33. doi: 10.1186/s40360-023-00676-9. [PMID: 37208773]
  • Banafsheh Yalameha, Hamid Reza Nejabati, Mohammad Nouri. Cardioprotective potential of vanillic acid. Clinical and experimental pharmacology & physiology. 2023 Mar; 50(3):193-204. doi: 10.1111/1440-1681.13736. [PMID: 36370144]
  • Natarajan Ashokkumar, Kolanji Vinothiya. Protective Impact of Vanillic Acid on Lipid Profile and Lipid Metabolic Enzymes in Diabetic Hypertensive Rat Model Generated by A High-Fat Diet. Current drug discovery technologies. 2023 Feb; ?(?):. doi: 10.2174/1570163820666230224100643. [PMID: 36825708]
  • Rajamohanan Jalaja Anish, Biji Mohanan, Thankamani Ravikumar Aswathy, Aswathy Nair, K V Radhakrishnan, Arun A Rauf. An integrated approach to the structural characterization, long-term toxicological and anti-inflammatory evaluation of Pterospermum rubiginosum bark extract. Journal of ethnopharmacology. 2023 Feb; 308(?):116262. doi: 10.1016/j.jep.2023.116262. [PMID: 36796743]
  • Sreelekshmi Mohan, Anupama Nair, M S Poornima, K G Raghu. Vanillic acid mitigates hyperinsulinemia induced ER stress mediated altered calcium homeostasis, MAMs distortion and surplus lipogenesis in HepG2 cells. Chemico-biological interactions. 2023 Feb; ?(?):110365. doi: 10.1016/j.cbi.2023.110365. [PMID: 36764371]
  • Fei Sun, Xiang-Qin Wu, Yue Qi, Xing-Yu Chen, Yu-Hua Cao, Jian-Gang Wang, Shu-Mei Wang, Sheng-Wang Liang. [Application of partial least squares algorithm to explore bioactive components of crude and stir-baked hawthorn for invigorating spleen and promoting digestion]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Feb; 48(4):958-965. doi: 10.19540/j.cnki.cjcmm.20220712.302. [PMID: 36872266]
  • Tong-Il Hyeon, Kyung-Sup Yoon. Ethosome Containing Ceramide as a Skin Carrier of Active Ingredients. Current drug delivery. 2023; 20(7):927-942. doi: 10.2174/1567201819666220720123737. [PMID: 35864796]
  • Linyan Zhao, Wumei Xu, Huilin Guan, Kunyan Wang, Ping Xiang, Fugang Wei, Shaozhou Yang, Cuiping Miao, Lena Q Ma. Biochar increases Panax notoginseng's survival under continuous cropping by improving soil properties and microbial diversity. The Science of the total environment. 2022 Dec; 850(?):157990. doi: 10.1016/j.scitotenv.2022.157990. [PMID: 35963414]
  • Eman S Alamri, Haddad A El Rabey, Othman R Alzahrani, Fahad M Almutairi, Eman S Attia, Hala M Bayomy, Renad A Albalwi, Samar M Rezk. Enhancement of the Protective Activity of Vanillic Acid against Tetrachloro-Carbon (CCl4) Hepatotoxicity in Male Rats by the Synthesis of Silver Nanoparticles (AgNPs). Molecules (Basel, Switzerland). 2022 Nov; 27(23):. doi: 10.3390/molecules27238308. [PMID: 36500401]
  • Sompong Sansenya, Apirak Payaka. Inhibitory potential of phenolic compounds of Thai colored rice (Oryza sativa L.) against α-glucosidase and α-amylase through in vitro and in silico studies. Journal of the science of food and agriculture. 2022 Nov; 102(14):6718-6726. doi: 10.1002/jsfa.12039. [PMID: 35620810]
  • Leila Kebal, Katarzyna Pokajewicz, Noureddine Djebli, Nadjet Mostefa, Anna Poliwoda, Piotr P Wieczorek. HPLC-DAD profile of phenolic compounds and In vitro antioxidant activity of Ficus carica L. fruits from two Algerian varieties. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Nov; 155(?):113738. doi: 10.1016/j.biopha.2022.113738. [PMID: 36182734]
  • Shirley A Micallef, Sanghyun Han, Louisa Martinez. Tomato Cultivar Nyagous Fruit Surface Metabolite Changes during Ripening Affect Salmonella Newport. Journal of food protection. 2022 11; 85(11):1604-1613. doi: 10.4315/jfp-22-160. [PMID: 36048925]
  • Parker Elijah Joshua, Junaidu Yahaya, Daniel Emmanuel Ekpo, Joyce Oloaigbe Ogidigo, Arome Solomon Odiba, Rita Onyekachukwu Asomadu, Samson Ayodeji Oka, Olasupo Stephen Adeniyi. Modulation of immunological responses by aqueous extract of Datura stramonium L. seeds on cyclophosphamide-induced immunosuppression in Wistar rats. BMC immunology. 2022 10; 23(1):50. doi: 10.1186/s12865-022-00519-y. [PMID: 36261807]
  • Hatice Kiziltas, Ahmet Ceyhan Goren, Saleh H Alwasel, İlhami Gulcin. Sahlep (Dactylorhiza osmanica): Phytochemical Analyses by LC-HRMS, Molecular Docking, Antioxidant Activity, and Enzyme Inhibition Profiles. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27206907. [PMID: 36296499]
  • Qian Wu, Abid Naeem, Jiamei Zou, Chengqun Yu, Yingjie Wang, Jingbin Chen, Yuhui Ping. Isolation of Phenolic Compounds from Raspberry Based on Molecular Imprinting Techniques and Investigation of Their Anti-Alzheimer's Disease Properties. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27206893. [PMID: 36296486]
  • Arzu Kavaz, Mesut Işık, Emrah Dikici, Mehmet Yüksel. Anticholinergic, Antioxidant, and Antibacterial Properties of Vitex Agnus-Castus L. Seed Extract: Assessment of Its Phenolic Content by LC/MS/MS. Chemistry & biodiversity. 2022 Oct; 19(10):e202200143. doi: 10.1002/cbdv.202200143. [PMID: 36075867]
  • Jagat Pal Yadav, Maria Grishina, Mohd Shahbaaz, Alok Mukerjee, Sunil Kumar Singh, Prateek Pathak. Cucumis melo var. momordica as a Potent Antidiabetic, Antioxidant and Possible Anticovid Alternative: Investigation through Experimental and Computational Methods. Chemistry & biodiversity. 2022 Sep; 19(9):e202200200. doi: 10.1002/cbdv.202200200. [PMID: 35950335]
  • Kajal Sinha, Shiv Kumar, Bindu Rawat, Rahul Singh, Rituraj Purohit, Dinesh Kumar, Yogendra Padwad. Kutkin, iridoid glycosides enriched fraction of Picrorrhiza kurroa promotes insulin sensitivity and enhances glucose uptake by activating PI3K/Akt signaling in 3T3-L1 adipocytes. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2022 Aug; 103(?):154204. doi: 10.1016/j.phymed.2022.154204. [PMID: 35671635]
  • B Ogunlade, S C Gbotolorun, O A Adedotun, K A Itiere, J A Adejayi. VANILLIC ACID AND VITAMIN C ATTENUATED DEHP-INDUCED TESTICULAR TOXICITY IN MALE RATS. Reproduction & fertility. 2022 Aug; ?(?):. doi: 10.1530/raf-22-0045. [PMID: 35980228]
  • Jianxin Song, Yong Shao, Xiaoxu Chen, Xihong Li. Release of characteristic phenolics of quinoa based on extrusion technique. Food chemistry. 2022 Apr; 374(?):128780. doi: 10.1016/j.foodchem.2020.128780. [PMID: 34083060]
  • Brahmjot Singh, Ajay Kumar, Hasandeep Singh, Sarabjit Kaur, Saroj Arora, Balbir Singh. Protective effect of vanillic acid against diabetes and diabetic nephropathy by attenuating oxidative stress and upregulation of NF-κB, TNF-α and COX-2 proteins in rats. Phytotherapy research : PTR. 2022 Mar; 36(3):1338-1352. doi: 10.1002/ptr.7392. [PMID: 35088468]
  • Yuan Liang, Tiancheng Ma, Yuwei Li, Na Cai. A rapid and sensitive LC-MS/MS method for the determination of vanillic acid in rat plasma with application to pharmacokinetic study. Biomedical chromatography : BMC. 2022 Jan; 36(1):e5248. doi: 10.1002/bmc.5248. [PMID: 34555192]
  • Kaoutar Benrahou, Hanae Naceiri Mrabti, Saad Fettach, Mohamed Reda Kachmar, Mostafa Kouach, Jean-François Goossens, Latifa Doudach, Shafi Mahmud, Mohammed Merae Alshahrani, Ahmed Abdullah Al Awadh, Abdelhakim Bouyahya, My El Abbes Faouzi. Mineral and Phenolic Composition of Erodium guttatum Extracts and Investigation of Their Antioxidant Properties in Diabetic Mice. Oxidative medicine and cellular longevity. 2022; 2022(?):4229981. doi: 10.1155/2022/4229981. [PMID: 36193070]
  • Ifedolapo M Oke, Limpho M Ramorobi, Samson S Mashele, Susanna L Bonnet, Tshepiso J Makhafola, Kenneth C Eze, Anwar E M Noreljaleel, Chika I Chukwuma. Vanillic acid-Zn(II) complex: a novel complex with antihyperglycaemic and anti-oxidative activity. The Journal of pharmacy and pharmacology. 2021 Dec; 73(12):1703-1714. doi: 10.1093/jpp/rgab086. [PMID: 34109975]
  • Xiaomiao Tan, Jiangyu Zhu, Minato Wakisaka. Effect of phytochemical vanillic acid on the growth and lipid accumulation of freshwater microalga Euglena gracilis. World journal of microbiology & biotechnology. 2021 Nov; 37(12):217. doi: 10.1007/s11274-021-03185-1. [PMID: 34773155]
  • Alicia P Cárdenas-Castro, Víctor M Zamora-Gasga, Emilio Alvarez-Parrilla, Víctor M Ruíz-Valdiviezo, Koen Venema, Sonia G Sáyago-Ayerdi. In vitro gastrointestinal digestion and colonic fermentation of tomato (Solanum lycopersicum L.) and husk tomato (Physalis ixocarpa Brot.): Phenolic compounds released and bioconverted by gut microbiota. Food chemistry. 2021 Oct; 360(?):130051. doi: 10.1016/j.foodchem.2021.130051. [PMID: 34020365]
  • Kássia Caroline Figueredo, Camille Gaube Guex, Andreia Regina Haas da Silva, Cibele Lima Lhamas, Ana Martiele Engelmann, Roberto Marinho Maciel, Cristiane Cademartori Danesi, Thiago Duarte, Marta Maria Medeiros Frescura Duarte, Gilberti Helena Hübscher Lopes, Liliane de Freitas Bauermann. In silico and in vivo protective effect of Morus nigra leaves on oxidative damage induced by iron overload. Drug and chemical toxicology. 2021 Oct; ?(?):1-11. doi: 10.1080/01480545.2021.1991946. [PMID: 34663156]
  • Mohamed Z M Salem, Hayssam M Ali, Mohammad Akrami. Moringa oleifera seeds-removed ripened pods as alternative for papersheet production: antimicrobial activity and their phytoconstituents profile using HPLC. Scientific reports. 2021 09; 11(1):19027. doi: 10.1038/s41598-021-98415-9. [PMID: 34561493]
  • Pradeep Singh, Muhammad Arif, Abdul Qadir, Pushpendra Kannojia. Simultaneous Analytical Efficiency Evaluation Using an HPTLC Method for the Analysis of Syringic Acid and Vanillic Acid and Their Anti-Oxidant Capacity from Methanol Extract of Ricinus communis L. and Euphorbia hirta L. Journal of AOAC International. 2021 Aug; 104(4):1188-1195. doi: 10.1093/jaoacint/qsaa171. [PMID: 33351060]
  • Joel B Johnson, Daniel J Skylas, Janice S Mani, Jinle Xiang, Kerry B Walsh, Mani Naiker. Phenolic Profiles of Ten Australian Faba Bean Varieties. Molecules (Basel, Switzerland). 2021 Jul; 26(15):. doi: 10.3390/molecules26154642. [PMID: 34361795]
  • Nesa Ahmadi, Naser Mirazi, Alireza Komaki, Samaneh Safari, Abdolkarim Hosseini. Vanillic acid attenuates amyloid β1-40-induced long-term potentiation deficit in male rats: an in vivo investigation. Neurological research. 2021 Jul; 43(7):562-569. doi: 10.1080/01616412.2021.1893565. [PMID: 33627050]
  • Pedro H S Cesar, Marcus V Trento, Thais A Sales, Anderson A Simão, Teodorico C Ramalho, Silvana Marcussi. Vanillic acid as phospholipase A2 and proteases inhibitor: In vitro and computational analyses. Biotechnology and applied biochemistry. 2021 Jun; 68(3):486-496. doi: 10.1002/bab.1943. [PMID: 32420666]
  • Lavhelesani R Managa, Elsa S du Toit, Gerhard Prinsloo. NMR-Based Metabolomic Analyses to Identify the Effect of Harvesting Frequencies on the Leaf Metabolite Profile of a Moringa oleifera Cultivar Grown in an Open Hydroponic System. Molecules (Basel, Switzerland). 2021 Apr; 26(8):. doi: 10.3390/molecules26082298. [PMID: 33921119]
  • Nedra Slama, Houda Mankai, Ferid Limam. Streptomyces tunisiensis DSM 42037 mediated bioconversion of ferulic acid released from barley bran. World journal of microbiology & biotechnology. 2021 Mar; 37(4):70. doi: 10.1007/s11274-021-03031-4. [PMID: 33748917]
  • Sepideh Shekari, Fatemeh Khonsha, Mohammad Rahmati-Yamchi, Hamid R Nejabati, Ali Mota. Vanillic Acid and Non-Alcoholic Fatty Liver Disease: A Focus on AMPK in Adipose and Liver Tissues. Current pharmaceutical design. 2021; 27(46):4686-4692. doi: 10.2174/1381612827666210701145438. [PMID: 34218773]
  • Selin Şahin, Mehmet Bilgin, Özge Gülmez, Kubilay Güçlü, Mustafa Özyürek. Enrichment of Hazelnut Oil with Several Polyphenols: An Alternative Approach to A New Functional Food. Journal of oleo science. 2021; 70(1):11-19. doi: 10.5650/jos.ess20173. [PMID: 33431765]
  • Anchal Trivedi, Aparna Misra, Esha Sarkar, Anil K Balapure. In vitro Effect of Chlorquine and Picroliv on Plasmodium Berghei Induced Alterations in the Activity of Adenosine Triphosphatase, Aryl Hyrocarbon Hydroxylase Enzymes and Malondialdehyde in Spleen Explant Culture. Infectious disorders drug targets. 2021; 21(3):416-428. doi: 10.2174/1871526520666200630124419. [PMID: 32603287]
  • Anna Ziolkowska, Bozena Debska, Magdalena Banach-Szott. Content of Phenolic Compounds in Meadow Vegetation and Soil Depending on the Isolation Method. Molecules (Basel, Switzerland). 2020 Nov; 25(22):. doi: 10.3390/molecules25225462. [PMID: 33266357]
  • Young Hye Seo, Tuy An Trinh, Seung Mok Ryu, Hyo Seon Kim, Goya Choi, Byeong Cheol Moon, Sang Hee Shim, Dae Sik Jang, Dongho Lee, Ki Sung Kang, Jun Lee. Chemical Constituents from the Aerial Parts of Elsholtzia ciliata and Their Protective Activities on Glutamate-Induced HT22 Cell Death. Journal of natural products. 2020 10; 83(10):3149-3155. doi: 10.1021/acs.jnatprod.0c00756. [PMID: 32991171]
  • Amna Batool, Muhammad Saleem, - Alamgeer, Hafiz Muhammad Irfan, Waqas Younis, Nasser Hadal Alotaibi, Khalid Saad Alharbi, Syed Nasir Abbas Bukhari, Marcello Locatelli, Hammad Saleem. Study on vascular mechanisms underlying the hypotensive effect of Sorghum halepense (L.) Pers. Pakistan journal of pharmaceutical sciences. 2020 Sep; 33(5(Supplementary)):2219-2230. doi: . [PMID: 33832894]
  • Naoki Kitaoka, Taiji Nomura, Shinjiro Ogita, Yasuo Kato. Bioproduction of glucose conjugates of 4-hydroxybenzoic and vanillic acids using bamboo cells transformed to express bacterial 4-hydroxycinnamoyl-CoA hydratase/lyase. Journal of bioscience and bioengineering. 2020 Jul; 130(1):89-97. doi: 10.1016/j.jbiosc.2020.02.010. [PMID: 32192841]
  • Hyun Wook Huh, Hee-Yong Song, Young-Guk Na, Minki Kim, Mingu Han, Thi Mai Anh Pham, Hyeonmin Lee, Jungkyu Suh, Seok-Jong Lee, Hong-Ki Lee, Cheong-Weon Cho. Bioanalytical Method Development and Validation of Veratraldehyde and Its Metabolite Veratric Acid in Rat Plasma: An Application for a Pharmacokinetic Study. Molecules (Basel, Switzerland). 2020 Jun; 25(12):. doi: 10.3390/molecules25122800. [PMID: 32560470]
  • Khursheda Parvin, Kamrun Nahar, Mirza Hasanuzzaman, M H M Borhannuddin Bhuyan, Sayed Mohammad Mohsin, Masayuki Fujita. Exogenous vanillic acid enhances salt tolerance of tomato: Insight into plant antioxidant defense and glyoxalase systems. Plant physiology and biochemistry : PPB. 2020 May; 150(?):109-120. doi: 10.1016/j.plaphy.2020.02.030. [PMID: 32135476]
  • Jun Yao, Yang He, Nannan Su, Sakshibeedu R Bharath, Yong Tao, Jian-Ming Jin, Wei Chen, Haiwei Song, Shuang-Yan Tang. Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps. Nature communications. 2020 03; 11(1):1515. doi: 10.1038/s41467-020-14918-5. [PMID: 32251291]
  • Cristian López-Palacios, Cecilia B Peña-Valdivia. Screening of secondary metabolites in cladodes to further decode the domestication process in the genus Opuntia (Cactaceae). Planta. 2020 Mar; 251(4):74. doi: 10.1007/s00425-020-03371-9. [PMID: 32144512]
  • Yueyue Zhou, Lu Lin, Heng Wang, Zhichao Zhang, Jizhong Zhou, Nianzhi Jiao. Development of a CRISPR/Cas9n-based tool for metabolic engineering of Pseudomonas putida for ferulic acid-to-polyhydroxyalkanoate bioconversion. Communications biology. 2020 03; 3(1):98. doi: 10.1038/s42003-020-0824-5. [PMID: 32139868]
  • Xiuya Yao, Shoufeng Jiao, Mingming Qin, Wenfeng Hu, Bo Yi, Dan Liu. Vanillic Acid Alleviates Acute Myocardial Hypoxia/Reoxygenation Injury by Inhibiting Oxidative Stress. Oxidative medicine and cellular longevity. 2020; 2020(?):8348035. doi: 10.1155/2020/8348035. [PMID: 32377308]
  • Jae-Yong Kim, Sang Hee Shim. Anti-Atherosclerotic Effects of Fruits of Vitex rotundifolia and Their Isolated Compounds via Inhibition of Human LDL and HDL Oxidation. Biomolecules. 2019 11; 9(11):. doi: 10.3390/biom9110727. [PMID: 31726713]
  • James M Brimson, Nattawat Onlamoon, Tewin Tencomnao, Premrutai Thitilertdecha. Clerodendrum petasites S. Moore: The therapeutic potential of phytochemicals, hispidulin, vanillic acid, verbascoside, and apigenin. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019 Oct; 118(?):109319. doi: 10.1016/j.biopha.2019.109319. [PMID: 31404773]
  • Sathesh Kanna Velli, Jagan Sundaram, Manikandan Murugan, Gopalakrishnan Balaraman, Devaki Thiruvengadam. Protective effect of vanillic acid against benzo(a)pyrene induced lung cancer in Swiss albino mice. Journal of biochemical and molecular toxicology. 2019 Oct; 33(10):e22382. doi: 10.1002/jbt.22382. [PMID: 31468657]
  • Caroline Lambrecht Dittgen, Jessica Fernanda Hoffmann, Fábio Clasen Chaves, Cesar Valmor Rombaldi, José Manoel Colombari Filho, Nathan Levien Vanier. Discrimination of genotype and geographical origin of black rice grown in Brazil by LC-MS analysis of phenolics. Food chemistry. 2019 Aug; 288(?):297-305. doi: 10.1016/j.foodchem.2019.03.006. [PMID: 30902297]
  • Jianzeng Liu, Xiaohao Xu, Rui Jiang, Liwei Sun, Daqing Zhao. Vanillic acid in Panax ginseng root extract inhibits melanogenesis in B16F10 cells via inhibition of the NO/PKG signaling pathway. Bioscience, biotechnology, and biochemistry. 2019 Jul; 83(7):1205-1215. doi: 10.1080/09168451.2019.1606694. [PMID: 30999826]
  • Xiaoyuan Wang, Shuangshuang Wang, Shasha Huang, Lihua Zhang, Zhenzhen Ge, Liping Sun, Wei Zong. Purification of Polyphenols from Distiller's Grains by Macroporous Resin and Analysis of the Polyphenolic Components. Molecules (Basel, Switzerland). 2019 Apr; 24(7):. doi: 10.3390/molecules24071284. [PMID: 30986967]
  • Feng Bai, Liyun Fang, Huizhong Hu, Yang Yang, Xianxian Feng, Daqing Sun. Vanillic acid mitigates the ovalbumin (OVA)-induced asthma in rat model through prevention of airway inflammation. Bioscience, biotechnology, and biochemistry. 2019 Mar; 83(3):531-537. doi: 10.1080/09168451.2018.1543015. [PMID: 30422751]
  • Chong Wang, Ting Yu, Tsugumi Fujita, Eiichi Kumamoto. Moieties of plant-derived compounds responsible for outward current production and TRPA1 activation in rat spinal substantia gelatinosa. Pharmacological reports : PR. 2019 Feb; 71(1):67-72. doi: 10.1016/j.pharep.2018.09.003. [PMID: 30471518]
  • Manuel J Acosta Lopez, Eva Trevisson, Marcella Canton, Luis Vazquez-Fonseca, Valeria Morbidoni, Elisa Baschiera, Chiara Frasson, Ludovic Pelosi, Bérengère Rascalou, Maria Andrea Desbats, María Alcázar-Fabra, José Julián Ríos, Alicia Sánchez-García, Giuseppe Basso, Placido Navas, Fabien Pierrel, Gloria Brea-Calvo, Leonardo Salviati. Vanillic Acid Restores Coenzyme Q Biosynthesis and ATP Production in Human Cells Lacking COQ6. Oxidative medicine and cellular longevity. 2019; 2019(?):3904905. doi: 10.1155/2019/3904905. [PMID: 31379988]
  • Ana Júlia de Morais Santos Oliveira, Ricardo Dias de Castro, Hilzeth de Luna Freire Pessôa, Abdul Wadood, Damião Pergentino de Sousa. Amides Derived from Vanillic Acid: Coupling Reactions, Antimicrobial Evaluation, and Molecular Docking. BioMed research international. 2019; 2019(?):9209676. doi: 10.1155/2019/9209676. [PMID: 31139660]
  • Tania García, Javier Veloso, José Díaz. Vanillyl nonanoate induces systemic resistance and lignification in pepper plants. Journal of plant physiology. 2018 Dec; 231(?):251-260. doi: 10.1016/j.jplph.2018.10.002. [PMID: 30321751]
  • Anbalagan Vinoth, Raju Kowsalya. Chemopreventive potential of vanillic acid against 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. Journal of cancer research and therapeutics. 2018 Oct; 14(6):1285-1290. doi: 10.4103/0973-1482.191057. [PMID: 30488845]
  • Li-Jia Liu, Xiu-Hua Hu, Li-Na Guo, Ru-Feng Wang, Qi-Tao Zhao. Anti-inflammatory effect of the compounds from the flowers of Trollius chinensis. Pakistan journal of pharmaceutical sciences. 2018 Sep; 31(5):1951-1957. doi: ". [PMID: 30150194]
  • Wen Ma, Pierre Waffo-Téguo, Michäel Jourdes, Hua Li, Pierre-Louis Teissedre. First evidence of epicatechin vanillate in grape seed and red wine. Food chemistry. 2018 Sep; 259(?):304-310. doi: 10.1016/j.foodchem.2018.03.134. [PMID: 29680058]
  • Jia Yan Zhang, Xiang Xiao, Ying Dong, Xing Hua Zhou. Fermented Barley Extracts with Lactobacillus plantarum dy-1 Rich in Vanillic Acid Modulate Glucose Consumption in Human HepG2 Cells. Biomedical and environmental sciences : BES. 2018 09; 31(9):667-676. doi: 10.3967/bes2018.091. [PMID: 30369345]
  • Xue Han, Jielong Guo, Yilin You, Manwen Yin, Juan Liang, Chenglong Ren, Jicheng Zhan, Weidong Huang. Vanillic acid activates thermogenesis in brown and white adipose tissue. Food & function. 2018 Aug; 9(8):4366-4375. doi: 10.1039/c8fo00978c. [PMID: 30043820]
  • Natasa P Kalogiouri, Reza Aalizadeh, Nikolaos S Thomaidis. Application of an advanced and wide scope non-target screening workflow with LC-ESI-QTOF-MS and chemometrics for the classification of the Greek olive oil varieties. Food chemistry. 2018 Aug; 256(?):53-61. doi: 10.1016/j.foodchem.2018.02.101. [PMID: 29606472]
  • K Rasheeda, H Bharathy, N Nishad Fathima. Vanillic acid and syringic acid: Exceptionally robust aromatic moieties for inhibiting in vitro self-assembly of type I collagen. International journal of biological macromolecules. 2018 Jul; 113(?):952-960. doi: 10.1016/j.ijbiomac.2018.03.015. [PMID: 29522822]
  • Yan Jin, Kyung Min Jeong, Jeongmi Lee, Jing Zhao, Su-Young Choi, Kwang-Soo Baek. Development and Validation of an Analytical Method Readily Applicable for Quality Control of Tabebuia impetiginosa (Taheebo) Ethanolic Extract. Journal of AOAC International. 2018 May; 101(3):695-700. doi: 10.5740/jaoacint.17-0228. [PMID: 28927490]
  • Xingang Zhou, Fengzhi Wu. Vanillic acid changed cucumber (Cucumis sativus L.) seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities. Scientific reports. 2018 03; 8(1):4929. doi: 10.1038/s41598-018-23406-2. [PMID: 29563548]
  • Lucia Panzella, Thomas Eidenberger, Alessandra Napolitano. Anti-Amyloid Aggregation Activity of Black Sesame Pigment: Toward a Novel Alzheimer's Disease Preventive Agent. Molecules (Basel, Switzerland). 2018 Mar; 23(3):. doi: 10.3390/molecules23030676. [PMID: 29547584]
  • Tran Dang Xuan, Do Tan Khang. Effects of Exogenous Application of Protocatechuic Acid and Vanillic Acid to Chlorophylls, Phenolics and Antioxidant Enzymes of Rice (Oryza sativa L.) in Submergence. Molecules (Basel, Switzerland). 2018 Mar; 23(3):. doi: 10.3390/molecules23030620. [PMID: 29522438]
  • Shatrupa Ray, Sandhya Mishra, Kartikay Bisen, Surendra Singh, Birinchi Kumar Sarma, Harikesh Bahadur Singh. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway. Microbiological research. 2018 Mar; 207(?):100-107. doi: 10.1016/j.micres.2017.11.011. [PMID: 29458844]
  • Yunu Jung, Jinbong Park, Hye-Lin Kim, Jung-Eun Sim, Dong-Hyun Youn, JongWook Kang, Seona Lim, Mi-Young Jeong, Woong Mo Yang, Seok-Geun Lee, Kwang Seok Ahn, Jae-Young Um. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2018 03; 32(3):1388-1402. doi: 10.1096/fj.201700231rr. [PMID: 29141998]
  • Priyadeep Bhutani, Senthilkumar Murugesan, Anoop Kumar, Murali Subramanian, Koiram Rajanna Prabhakar. Offline derivatization LC-MS/MS method for simultaneous estimation of vanillin and vanillic acid in guinea pig plasma. Bioanalysis. 2018 Feb; 10(3):131-142. doi: 10.4155/bio-2017-0213. [PMID: 29333866]
  • Jiwon Baek, Dahae Lee, Tae Kyoung Lee, Ji Hoon Song, Ju Sung Lee, Seong Lee, Sang-Woo Yoo, Ki Sung Kang, Eunjung Moon, Sanghyun Lee, Ki Hyun Kim. (-)-9'-O-(α-l-Rhamnopyranosyl)lyoniresinol from Lespedeza cuneata suppresses ovarian cancer cell proliferation through induction of apoptosis. Bioorganic & medicinal chemistry letters. 2018 01; 28(2):122-128. doi: 10.1016/j.bmcl.2017.11.045. [PMID: 29223588]
  • Hyo Hee Yang, Kyung-Eon Oh, Yang Hee Jo, Jong Hoon Ahn, Qing Liu, Ayman Turk, Jae Young Jang, Bang Yeon Hwang, Ki Yong Lee, Mi Kyeong Lee. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay. Bioorganic & medicinal chemistry. 2018 01; 26(2):509-515. doi: 10.1016/j.bmc.2017.12.011. [PMID: 29254897]
  • Shuangxin Ma, Ning Liu, Hui Jia, Dongqing Dai, Jinping Zang, Zhiyan Cao, Jingao Dong. Expression, purification, and characterization of a novel laccase from Setosphaeria turcica in Eschericha coli. Journal of basic microbiology. 2018 Jan; 58(1):68-75. doi: 10.1002/jobm.201700212. [PMID: 29112275]
  • Reza Farhoosh. A Kinetic Approach to Evaluate the Structure-Based Performance of Antioxidants During Lipid Oxidation. Journal of food science. 2018 Jan; 83(1):101-107. doi: 10.1111/1750-3841.13993. [PMID: 29210460]
  • Jinguang Liu, Xingxiang Wang, Taolin Zhang, Xiaogang Li. Assessment of active bacteria metabolizing phenolic acids in the peanut (Arachis hypogaea L.) rhizosphere. Microbiological research. 2017 Dec; 205(?):118-124. doi: 10.1016/j.micres.2017.09.005. [PMID: 28942837]
  • Sivasamy Sethupathy, Sivagnanam Ananthi, Anthonymuthu Selvaraj, Balakrishnan Shanmuganathan, Loganathan Vigneshwari, Krishnaswamy Balamurugan, Sundarasamy Mahalingam, Shunmugiah Karutha Pandian. Vanillic acid from Actinidia deliciosa impedes virulence in Serratia marcescens by affecting S-layer, flagellin and fatty acid biosynthesis proteins. Scientific reports. 2017 11; 7(1):16328. doi: 10.1038/s41598-017-16507-x. [PMID: 29180790]
  • Yuan Gao, Shuai Ma, Meng Wang, Xiao-Yuan Feng. Characterization of Free, Conjugated, and Bound Phenolic Acids in Seven Commonly Consumed Vegetables. Molecules (Basel, Switzerland). 2017 Nov; 22(11):. doi: 10.3390/molecules22111878. [PMID: 29104269]
  • Nawasit Chotsaeng, Chamroon Laosinwattana, Patchanee Charoenying. Herbicidal Activities of Some Allelochemicals and Their Synergistic Behaviors toward Amaranthus tricolor L. Molecules (Basel, Switzerland). 2017 Oct; 22(11):. doi: 10.3390/molecules22111841. [PMID: 29077029]
  • Sonia Losada-Barreiro, Carlos Bravo-Díaz. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. European journal of medicinal chemistry. 2017 Jun; 133(?):379-402. doi: 10.1016/j.ejmech.2017.03.061. [PMID: 28415050]
  • Pimporn Anantaworasakul, Hiroshi Hamamoto, Kazuhisa Sekimizu, Siriporn Okonogi. Biological activities and antibacterial biomarker of Sesbania grandiflora bark extract. Drug discoveries & therapeutics. 2017 May; 11(2):70-77. doi: 10.5582/ddt.2017.01013. [PMID: 28458298]
  • Vijaya Movva, Usha Rani Pathipati. Feeding-induced phenol production in Capsicum annuum L. influences Spodoptera litura F. larval growth and physiology. Archives of insect biochemistry and physiology. 2017 May; 95(1):. doi: 10.1002/arch.21387. [PMID: 28449398]
  • Augusto L Santos, Eduardo S Yamamoto, Luiz Felipe D Passero, Márcia D Laurenti, Ligia F Martins, Marta L Lima, Miriam Uemi, Marisi G Soares, João Henrique G Lago, Andre G Tempone, Patricia Sartorelli. Antileishmanial Activity and Immunomodulatory Effects of Tricin Isolated from Leaves of Casearia arborea (Salicaceae). Chemistry & biodiversity. 2017 May; 14(5):. doi: 10.1002/cbdv.201600458. [PMID: 28054741]
  • Débora R DE Oliveira, Delci D Nepomuceno, Rosane N Castro, Raimundo Braz, Mário G DE Carvalho. Special metabolites isolated from Urochloa humidicola (Poaceae). Anais da Academia Brasileira de Ciencias. 2017 Apr; 89(2):789-797. doi: 10.1590/0001-3765201720160126. [PMID: 28640339]
  • Gökçe Taner, Deniz Özkan Vardar, Sevtap Aydin, Zeki Aytaç, Ahmet Başaran, Nurşen Başaran. Use of in vitro assays to assess the potential cytotoxic, genotoxic and antigenotoxic effects of vanillic and cinnamic acid. Drug and chemical toxicology. 2017 Apr; 40(2):183-190. doi: 10.1080/01480545.2016.1190740. [PMID: 27309403]
  • Marzanna Hęś, Artur Szwengiel, Krzysztof Dziedzic, Joanna Le Thanh-Blicharz, Dominik Kmiecik, Danuta Górecka. The Effect of Buckwheat Hull Extract on Lipid Oxidation in Frozen-Stored Meat Products. Journal of food science. 2017 Apr; 82(4):882-889. doi: 10.1111/1750-3841.13682. [PMID: 28272837]
  • Liang Xu, Zheming Ying, Wenjuan Wei, Dong Hao, Haibo Wang, Wenjie Zhang, Cuiyu Li, Mingyue Jiang, Xixiang Ying, Jing Liu. A novel alkaloid from Portulaca oleracea L. Natural product research. 2017 Apr; 31(8):902-908. doi: 10.1080/14786419.2016.1253081. [PMID: 27806650]
  • Kolanji Vinothiya, Natarajan Ashokkumar. Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Mar; 87(?):640-652. doi: 10.1016/j.biopha.2016.12.134. [PMID: 28088113]
  • Kan Chen, Chang-Qian Wang, Yu-Qi Fan, Zhi-Hua Han, Yue Wang, Lin Gao, Hua-Su Zeng. [Lipid-lowering effect of seven traditional Chinese medicine monomers in zebrafish system]. Sheng li xue bao : [Acta physiologica Sinica]. 2017 Feb; 69(1):55-60. doi: . [PMID: 28217808]
  • Joon-Yung Cha, Tae-Wan Kim, Jung Hoon Choi, Kyoung-Soon Jang, Laila Khaleda, Woe-Yeon Kim, Jong-Rok Jeon. Fungal Laccase-Catalyzed Oxidation of Naturally Occurring Phenols for Enhanced Germination and Salt Tolerance of Arabidopsis thaliana: A Green Route for Synthesizing Humic-like Fertilizers. Journal of agricultural and food chemistry. 2017 Feb; 65(6):1167-1177. doi: 10.1021/acs.jafc.6b04700. [PMID: 28112921]
  • I V Almeida, F M L Cavalcante, V E P Vicentini. Different responses of vanillic acid, a phenolic compound, in HTC cells: cytotoxicity, antiproliferative activity, and protection from DNA-induced damage. Genetics and molecular research : GMR. 2016 Dec; 15(4):. doi: 10.4238/gmr15049388. [PMID: 28002613]
  • Antonella Tosti, Martin N Zaiac, Agnese Canazza, Fabian Sanchis-Gomar, Helios Pareja-Galeano, Rafael Alis, Alejandro Lucia, Enzo Emanuele. Topical application of the Wnt/β-catenin activator methyl vanillate increases hair count and hair mass index in women with androgenetic alopecia. Journal of cosmetic dermatology. 2016 Dec; 15(4):469-474. doi: 10.1111/jocd.12225. [PMID: 27121450]