NCBI Taxonomy: 3844

Erythrina latissima (ncbi_taxid: 3844)

found 78 associated metabolites at species taxonomy rank level.

Ancestor: Erythrina

Child Taxonomies: none taxonomy data.

Isoliquiritigenin

(E)-1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

C15H12O4 (256.0736)


Isoliquiritigenin is a member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, a biological pigment, a NMDA receptor antagonist, a GABA modulator, a metabolite, an antineoplastic agent and a geroprotector. It is functionally related to a trans-chalcone. It is a conjugate acid of an isoliquiritigenin(1-). Isoliquiritigenin is a precursor to several flavonones in many plants. Isoliquiritigenin is a natural product found in Pterocarpus indicus, Dracaena draco, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Medicago subspecies Isoliquiritigenin is found in many foods, some of which are cocoa bean, purple mangosteen, blackcurrant, and chives. A member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. Isoliquiritigenin is found in pulses. Isoliquiritigenin is isolated from Medicago specie D004791 - Enzyme Inhibitors Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM. Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM.

   

Vanillic acid

4-hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0423)


Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Genistein

Genistein, Pharmaceutical Secondary Standard; Certified Reference Material

C15H10O5 (270.0528)


Genistein is a 7-hydroxyisoflavone with additional hydroxy groups at positions 5 and 4. It is a phytoestrogenic isoflavone with antioxidant properties. It has a role as an antineoplastic agent, a tyrosine kinase inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, a phytoestrogen, a plant metabolite, a geroprotector and a human urinary metabolite. It is a conjugate acid of a genistein(1-). An isoflavonoid derived from soy products. It inhibits protein-tyrosine kinase and topoisomerase-II (DNA topoisomerases, type II) activity and is used as an antineoplastic and antitumor agent. Experimentally, it has been shown to induce G2 phase arrest in human and murine cell lines. Additionally, genistein has antihelmintic activity. It has been determined to be the active ingredient in Felmingia vestita, which is a plant traditionally used against worms. It has shown to be effective in the treatment of common liver fluke, pork trematode and poultry cestode. Further, genistein is a phytoestrogen which has selective estrogen receptor modulator properties. It has been investigated in clinical trials as an alternative to classical hormone therapy to help prevent cardiovascular disease in postmenopausal women. Natural sources of genistein include tofu, fava beans, soybeans, kudzu, and lupin. Genistein is a natural product found in Pterocarpus indicus, Ficus septica, and other organisms with data available. Genistein is a soy-derived isoflavone and phytoestrogen with antineoplastic activity. Genistein binds to and inhibits protein-tyrosine kinase, thereby disrupting signal transduction and inducing cell differentiation. This agent also inhibits topoisomerase-II, leading to DNA fragmentation and apoptosis, and induces G2/M cell cycle arrest. Genistein exhibits antioxidant, antiangiogenic, and immunosuppressive activities. (NCI04) Genistein is one of several known isoflavones. Isoflavones compounds, such as genistein and daidzein, are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Genistein is a natural bioactive compound derived from legumes and has drawn because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data suggests a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Genistein exerts a non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These findings reveal the roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential f... Genistein is one of several known isoflavones. Isoflavones compounds, such as genistein and daidzein, are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Genistein is a natural bioactive compound derived from legumes and has drawn because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data suggests a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Genistein exerts a non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These findings reveal the roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential for inflammatory-related vascular disease. (PMID:17979711). Genistein is a biomarker for the consumption of soy beans and other soy products. Genistein is a phenolic compound belonging to the isoflavonoid group. Isoflavonoids are found mainly in soybean. Genistein and daidzein (an other isoflavonoid) represent the major phytochemicals found in this plant. Health benefits (e.g. reduced risk for certain cancers and diseases of old age) associated to soya products consumption have been observed in East Asian populations and several epidemiological studies. This association has been linked to the action of isoflavonoids. With a chemical structure similar to the hormone 17-b-estradiol, soy isoflavones are able to interact with the estrogen receptor. They also possess numerous biological activities. (PMID: 15540649). Genistein is a biomarker for the consumption of soy beans and other soy products. A 7-hydroxyisoflavone with additional hydroxy groups at positions 5 and 4. It is a phytoestrogenic isoflavone with antioxidant properties. C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 ORIGINAL_ACQUISITION_NO 5097; CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) CONFIDENCE standard compound; EAWAG_UCHEM_ID 3265 IPB_RECORD: 441; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 4238 CONFIDENCE standard compound; INTERNAL_ID 8827 CONFIDENCE standard compound; INTERNAL_ID 2419 CONFIDENCE standard compound; INTERNAL_ID 4162 CONFIDENCE standard compound; INTERNAL_ID 176 Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis.

   

Ferulic acid

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.0579)


trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Abyssinone V

4H-1-Benzopyran-4-one, {2,3-Dihydro-5,7-dihydroxy-2-[4-hydroxy-3,} 5-bis(3-methyl-2-butenyl)phenyl]-, (S)-

C25H28O5 (408.1937)


Abyssinone V is a trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7 and 4 and prenyl groups at positions 3 and 5 respectively. It has a role as a metabolite. It is a member of phenols, a trihydroxyflavanone and a member of 4-hydroxyflavanones. Abyssinone V is a natural product found in Erythrina abyssinica, Azadirachta indica, and other organisms with data available. A trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7 and 4 and prenyl groups at positions 3 and 5 respectively.

   

Daidzin

3-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O9 (416.1107)


Daidzein 7-O-beta-D-glucoside is a glycosyloxyisoflavone that is daidzein attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It is used in the treatment of alcohol dependency (antidipsotropic). It has a role as a plant metabolite. It is a hydroxyisoflavone, a monosaccharide derivative and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a daidzein. Daidzin is a natural product found in Thermopsis lanceolata, Thermopsis macrophylla, and other organisms with data available. See also: Astragalus propinquus root (part of). Daidzin is found in miso. Daidzin is isolated from soya bean (Glycine max) and soya bean meal, kudzu root (Pueraria lobata), alfalfa (Medicago sativa) and other Leguminosae.Daidzin is a cancer preventive and an alcohol dependency treatment (antidipsotropic) in animal models. Daidzin is a natural organic compound in the class of phytochemicals known as isoflavones. Daidzin can be found in Japanese plant Kudzu (Pueraria lobata, Fabaceae) and from soybean leaves A glycosyloxyisoflavone that is daidzein attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It is used in the treatment of alcohol dependency (antidipsotropic). Isolated from soya bean (Glycine max) and soya bean meal, kudzu root (Pueraria lobata), alfalfa (Medicago sativa) and other Leguminosae D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents D004791 - Enzyme Inhibitors Acquisition and generation of the data is financially supported in part by CREST/JST. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities. Daidzin is a potent and selective inhibitor of mitochondrial ALDH-2. Daidzin reduces ethanol consumption[1]. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities.

   

(+)-Syringaresinol

4-[(1S,3aR,4S,6aR)-4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1628)


(+)-syringaresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-syringaresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-syringaresinol can be found in a number of food items such as radish (variety), grape wine, oat, and ginkgo nuts, which makes (+)-syringaresinol a potential biomarker for the consumption of these food products.

   

Demethylmedicarpin

(6aR,11aR)-3,9-Dihydroxypterocarpan

C15H12O4 (256.0736)


   

Wighteone

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-3-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-

C20H18O5 (338.1154)


A natural product found in Ficus mucuso. Wighteone is a member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 6. It has been isolated from Ficus mucuso. It has a role as a plant metabolite and an antifungal agent. It is functionally related to an isoflavone. Wighteone is a natural product found in Genista ephedroides, Erythrina suberosa, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 6. It has been isolated from Ficus mucuso. Wighteone is a compound isolated from the aerial parts of Genista ephedroides[1]. Wighteone is a compound isolated from the aerial parts of Genista ephedroides[1].

   

Phaseollidin

15-(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2(7),3,5,11(16),12,14-hexaene-5,14-diol

C20H20O4 (324.1362)


Phaseollidin is found in common bean. Phaseollidin is isolated from kidney bean Phaseolus vulgaris, mung bean Phaseolus aureus, rice bean Phaseolus calcaratus, papadi Dolichos biflorus, and hyacinth bean Lablab niger.

   

(+)-Erysotrine

(1S,16R)-4,5,16-trimethoxy-10-azatetracyclo[8.7.0.0¹,¹³.0²,⁷]heptadeca-2,4,6,12,14-pentaene

C19H23NO3 (313.1678)


(+)-Erysotrine is found in green vegetables. (+)-Erysotrine is an alkaloid from a wide range of Erythrina species including Erythrina abyssinica, Erythrina arborescens, Erythrina atitlanensis, Erythrina blakei, Erythrina caffra, Erythrina coralloides, Erythrina crista-galli, Erythrina flabelliformis, Erythrina folkersii, Erythrina fusca (gallito), Erythrina goldmanii, Erythrina guatemalensis, Erythrina herbacea, Erythrina lithosperma, Erythrina livingstoniana, Erythrina macrophylla, Erythrina mulungu, Erythrina oliviae, Erythrina poeppigiana, Erythrina senegalensis, Erythrina steyermarkii, Erythrina suberosa, Erythrina tajumulcensis, Erythrina variegata and Erythrina zeher

   

Erythratidine

Erythratidine

C19H25NO4 (331.1783)


   

Cristacarpin

14-methoxy-15-(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2(7),3,5,11(16),12,14-hexaene-5,10-diol

C21H22O5 (354.1467)


Cristacarpin is found in pulses. Cristacarpin is isolated from Psophocarpus tetragonolobus (winged bean).

   

eobavaisoflavoe

7-hydroxy-3-[4-hydroxy-3-(3-methyl-2-buten-1-yl)phenyl]-4H-1-benzopyran-4-one

C20H18O4 (322.1205)


Neobavaisoflavone is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone with an additonal hydroxy group at position 4 and a prenyl group at position 3. Isolated from seeds of Psoralea corylifolia, it exhibits inhibitory activity against DNA polymerase and platelet aggregation. It has a role as a platelet aggregation inhibitor, an antineoplastic agent, a plant metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. Neobavaisoflavone is a natural product found in Erythrina sigmoidea, Erythrina latissima, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone with an additonal hydroxy group at position 4 and a prenyl group at position 3. Isolated from seeds of Psoralea corylifolia, it exhibits inhibitory activity against DNA polymerase and platelet aggregation. Neobavaisoflavone, a flavonoid, is isolated from the seeds of Psoralea corylifolia. Neobavaisoflavone exhibits anti-inflammatory, anti-cancer and anti-oxidation activities. Neobavaisoflavone inhibits DNA polymerase at moderate to high concentrations. Neobavaisoflavone also inhibits platelet aggregation[1][2][3][4][5]. Neobavaisoflavone, a flavonoid, is isolated from the seeds of Psoralea corylifolia. Neobavaisoflavone exhibits anti-inflammatory, anti-cancer and anti-oxidation activities. Neobavaisoflavone inhibits DNA polymerase at moderate to high concentrations. Neobavaisoflavone also inhibits platelet aggregation[1][2][3][4][5].

   

Erysodine

(1S,16R)-4,16-dimethoxy-10-azatetracyclo[8.7.0.0¹,¹³.0²,⁷]heptadeca-2(7),3,5,12,14-pentaen-5-ol

C18H21NO3 (299.1521)


Erysodine is found in green vegetables. Erysodine is an alkaloid from Erythrina fusca (gallito

   

Erythratine

19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,16-tetraen-18-ol

C18H21NO4 (315.1471)


Erythratine is found in green vegetables. Erythratine is an alkaloid from the seeds of Erythrina glauca (gallito

   

(+)-Erythraline

19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2(10),3,8,15,17-pentaene

C18H19NO3 (297.1365)


(+)-Erythraline is found in green vegetables. (+)-Erythraline is an alkaloid from Erythrina glauca (gallito) Alitretinoin (9-cis-retinoic acid) is a naturally-occurring endogenous retinoid indicated for topical treatment of cutaneous lesions in patients with AIDS-related Kaposis sarcoma. Alitretinoin inhibits the growth of Kaposis sarcoma (KS) cells in vitro. Retinoic acid is the oxidized form of Vitamin A. It functions in determining position along embryonic anterior/posterior axis in chordates. It acts through Hox genes, which ultimately control anterior/posterior patterning in early developmental stages. Retinoic acid acts by binding to heterodimers of the retinoic acid receptor (RAR) and the retinoid X receptor (RXR), which then bind to retinoic acid response elements (RAREs) in the regulatory regions of direct targets (including Hox genes), thereby activating gene transcription. Retinoic acid receptors mediate transcription of different sets of genes of cell differentiation, thus it also depends on the target cells. (+)-Erythraline is one of the target genes is the gene of the retinoic acid receptor itself which occurs during positive regulation. Control of retinoic acid levels is maintained by a suite of proteins. Retinoic acid is the oxidized form of Vitamin A. It functions in determining position along embryonic anterior/posterior axis in chordates. It acts through Hox genes, which ultimately controls anterior/posterior patterning in early developmental stages (PMID: 17495912). It is an important regulator of gene expression during growth and development, and in neoplasms. Tretinoin, also known as retinoic acid and derived from maternal vitamin A, is essential for normal growth and embryonic development. (+)-Erythraline is an excess of tretinoin can be teratogenic. It is used in the treatment of psoriasis; acne vulgaris; and several other skin diseases. It has also been approved for use in promyelocytic leukemia (leukemia, promyelocytic, acute)

   

Neobavaisoflavone

7-hydroxy-3-[4-hydroxy-3-(3-methyl-2-buten-1-yl)phenyl]-4H-1-benzopyran-4-one

C20H18O4 (322.1205)


   

4-(gamma,gamma-Dimethylallyl)-phaseollidin

(1R,10R)-6,15-bis(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11(16),12,14-hexaene-5,14-diol

C25H28O4 (392.1987)


4-(gamma,gamma-dimethylallyl)-phaseollidin, also known as 4-prenylphaseollidin, is a member of the class of compounds known as pterocarpans. Pterocarpans are benzo-pyrano-furano-benzene compounds, containing the 6H-[1]benzofuro[3,2-c]chromene skeleton. They are derivatives of isoflavonoids. 4-(gamma,gamma-dimethylallyl)-phaseollidin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-(gamma,gamma-dimethylallyl)-phaseollidin can be found in lima bean, which makes 4-(gamma,gamma-dimethylallyl)-phaseollidin a potential biomarker for the consumption of this food product.

   

Abyssinone IV

7,4-Dihydroxy-3,5-di-C-prenylflavanone

C25H28O4 (392.1987)


   

Isoneorautenol

(6aR,13aR) -6a,13a-Dihydro-10,10-dimethyl-6H,10H-furo [3,2-c:4,5-g] bis [1] benzopyran-3-ol

C20H18O4 (322.1205)


   

Neorautenol

[ 7aR, (-) ] -7a,12aalpha-Dihydro-3,3-dimethyl-3H,7H-benzofuro [ 3,2-c ] pyrano [ 3,2-g ] [ 1 ] benzopyran-10-ol

C20H18O4 (322.1205)


   

Sigmoidin C

(2S) -5,7,8-Trihydroxy-2,2-dimethyl-2,6-bi [ 2H-1-benzopyran ] -4 (3H) -one

C20H18O6 (354.1103)


   

Erysotramidine

(3)-1,2,6,7-Tetradehydro-3,15,16-trimethoxyerythrinan-8-one; 6H-Indolo[7a,1-a]isoquinoline, erythrinan-8-one deriv.; (+)-Erysotramidine

C19H21NO4 (327.1471)


Erysotramidine is a natural product found in Erythrina herbacea, Erythrina leptorhiza, and other organisms with data available.

   

Neobavaisoflavone

7-Hydroxy-3- [4-hydroxy-3- (3-methylbut-2-enyl) phenyl] chromen-4-one

C20H18O4 (322.1205)


Neobavaisoflavone, a flavonoid, is isolated from the seeds of Psoralea corylifolia. Neobavaisoflavone exhibits anti-inflammatory, anti-cancer and anti-oxidation activities. Neobavaisoflavone inhibits DNA polymerase at moderate to high concentrations. Neobavaisoflavone also inhibits platelet aggregation[1][2][3][4][5]. Neobavaisoflavone, a flavonoid, is isolated from the seeds of Psoralea corylifolia. Neobavaisoflavone exhibits anti-inflammatory, anti-cancer and anti-oxidation activities. Neobavaisoflavone inhibits DNA polymerase at moderate to high concentrations. Neobavaisoflavone also inhibits platelet aggregation[1][2][3][4][5].

   

Sigmoidin B

(S) -2- [ 3,4-Dihydroxy-5- (3-methyl-2-butenyl) phenyl ] -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C20H20O6 (356.126)


A tetrahydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 and a prenyl group at position 5. Isolated from Erythrina sigmoidea, it exhibits anti-inflammatory and antioxidant activities.

   

cristacarpin

(6aS) -10- (3-Methyl-2-butenyl) -9-methoxy-6H-benzofuro [ 3,2-c ] [ 1 ] benzopyran-3,6aalpha (11aalphaH) -diol

C21H22O5 (354.1467)


Isolated from Psophocarpus tetragonolobus (winged bean). Cristacarpin is found in winged bean and pulses.

   

Daidzin

3-(4-hydroxyphenyl)-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O9 (416.1107)


D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents D004791 - Enzyme Inhibitors Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities. Daidzin is a potent and selective inhibitor of mitochondrial ALDH-2. Daidzin reduces ethanol consumption[1]. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities.

   

5-Prenyleriodictyol

5-Prenyleriodictyol

C20H20O6 (356.126)


   

Erylatissin B

Erylatissin B

C20H16O5 (336.0998)


A member of the class of 7-hydroxyisoflavones that is isoflavone with hydroxy groups at C-7 and C-3 positions and a 2,2-dimethylpyran ring fused to ring B across positions C-4 and C-5. Isolated from the stem wood of Erythrina latissima, it exhibits antimicrobial and radical scavenging activities.

   

Erylatissin A

Erylatissin A

C21H20O5 (352.1311)


A member of the class of 7-hydroxyisoflavones in which isoflavone is substituted by hydroxy groups at the 7 and 3 positions, a methoxy group at the 4 position and a prenyl group at position 5. Isolated from the stem wood of Erythrina latissima, it exhibits antimicrobial and radical scavenging activities.

   

LMPK12140418

LMPK12140418

C20H18O6 (354.1103)


   

Syringaresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2,6-DIMETHOXY-, (1.ALPHA.,3A.ALPHA.,4.ALPHA.,6A.ALPHA.)-(+/-)-

C22H26O8 (418.1628)


(+)-syringaresinol is the (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol. It has a role as an antineoplastic agent. It is an enantiomer of a (-)-syringaresinol. (+)-Syringaresinol is a natural product found in Dracaena draco, Diospyros eriantha, and other organisms with data available. See also: Acai fruit pulp (part of). The (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol.

   

Genistein

Sophoricol

C15H10O5 (270.0528)


C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2181; CONFIDENCE confident structure Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis.

   

ferulate

InChI=1\C10H10O4\c1-14-9-6-7(2-4-8(9)11)3-5-10(12)13\h2-6,11H,1H3,(H,12,13

C10H10O4 (194.0579)


Ferulic acid, also known as 4-hydroxy-3-methoxycinnamic acid or 3-methoxy-4-hydroxy-trans-cinnamic acid, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Ferulic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Ferulic acid can be found in a number of food items such as flaxseed, pepper (c. chinense), chinese cinnamon, and wakame, which makes ferulic acid a potential biomarker for the consumption of these food products. Ferulic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and stratum corneum tissues. Ferulic acid exists in all eukaryotes, ranging from yeast to humans. Ferulic acid is a hydroxycinnamic acid, a type of organic compound. It is an abundant phenolic phytochemical found in plant cell walls, covalently bonded as side chains to molecules such as arabinoxylans. As a component of lignin, ferulic acid is a precursor in the manufacture of other aromatic compounds. The name is derived from the genus Ferula, referring to the giant fennel (Ferula communis) . D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Ferulic acid

4-hydroxy-3-methoxycinnamic acid

C10H10O4 (194.0579)


(E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Vanillic Acid

Vanillic acid hexoside

C8H8O4 (168.0423)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

syringaresinol

4-[4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1628)


   

Erythraline

19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0^{1,16}.0^{2,10}.0^{4,8}]icosa-2(10),3,8,15,17-pentaene

C18H19NO3 (297.1365)


   

Sigmoidin A

Sigmoidin A

C25H28O6 (424.1886)


A tetrahydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 and prenyl groups at positions 2 and 5. Isolated from Erythrina sigmoidea, it exhibits anti-inflammatory and antioxidant activities.

   

Erythratine

19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0^{1,16}.0^{2,10}.0^{4,8}]icosa-2,4(8),9,16-tetraen-18-ol

C18H21NO4 (315.1471)


   

Erysodine

(12R,13aS)-2,12-dimethoxy-5H,6H,8H,12H,13H-indolo[7a,1-a]isoquinolin-3-ol

C18H21NO3 (299.1521)


An erythrina alkaloid with formula C18H21NO3 isolated from several erythrina plant species. It is a competitive antagonist of nicotinic acetylcholine receptors and exhibits antiparasitic and insecticidal activities.

   

Vanillate

4-Hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0423)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   
   

NPI 031L

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(4-hydroxyphenyl)-

C15H10O5 (270.0528)


C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis.

   

14-methoxy-15-(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11,13,15-hexaene-5,10-diol

14-methoxy-15-(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11,13,15-hexaene-5,10-diol

C21H22O5 (354.1467)


   

(9bs,11r)-7,8,11-trimethoxy-4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-2-one

(9bs,11r)-7,8,11-trimethoxy-4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-2-one

C19H21NO4 (327.1471)


   

(9bs,11r)-7,8,11-trimethoxy-2h,10h,11h-indolo[7a,1-a]isoquinoline-4,5-dione

(9bs,11r)-7,8,11-trimethoxy-2h,10h,11h-indolo[7a,1-a]isoquinoline-4,5-dione

C19H19NO5 (341.1263)


   

(1s,18r,19r)-19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,16-tetraen-18-ol

(1s,18r,19r)-19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,16-tetraen-18-ol

C18H21NO4 (315.1471)


   

(1r,13r)-7,7-dimethyl-8,12,20-trioxapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁴,¹⁹]henicosa-2(11),3,5,9,14,16,18-heptaen-17-ol

(1r,13r)-7,7-dimethyl-8,12,20-trioxapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁴,¹⁹]henicosa-2(11),3,5,9,14,16,18-heptaen-17-ol

C20H18O4 (322.1205)


   

5,7-dihydroxy-2-[4-hydroxy-3,5-bis(3-methylbut-2-en-1-yl)phenyl]-2,3-dihydro-1-benzopyran-4-one

5,7-dihydroxy-2-[4-hydroxy-3,5-bis(3-methylbut-2-en-1-yl)phenyl]-2,3-dihydro-1-benzopyran-4-one

C25H28O5 (408.1937)


   

(1s,18r,19r)-18-hydroxy-19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,16-tetraen-14-one

(1s,18r,19r)-18-hydroxy-19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,16-tetraen-14-one

C18H19NO5 (329.1263)


   

7-hydroxy-2-[3-hydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]-2,3-dihydro-1-benzopyran-4-one

7-hydroxy-2-[3-hydroxy-4-methoxy-5-(3-methylbut-2-en-1-yl)phenyl]-2,3-dihydro-1-benzopyran-4-one

C21H22O5 (354.1467)


   

6,15-bis(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11(16),12,14-hexaene-5,14-diol

6,15-bis(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11(16),12,14-hexaene-5,14-diol

C25H28O4 (392.1987)


   

(2s,3r,4s,5s,6r)-2-{[(9bs,11r)-8-hydroxy-11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(9bs,11r)-8-hydroxy-11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C23H29NO8 (447.1893)


   

7,11-dimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-8-ol

7,11-dimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-8-ol

C18H21NO3 (299.1521)


   

2-({8-hydroxy-11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-7-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

2-({8-hydroxy-11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-7-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C23H29NO8 (447.1893)


   

(2s)-7-hydroxy-2-[4-hydroxy-3,5-bis(3-methylbut-2-en-1-yl)phenyl]-2,3-dihydro-1-benzopyran-4-one

(2s)-7-hydroxy-2-[4-hydroxy-3,5-bis(3-methylbut-2-en-1-yl)phenyl]-2,3-dihydro-1-benzopyran-4-one

C25H28O4 (392.1987)


   

(1s,19r)-19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,15,17-pentaen-14-one

(1s,19r)-19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,15,17-pentaen-14-one

C18H17NO4 (311.1158)


   

7,8,11-trimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline

7,8,11-trimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinoline

C19H23NO3 (313.1678)


   

(2r)-5,7-dihydroxy-2-[8-hydroxy-2,2-dimethyl-7-(3-methylbut-2-en-1-yl)chromen-6-yl]-2,3-dihydro-1-benzopyran-4-one

(2r)-5,7-dihydroxy-2-[8-hydroxy-2,2-dimethyl-7-(3-methylbut-2-en-1-yl)chromen-6-yl]-2,3-dihydro-1-benzopyran-4-one

C25H26O6 (422.1729)


   

7,8,11-trimethoxy-2h,10h,11h-indolo[7a,1-a]isoquinoline-4,5-dione

7,8,11-trimethoxy-2h,10h,11h-indolo[7a,1-a]isoquinoline-4,5-dione

C19H19NO5 (341.1263)


   

18-hydroxy-19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,16-tetraen-14-one

18-hydroxy-19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,16-tetraen-14-one

C18H19NO5 (329.1263)


   

(2s,3r,4s,5s,6r)-2-{[(9bs,11r)-7-hydroxy-11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-8-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(9bs,11r)-7-hydroxy-11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-8-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C23H29NO8 (447.1893)


   

(2s,10r)-17,17-dimethyl-3,12,16-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(13),4,6,8,14,18,20-heptaen-6-ol

(2s,10r)-17,17-dimethyl-3,12,16-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(13),4,6,8,14,18,20-heptaen-6-ol

C20H18O4 (322.1205)


   

(9bs,11r)-7,11-dimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-8-ol

(9bs,11r)-7,11-dimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-8-ol

C18H21NO3 (299.1521)


   

2-({8,11-dimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-7-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

2-({8,11-dimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-7-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C24H31NO8 (461.205)


   

(2s,3r,4s,5s,6r)-2-{[(9bs,11r)-8,11-dimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(9bs,11r)-8,11-dimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C24H31NO8 (461.205)


   

2-({7-hydroxy-11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-8-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

2-({7-hydroxy-11-methoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-8-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C23H29NO8 (447.1893)


   

19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,15,17-pentaene

19-methoxy-5,7-dioxa-13-azapentacyclo[11.7.0.0¹,¹⁶.0²,¹⁰.0⁴,⁸]icosa-2,4(8),9,15,17-pentaene

C18H19NO3 (297.1365)


   

(2r)-2-[3,4-dihydroxy-2,5-bis(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

(2r)-2-[3,4-dihydroxy-2,5-bis(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxy-2,3-dihydro-1-benzopyran-4-one

C25H28O6 (424.1886)


   

(2s)-5,7-dihydroxy-2-(8-hydroxy-2,2-dimethylchromen-6-yl)-2,3-dihydro-1-benzopyran-4-one

(2s)-5,7-dihydroxy-2-(8-hydroxy-2,2-dimethylchromen-6-yl)-2,3-dihydro-1-benzopyran-4-one

C20H18O6 (354.1103)


   

8,11-dimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-7-ol

8,11-dimethoxy-2h,4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-7-ol

C18H21NO3 (299.1521)


   

17,17-dimethyl-3,12,18-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicosa-1(13),4,6,8,14(19),15,20-heptaen-6-ol

17,17-dimethyl-3,12,18-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicosa-1(13),4,6,8,14(19),15,20-heptaen-6-ol

C20H18O4 (322.1205)


   

(2r,10r)-17,17-dimethyl-3,12,18-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicosa-1(13),4,6,8,14(19),15,20-heptaen-6-ol

(2r,10r)-17,17-dimethyl-3,12,18-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicosa-1(13),4,6,8,14(19),15,20-heptaen-6-ol

C20H18O4 (322.1205)


   

(2r,10r)-17,17-dimethyl-3,12,16-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(13),4,6,8,14,18,20-heptaen-6-ol

(2r,10r)-17,17-dimethyl-3,12,16-trioxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(13),4,6,8,14,18,20-heptaen-6-ol

C20H18O4 (322.1205)


   

7,8,11-trimethoxy-4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-2-one

7,8,11-trimethoxy-4h,5h,10h,11h-indolo[7a,1-a]isoquinolin-2-one

C19H21NO4 (327.1471)


   

2-(3-hydroxy-5-methoxyphenyl)-5-methoxy-1-benzofuran-6-ol

2-(3-hydroxy-5-methoxyphenyl)-5-methoxy-1-benzofuran-6-ol

C16H14O5 (286.0841)