NCBI Taxonomy: 147273

Taxus wallichiana (ncbi_taxid: 147273)

found 113 associated metabolites at species taxonomy rank level.

Ancestor: Taxus

Child Taxonomies: Taxus wallichiana var. wallichiana, Taxus wallichiana var. yunnanensis

Vanillic acid

4-hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0423)


Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Vanillin

Vanillin melting point standard, Pharmaceutical Secondary Standard; Certified Reference Material

C8H8O3 (152.0473)


Vanillin, also known as vanillaldehyde or lioxin, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is used by the food industry as well as ethylvanillin. Vanillin exists in all living species, ranging from bacteria to humans. Vanillin is a sweet, chocolate, and creamy tasting compound. Vanillin is found, on average, in the highest concentration within a few different foods, such as corns, ryes, and sherries and in a lower concentration in beers, rums, and oats. Vanillin has also been detected, but not quantified, in several different foods, such as gooseberries, other bread, brazil nuts, shea tree, and ohelo berries. This could make vanillin a potential biomarker for the consumption of these foods. Vanillin is a potentially toxic compound. Synthetic vanillin, instead of natural Vanillin extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. Vanillin is the primary component of the extract of the Vanillin bean. Because of the scarcity and expense of natural Vanillin extract, there has long been interest in the synthetic preparation of its predominant component. Artificial Vanillin flavoring is a solution of pure vanillin, usually of synthetic origin. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Vanillin appears as white or very slightly yellow needles. Vanillin is a member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, a flavouring agent, an antioxidant and an anticonvulsant. It is a member of phenols, a monomethoxybenzene and a member of benzaldehydes. Vanillin is a natural product found in Ficus erecta var. beecheyana, Pandanus utilis, and other organisms with data available. Vanillin is the primary component of the extract of the vanilla bean. Synthetic vanillin, instead of natural vanilla extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. It is used by the food industry as well as ethylvanillin.Artificial vanilla flavoring is a solution of pure vanillin, usually of synthetic origin. Because of the scarcity and expense of natural vanilla extract, there has long been interest in the synthetic preparation of its predominant component. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. (Wiki). Vanillin is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of vanilla (Vanilla subspecies) and many other plants, e.g. Peru balsam, clove bud oil. Widely used flavouring agent especies in cocoa products. obtained from spent wood-pulp liquors. Vanillin is found in many foods, some of which are pomes, elderberry, common cabbage, and dock. A member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; ML_ID 59 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

Coniferaldehyde

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enal

C10H10O3 (178.063)


Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223). Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine . Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde. 4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Ergosterol

(1R,3aR,7S,9aR,9bS,11aR)-1-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1H,2H,3H,3aH,6H,7H,8H,9H,9aH,9bH,10H,11H,11aH-cyclopenta[a]phenanthren-7-ol

C28H44O (396.3392)


Ergosterol is a phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. It has a role as a fungal metabolite and a Saccharomyces cerevisiae metabolite. It is a 3beta-sterol, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. A steroid of interest both because its biosynthesis in FUNGI is a target of ANTIFUNGAL AGENTS, notably AZOLES, and because when it is present in SKIN of animals, ULTRAVIOLET RAYS break a bond to result in ERGOCALCIFEROL. Ergosterol is a natural product found in Gladiolus italicus, Ramaria formosa, and other organisms with data available. ergosterol is a metabolite found in or produced by Saccharomyces cerevisiae. A steroid occurring in FUNGI. Irradiation with ULTRAVIOLET RAYS results in formation of ERGOCALCIFEROL (vitamin D2). See also: Reishi (part of). Ergosterol, also known as provitamin D2, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, ergosterol is considered to be a sterol lipid molecule. Ergosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Ergosterol is the biological precursor to vitamin D2. It is turned into viosterol by ultraviolet light, and is then converted into ergocalciferol, which is a form of vitamin D. Ergosterol is a component of fungal cell membranes, serving the same function that cholesterol serves in animal cells. Ergosterol is not found in mammalian cell membranes. A phytosterol consisting of ergostane having double bonds at the 5,6-, 7,8- and 22,23-positions as well as a 3beta-hydroxy group. Ergosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-87-4 (retrieved 2024-07-12) (CAS RN: 57-87-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Lutein

(1R,4R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-2-en-1-ol

C40H56O2 (568.428)


Lutein is a common carotenoid xanthophyll found in nature. Carotenoids are among the most common pigments in nature and are natural lipid-soluble antioxidants. Lutein is one of the two carotenoids (the other is zeaxanthin) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli, and eggs, are associated with a significant reduction in the risk for cataracts (up to 20\\\\\%) and age-related macular degeneration (up to 40\\\\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations (PMID: 11023002). Lutein is a carotenol. It has a role as a food colouring and a plant metabolite. It derives from a hydride of a (6R)-beta,epsilon-carotene. Lutein is an xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis. Lutein is a natural product found in Eupatorium cannabinum, Hibiscus syriacus, and other organisms with data available. Lutein is lutein (LOO-teen) is a oxygenated carotenoid found in vegetables and fruits. lutein is found in the macula of the eye, where it is believed to act as a yellow filter. Lutein acts as an antioxidant, protecting cells against the damaging effects of free radicals. A xanthophyll found in the major LIGHT-HARVESTING PROTEIN COMPLEXES of plants. Dietary lutein accumulates in the MACULA LUTEA. See also: Calendula Officinalis Flower (part of); Corn (part of); Chicken; lutein (component of) ... View More ... Pigment from egg yolk and leaves. Found in all higher plants. Nutriceutical with anticancer and antioxidation props. Potentially useful for the treatment of age-related macular degeneration (AMD) of the eye Lutein A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-40-2 (retrieved 2024-07-12) (CAS RN: 127-40-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4]. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Sequoyitol

(1R,2S,3r,4R,5S,6r)-6-methoxycyclohexane-1,2,3,4,5-pentaol

C7H14O6 (194.079)


1D-5-O-methyl-myo-inositol is a member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3r,4R,5S,6r-stereoisomer). It has a role as a plant metabolite. Sequoyitol is a natural product found in Podocarpus sellowii, Aristolochia gigantea, and other organisms with data available. Occurs in all gymnosperms and two families of dicotyledonsand is also isolated from ferns Nephrolepis auriculata and Nephrolepis biserrata. Sequoyitol is found in soy bean and ginkgo nuts. Sequoyitol is found in ginkgo nuts. Sequoyitol occurs in all gymnosperms and two families of dicotyledons. Also isolated from ferns Nephrolepis auriculata and Nephrolepis biserrat Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1]. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1].

   

Secoisolariciresinol

1,4-Butanediol, 2,3-bis((4-hydroxy-3-methoxyphenyl)methyl)-, (R-(R*,R*))-

C20H26O6 (362.1729)


Secoisolariciresinol, also known as knotolan or secoisolariciresinol, (r*,s*)-isomer, is a member of the class of compounds known as dibenzylbutanediol lignans. Dibenzylbutanediol lignans are lignan compounds containing a 2,3-dibenzylbutane-1,4-diol moiety. Secoisolariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Secoisolariciresinol can be found in a number of food items such as grape, saskatoon berry, asparagus, and sweet potato, which makes secoisolariciresinol a potential biomarker for the consumption of these food products. Secoisolariciresinol can be found primarily in urine. Secoisolariciresinol is a lignan, a type of phenylpropanoid. It is present in the water extract of silver fir wood, where its content is more than 5 \\\\% . (-)-secoisolariciresinol is an enantiomer of secoisolariciresinol having (-)-(2R,3R)-configuration. It has a role as an antidepressant, a plant metabolite and a phytoestrogen. It is an enantiomer of a (+)-secoisolariciresinol. Secoisolariciresinol has been used in trials studying the prevention of Breast Cancer. Secoisolariciresinol is a natural product found in Fitzroya cupressoides, Crossosoma bigelovii, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.

   

Paclitaxel

(1S,2S,3R,4S,7R,9S,10S,12R,15S)-4,12-bis(acetyloxy)-1,9-dihydroxy-15-{[(2R,3S)-2-hydroxy-3-phenyl-3-(phenylformamido)propanoyl]oxy}-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-2-yl benzoate

C47H51NO14 (853.3309)


Taxol appears as needles (from aqueous methanol) or fine white powder. An anti-cancer drug. Paclitaxel is a tetracyclic diterpenoid isolated originally from the bark of the Pacific yew tree, Taxus brevifolia. It is a mitotic inhibitor used in cancer chemotherapy. Note that the use of the former generic name taxol is now limited, as Taxol is a registered trade mark. It has a role as a microtubule-stabilising agent, a metabolite, a human metabolite and an antineoplastic agent. It is a tetracyclic diterpenoid and a taxane diterpenoid. It is functionally related to a baccatin III. Paclitaxel is a chemotherapeutic agent marketed under the brand name Taxol among others. Used as a treatment for various cancers, paclitaxel is a mitotic inhibitor that was first isolated in 1971 from the bark of the Pacific yew tree which contains endophytic fungi that synthesize paclitaxel. It is available as an intravenous solution for injection and the newer formulation contains albumin-bound paclitaxel marketed under the brand name Abraxane. Paclitaxel is a Microtubule Inhibitor. The physiologic effect of paclitaxel is by means of Microtubule Inhibition. Paclitaxel is an antineoplastic agent which acts by inhibitor of cellular mitosis and which currently plays a central role in the therapy of ovarian, breast, and lung cancer. Therapy with paclitaxel has been associated with a low rate of serum enzyme elevations, but has not been clearly linked to cases of clinically apparent acute liver injury. Paclitaxel is a natural product found in Taxomyces andreanae, Penicillium aurantiacobrunneum, and other organisms with data available. Paclitaxel is a compound extracted from the Pacific yew tree Taxus brevifolia with antineoplastic activity. Paclitaxel binds to tubulin and inhibits the disassembly of microtubules, thereby resulting in the inhibition of cell division. This agent also induces apoptosis by binding to and blocking the function of the apoptosis inhibitor protein Bcl-2 (B-cell Leukemia 2). (NCI04) A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS brevifolia. It stabilizes microtubules in their polymerized form leading to cell death. ABI-007 (Abraxane) is the latest attempt to improve upon paclitaxel, one of the leading chemotherapy treatments. Both drugs contain the same active agent, but Abraxane is delivered by a nanoparticle technology that binds to albumin, a natural protein, rather than the toxic solvent known as Cremophor. It is thought that delivering paclitaxel with this technology will cause fewer hypersensitivity reactions and possibly lead to greater drug uptake in tumors. Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. It was discovered in a US National Cancer Institute program at the Research Triangle Institute in 1967 when Monroe E. Wall and Mansukh C. Wani isolated it from the bark of the Pacific yew tree, Taxus brevifolia and named it taxol. Later it was discovered that endophytic fungi in the bark synthesize paclitaxel. See also: Paclitaxel Poliglumex (is active moiety of). A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS brevifolia. It stabilizes microtubules in their polymerized form leading to cell death. [PubChem] ABI-007 (Abraxane) is the latest attempt to improve upon paclitaxel, one of the leading chemotherapy treatments. Both drugs contain the same active agent, but Abraxane is delivered by a nanoparticle technology that binds to albumin, a natural protein, rather than the toxic solvent known as Cremophor. It is thought that delivering paclitaxel with this technology will cause fewer hypersensitivity reactions and possibly lead to greater drug uptake in tumors. A tetracyclic diterpenoid isolated originally from the bark of the Pacific yew tree, Taxus brevifolia. It is a mitotic inhibitor used in cancer chemotherapy. Note that the use of the former generic name taxol is now limited, as Taxol is a registered trade mark. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CD - Taxanes C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent [Raw Data] CB246_Paclitaxel_pos_20eV_CB000085.txt [Raw Data] CB246_Paclitaxel_pos_10eV_CB000085.txt [Raw Data] CB246_Paclitaxel_pos_30eV_CB000085.txt [Raw Data] CB246_Paclitaxel_pos_40eV_CB000085.txt [Raw Data] CB246_Paclitaxel_pos_50eV_CB000085.txt Paclitaxel is a naturally occurring antineoplastic agent and stabilizes tubulin polymerization. Paclitaxel can cause both mitotic arrest and apoptotic cell death. Paclitaxel also induces autophagy[1][2]. Paclitaxel is a naturally occurring antineoplastic agent and stabilizes tubulin polymerization. Paclitaxel can cause both mitotic arrest and apoptotic cell death. Paclitaxel also induces autophagy[1][2].

   

Taxol B

Benzenepropanoic acid, alpha-hydroxy-beta-((2-methyl-1-oxo-2-butenyl)amino)-, 6,12b-bis(acetyloxy)-12-(benzoyloxy)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-dodecahydro-4,11-dihydroxy-4a,8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca(3,4)benz(1,2-b)oxet-9-yl ester, (2aR-(2aalpha,4beta,4abeta,6beta,9alpha(aR*,betaS*),11alpha,12alpha,12aalpha,12balpha))-

C45H53NO14 (831.3466)


Taxol B is a natural product found in Corylus avellana, Taxus wallichiana, and other organisms with data available. Cephalomannine is a diterpene taxane obtained from the bark and leaves of the yew tree (Taxus brevifolia) and can convert to taxol. (NCI) Cephalomannine is a Paclitaxel (HY-B0015) alkaloidal analog and isolated from most Cephalotaxus species. Cephalomannine is an orally active anti-tumor agent and can be used as a chemotherapy agent for cancer research[1][2]. Cephalomannine is a Paclitaxel (HY-B0015) alkaloidal analog that can be isolated from most Cephalotaxus species. Cephalomannine is an orally active anti-tumor agent and can be used as a chemotherapy agent for cancer research[1][2][3][4]. Cephalomannine is a Paclitaxel (HY-B0015) alkaloidal analog and isolated from most Cephalotaxus species. Cephalomannine is an orally active anti-tumor agent and can be used as a chemotherapy agent for cancer research[1][2].

   

10-Deacetylbaccatin III

7-epi-10-Deacetylbaccatin III

C29H36O10 (544.2308)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.908 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2261 10-Deacetylbaccatin-III is an intermediate for taxol analog preparations. IC50 value: Target: Taxols have exhibit antitumor agents. Several of these taxols can be synthesized from 10- Deacetylbaccatin-III. 10-Deacetylbaccine III is the fifth intermediate of paclitaxel biosynthesis. The biosynthetic pathway consists of approximately 20 enzymatic steps but is not fully elucidated. 10-Deacetylbaccine III is an antineoplastic agent and an anti-cancer intermediate. 10-Deacetylbaccatin-III is an intermediate for taxol analog preparations. IC50 value: Target: Taxols have exhibit antitumor agents. Several of these taxols can be synthesized from 10- Deacetylbaccatin-III. 10-Deacetylbaccine III is the fifth intermediate of paclitaxel biosynthesis. The biosynthetic pathway consists of approximately 20 enzymatic steps but is not fully elucidated. 10-Deacetylbaccine III is an antineoplastic agent and an anti-cancer intermediate.

   

Amentoflavone

4H-1-Benzopyran-4-one, 8-(5-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)-2-hydroxyphenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.09)


Amentoflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. It has a role as a cathepsin B inhibitor, an antiviral agent, an angiogenesis inhibitor, a P450 inhibitor and a plant metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Amentoflavone is a natural product found in Podocarpus elongatus, Austrocedrus chilensis, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Amentoflavone is found in fruits. Amentoflavone is obtained from Viburnum prunifolium (black haw Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].

   

Baccatin III

Baccatin III

C31H38O11 (586.2414)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent relative retention time with respect to 9-anthracene Carboxylic Acid is 1.041 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.042 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.019 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.027 Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1]. Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1].

   

(+)-lariciresinol

4-[(2S,3R,4R)-4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl]-2-methoxyphenol

C20H24O6 (360.1573)


(+)-Lariciresinol belongs to the class of organic compounds known as 7,9-epoxylignans. These are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at positons 2, 3 and 4, respectively. (+)-Lariciresinol has been detected in several different foods, such as parsnips, white mustards, narrowleaf cattails, turnips, and common sages. This could make (+)-Lariciresinol a potential biomarker for the consumption of these foods. Lariciresinol is also found in sesame seeds, Brassica vegetables, in the bark and wood of white fir (Abies alba). (+)-lariciresinol is a member of the class of compounds known as 7,9-epoxylignans. 7,9-epoxylignans are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively (+)-lariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-lariciresinol can be found in a number of food items such as pili nut, lemon balm, root vegetables, and parsley, which makes (+)-lariciresinol a potential biomarker for the consumption of these food products.

   

Ginkgetin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)-

C32H22O10 (566.1213)


Ginkgetin is a biflavonoid that is the 7,4-dimethyl ether derivative of amentoflavone. Isolated from Ginkgo biloba and Dioon, it exhibits anti-HSV-1, antineoplastic and inhibitory activities towards arachidonate 5-lipoxygenase and cyclooxygenase 2. It has a role as an anti-HSV-1 agent, a cyclooxygenase 2 inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antineoplastic agent and a metabolite. It is a biflavonoid, a hydroxyflavone, a methoxyflavone and a ring assembly. It is functionally related to an amentoflavone. Ginkgetin is a natural product found in Selaginella sinensis, Selaginella willdenowii, and other organisms with data available. A biflavonoid that is the 7,4-dimethyl ether derivative of amentoflavone. Isolated from Ginkgo biloba and Dioon, it exhibits anti-HSV-1, antineoplastic and inhibitory activities towards arachidonate 5-lipoxygenase and cyclooxygenase 2. From Ginkgo biloba (ginkgo). Ginkgetin is found in ginkgo nuts and fats and oils. Ginkgetin is found in fats and oils. Ginkgetin is from Ginkgo biloba (ginkgo Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5]. Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5].

   

Sciadopitysin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-methoxyphenyl)-

C33H24O10 (580.1369)


Sciadopitysin is a biflavonoid that is a 7, 4, 4-trimethyl ether derivative of amentoflavone. It has a role as a bone density conservation agent and a platelet aggregation inhibitor. It is a biflavonoid, a hydroxyflavone, a methoxyflavone and a ring assembly. It is functionally related to an amentoflavone. Sciadopitysin is a natural product found in Podocarpus elongatus, Podocarpus urbanii, and other organisms with data available. A biflavonoid that is a 7, 4, 4-trimethyl ether derivative of amentoflavone. Sciadopitysin is a type of biflavonoids in leaves from ginkgo biloba[1]. Sciadopitysi inhibits RANKL-induced osteoclastogenesis and bone loss by inhibiting NF-κB activation and reducing the expression of c-Fos and NFATc1[2]. Sciadopitysin is a type of biflavonoids in leaves from ginkgo biloba[1]. Sciadopitysi inhibits RANKL-induced osteoclastogenesis and bone loss by inhibiting NF-κB activation and reducing the expression of c-Fos and NFATc1[2].

   

Taxuyunnanin C

Taxuyunnanin C

C28H40O8 (504.2723)


   

taxusin

taxusin

C28H40O8 (504.2723)


A taxane diterpenoid that is taxa-4(20),11-diene in which the 5alpha, 9alpha, 10beta and 13alpha hydrogens have been replaced by acetoxy groups. It is a prominent secondary metabolite of yew heartwood.

   

Pinitol

(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentaol

C7H14O6 (194.079)


D-pinitol is the D-enantiomer of pinitol. It has a role as a geroprotector and a member of compatible osmolytes. It is functionally related to a 1D-chiro-inositol. It is an enantiomer of a L-pinitol. Methylinositol has been used in trials studying the treatment of Dementia and Alzheimers Disease. D-Pinitol is a natural product found in Aegialitis annulata, Senna macranthera var. micans, and other organisms with data available. A member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3S,4S,5S,6S-isomer). D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].

   

Naringenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O5 (272.0685)


Naringenin is a trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. 5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one is a natural product found in Prunus mume, Helichrysum cephaloideum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists A trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

10-Deacetylbaccatin III

4-(acetyloxy)-1,9,12,15-tetrahydroxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-2-yl benzoate

C29H36O10 (544.2308)


   

Baccatin III

[(1S,2S,3R,4S,7R,9S,10S,12R,15S)-4,12-diacetyloxy-1,9,15-trihydroxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.0^{3,10.0^{4,7]heptadec-13-en-2-yl] benzoate

C31H38O11 (586.2414)


   

Cephalomannine

N-(3-{[4,12-bis(acetyloxy)-2-(benzoyloxy)-1,9-dihydroxy-10,14,17,17-tetramethyl-11-oxo-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-15-yl]oxy}-2-hydroxy-3-oxo-1-phenylpropyl)-2-methylbut-2-enimidate

C45H53NO14 (831.3466)


   

Flaxseeds extract

2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol

C20H26O6 (362.1729)


Secoisolariciresinol is a member of the class of compounds known as dibenzylbutanediol lignans. Dibenzylbutanediol lignans are lignan compounds containing a 2,3-dibenzylbutane-1,4-diol moiety. Secoisolariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Secoisolariciresinol can be found in a number of food items such as barley, wheat bread, broad bean, and poppy, which makes secoisolariciresinol a potential biomarker for the consumption of these food products. Secoisolariciresinol is a lignan, a type of phenylpropanoid. It is present in the water extract of silver fir wood, where its content is more than 5 \\% .

   

hydroxymatairesinol

4-[hydroxy(4-hydroxy-3-methoxyphenyl)methyl]-3-[(4-hydroxy-3-methoxyphenyl)methyl]oxolan-2-one

C20H22O7 (374.1365)


   

Isotaxiresinol

4-[7-hydroxy-2,3-bis(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl]benzene-1,2-diol

C19H22O6 (346.1416)


   

Lariciresinol

4-{4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl}-2-methoxyphenol

C20H24O6 (360.1573)


(-)-lariciresinol is a member of the class of compounds known as 7,9-epoxylignans. 7,9-epoxylignans are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively (-)-lariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (-)-lariciresinol can be found in a number of food items such as cassava, acorn, celeriac, and banana, which makes (-)-lariciresinol a potential biomarker for the consumption of these food products.

   

Ponasterone A

14-(2,3-dihydroxy-6-methylheptan-2-yl)-4,5,11-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-8-one

C27H44O6 (464.3138)


   

Taxiresinol

4-{4-[(4-hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl}benzene-1,2-diol

C19H22O6 (346.1416)


   

Cyclolariciresinol

(6R,7R,8S)-8-(4-hydroxy-3-methoxyphenyl)-6,7-bis(hydroxymethyl)-3-methoxy-5,6,7,8-tetrahydronaphthalen-2-ol

C20H24O6 (360.1573)


Cyclolariciresinol is a member of the class of compounds known as 9,9p-dihydroxyaryltetralin lignans. 9,9p-dihydroxyaryltetralin lignans are lignans with a structure based on the 1-phenyltetralin skeleton carrying a hydroxyl group at the 9- and the 9- position. Cyclolariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cyclolariciresinol can be found in sesame, which makes cyclolariciresinol a potential biomarker for the consumption of this food product.

   

10-Deacetylbaccatin

7,11-Methano-5H-cyclodeca(3,4)benz(1,2-b)oxet-5-one, 12b-(acetyloxy)-12-(benzoyloxy)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-dodecahydro-4,6,9,11-tetrahydroxy-4a,8,13,13-tetramethyl-, (2aR,4S,4aS,6R,9S,11S,12S,12aR,12bS)-

C29H36O10 (544.2308)


10-deacetylbaccatin III is a tetracyclic diterpenoid and a secondary alpha-hydroxy ketone. It is functionally related to a baccatin III. 10-Deacetylbaccatin III is a natural product found in Corylus avellana, Taxus wallichiana, and other organisms with data available. 10-Deacetylbaccatin-III is an intermediate for taxol analog preparations. IC50 value: Target: Taxols have exhibit antitumor agents. Several of these taxols can be synthesized from 10- Deacetylbaccatin-III. 10-Deacetylbaccine III is the fifth intermediate of paclitaxel biosynthesis. The biosynthetic pathway consists of approximately 20 enzymatic steps but is not fully elucidated. 10-Deacetylbaccine III is an antineoplastic agent and an anti-cancer intermediate. 10-Deacetylbaccatin-III is an intermediate for taxol analog preparations. IC50 value: Target: Taxols have exhibit antitumor agents. Several of these taxols can be synthesized from 10- Deacetylbaccatin-III. 10-Deacetylbaccine III is the fifth intermediate of paclitaxel biosynthesis. The biosynthetic pathway consists of approximately 20 enzymatic steps but is not fully elucidated. 10-Deacetylbaccine III is an antineoplastic agent and an anti-cancer intermediate.

   

Baccatin_III

7,11-Methano-5H-cyclodeca(3,4)benz(1,2-b)oxet-5-one, 6,12b-bis(acetyloxy)-12-(benzoyloxy)-1,2a,3,4,4a,6,9,10,11,12,12a,12b-dodecahydro-4,9,11-trihydroxy-4a,8,13,13-tetramethyl-, (2aR-(2aalpha,4beta,4abeta,6beta,9alpha,11alpha,12alpha,12aalpha,12balpha))-

C31H38O11 (586.2414)


Baccatin III is a tetracyclic diterpenoid isolated from plant species of the genus Taxus. It has a role as a plant metabolite. It is a tetracyclic diterpenoid, an acetate ester and a benzoate ester. It derives from a hydride of a taxane. Baccatin III is a natural product found in Corylus avellana, Taxus wallichiana, and other organisms with data available. Baccatin III is a compound obtained from the needles of the Taxus baccata tree that is used as a precursor of paclitaxel. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent A tetracyclic diterpenoid isolated from plant species of the genus Taxus. Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1]. Baccatin III is a natural product isolated from Pacific yew tree and related species. Baccatin III reduces tumor progression by inhibiting the accumulation and suppressive function of MDSCs[1].

   
   

Sequoyitol

(1R,2S,3r,4R,5S,6r)-6-methoxycyclohexane-1,2,3,4,5-pentaol

C7H14O6 (194.079)


1D-5-O-methyl-myo-inositol is a member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3r,4R,5S,6r-stereoisomer). It has a role as a plant metabolite. Sequoyitol is a natural product found in Podocarpus sellowii, Aristolochia gigantea, and other organisms with data available. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1]. Sequoyitol (5-O-Methyl-myo-inositol) is isolated from plants. Sequoyitol (5-O-Methyl-myo-inositol) decreases blood glucose, improves glucose intolerance, and is used to treat diabetes[1].

   
   
   

Sequoiaflavone

7-O-methylamentoflavone

C31H20O10 (552.1056)


   

Taxamairin A

Taxamairin A

C21H22O4 (338.1518)


   
   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Vanillin

4-hydroxy-3-methoxybenzaldehyde

C8H8O3 (152.0473)


CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3579; ORIGINAL_PRECURSOR_SCAN_NO 3578 D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3566; ORIGINAL_PRECURSOR_SCAN_NO 3561 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3549; ORIGINAL_PRECURSOR_SCAN_NO 3546 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3560; ORIGINAL_PRECURSOR_SCAN_NO 3556 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3573; ORIGINAL_PRECURSOR_SCAN_NO 3570 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3577; ORIGINAL_PRECURSOR_SCAN_NO 3575 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.504 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.503 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.500 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

20-Hydroxyecdysone

20-Hydroxyecdysone

C27H44O7 (480.3087)


   

coniferyl aldehyde

4-Hydroxy-3-methoxy-trans-cinnamaldehyde

C10H10O3 (178.063)


Annotation level-1 Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].

   

Hydroxymatairesinol

(-)-Hydroxymatairesinol

C20H22O7 (374.1365)


   

tasumatrol E

tasumatrol E

C33H44O13 (648.2782)


A taxane diterpenoid isolated from Taxus sumatrana and has been shown to exhibit antineoplastic activity.

   

Amentoflavone

4H-1-Benzopyran-4-one, 8-(5-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)-2-hydroxyphenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.09)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 4341; CONFIDENCE confident structure Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

(7R)-7-hydroxytaxiresinol

(7R)-7-hydroxytaxiresinol

C19H22O7 (362.1365)


A lignan that consists of tetrahydrofuran substituted by a 3,4-dihydroxyphenyl group at position 2, a hydroxymethyl group at position 3 and a hydroxy(4-hydroxy-3-methoxyphenyl)methyl group at position 4. It has been isolated from Taxus yunnanensis. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors

   

Tasumatrol F

Tasumatrol F

C33H44O12 (632.2833)


A taxane diterpenoid isolated from Taxus sumatrana and has been shown to exhibit antineoplastic activity.

   

Rubrosterone

(2S,3R,5R,9R,10R,13S,14R)-2,3,14-trihydroxy-10,13-dimethyl-1,2,3,4,5,9,11,12,15,16-decahydrocyclopenta[a]phenanthrene-6,17-dione

C19H26O5 (334.178)


Rubrosterone is a natural product found in Taxus wallichiana, Cyanotis arachnoidea, and other organisms with data available.

   

Lariciresinol

3-Furanmethanol, tetrahydro-2-(4-hydroxy-3-methoxyphenyl)-4-((4-hydroxy-3-methoxyphenyl)methyl)-, (2R-(2alpha,3beta,4beta))-

C20H24O6 (360.1573)


(+)-lariciresinol is a lignan that is tetrahydrofuran substituted at positions 2, 3 and 4 by 4-hydroxy-3-methoxyphenyl, hydroxymethyl and 4-hydroxy-3-methoxybenzyl groups respectively (the 2S,3R,4R-diastereomer). It has a role as an antifungal agent and a plant metabolite. It is a member of oxolanes, a member of phenols, a lignan, a primary alcohol and an aromatic ether. It is an enantiomer of a (-)-lariciresinol. Lariciresinol is a natural product found in Magnolia kachirachirai, Euterpe oleracea, and other organisms with data available. See also: Acai fruit pulp (part of). A lignan that is tetrahydrofuran substituted at positions 2, 3 and 4 by 4-hydroxy-3-methoxyphenyl, hydroxymethyl and 4-hydroxy-3-methoxybenzyl groups respectively (the 2S,3R,4R-diastereomer). (-)-lariciresinol is a member of the class of compounds known as 7,9-epoxylignans. 7,9-epoxylignans are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively (-)-lariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (-)-lariciresinol can be found in a number of food items such as ostrich fern, pepper (c. frutescens), ohelo berry, and guava, which makes (-)-lariciresinol a potential biomarker for the consumption of these food products. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.823 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.820 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.818 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.812

   

Isotaxiresinol

2,3-Naphthalenedimethanol, 1-(3,4-dihydroxyphenyl)-1,2,3,4-tetrahydro-7-hydroxy-6-methoxy-, stereoisomer (8CI); (1S,2R,3R)-1-(3,4-Dihydroxyphenyl)-1,2,3,4-tetrahydro-7-hydroxy-6-methoxy-2,3-naphthalenedimethanol

C19H22O6 (346.1416)


Isotaxiresinol is a lignan that consists of 1,2,3,4-tetrahydronaphthalene substituted by a hydroxy group at position 7, hydroxymethyl groups at positions 2 and 3, a methoxy group at position 6 and a 3,4-dihydroxyphenyl group at position 1. It has been isolated from Taxus yunnanensis. It has a role as a plant metabolite. It is a lignan, a pentol, a polyphenol and a primary alcohol. Isotaxiresinol is a natural product found in Fitzroya cupressoides, Taxus wallichiana, and other organisms with data available. A lignan that consists of 1,2,3,4-tetrahydronaphthalene substituted by a hydroxy group at position 7, hydroxymethyl groups at positions 2 and 3, a methoxy group at position 6 and a 3,4-dihydroxyphenyl group at position 1. It has been isolated from Taxus yunnanensis.

   

Taxinin

CINNAMIC ACID, 3-ESTER WITH 1,3,4,4A.ALPHA.,5,6.BETA.,7,11,12,12A-DECAHYDRO-3.ALPHA.,5.ALPHA.,11.BETA.,12.ALPHA.-TETRAHYDROXY-9,12A.BETA.,13,13-TETRAMETHYL-4-METHYLENE-6,10-METHANOBENZOCYCLODECEN-8(2H)-ONE TRIACETATE

C35H42O9 (606.2829)


Taxinine is a natural product found in Taxus wallichiana, Taxus baccata, and other organisms with data available.

   

Ergosterol

(3S,9S,10R,13R,14R,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,9,11,12,14,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H44O (396.3392)


Indicator of fungal contamination, especies in cereals. Occurs in yeast and fungi. The main fungal steroidand is also found in small amts. in higher plant prods., e.g. palm oil [DFC]. D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects. Ergosterol is the primary sterol found in fungi, with antioxidative, anti-proliferative, and anti-inflammatory effects.

   

Secoisolariciresinol

(-)-Secoisolariciresinol

C20H26O6 (362.1729)


Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 0.816 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.813 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.806 Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.

   

Vanillic Acid

Vanillic acid hexoside

C8H8O4 (168.0423)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Ponasterone A

Ponasterone A

C27H44O6 (464.3138)


Ponasterone A (25-Deoxyecdysterone), an ecdysteroid, has strong affinity for the ecdysone receptor. Ponasterone A is a potent regulator of gene expression in cells and transgenic animals, enabling reporter genes to be turned on and off rapidly[1][2].

   

10,13-deacetyl-abeo-baccatin IV

10,13-deacetyl-abeo-baccatin IV

C28H40O12 (568.252)


   

2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol

2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol

C20H26O6 (362.1729)


   

coniferaldehyde

coniferaldehyde

C10H10O3 (178.063)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 13

   

Taxol

Paclitaxel

C47H51NO14 (853.3309)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CD - Taxanes C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2310 Paclitaxel is a naturally occurring antineoplastic agent and stabilizes tubulin polymerization. Paclitaxel can cause both mitotic arrest and apoptotic cell death. Paclitaxel also induces autophagy[1][2]. Paclitaxel is a naturally occurring antineoplastic agent and stabilizes tubulin polymerization. Paclitaxel can cause both mitotic arrest and apoptotic cell death. Paclitaxel also induces autophagy[1][2].

   

Asahina

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0685)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Bilobetin

8-[5-(5,7-dihydroxy-4-oxo-4H-chromen-2-yl)-2-methoxyphenyl]-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C31H20O10 (552.1056)


Bilobetin, an active component of Ginkgo biloba, can reduce blood lipids and improve the effects of insulin. Bilobetin ameliorated insulin resistance, increased the hepatic uptake and oxidation of lipids, reduced very-low-density lipoprotein triglyceride secretion and blood triglyceride levels, enhanced the expression and activity of enzymes involved in β-oxidation and attenuated the accumulation of triglycerides and their metabolites in tissues. Bilobetin also increased the phosphorylation, nuclear translocation and activity of PPARα accompanied by elevated cAMP level and PKA activity[1]. Bilobetin, an active component of Ginkgo biloba, can reduce blood lipids and improve the effects of insulin. Bilobetin ameliorated insulin resistance, increased the hepatic uptake and oxidation of lipids, reduced very-low-density lipoprotein triglyceride secretion and blood triglyceride levels, enhanced the expression and activity of enzymes involved in β-oxidation and attenuated the accumulation of triglycerides and their metabolites in tissues. Bilobetin also increased the phosphorylation, nuclear translocation and activity of PPARα accompanied by elevated cAMP level and PKA activity[1]. Bilobetin, an active component of Ginkgo biloba, can reduce blood lipids and improve the effects of insulin. Bilobetin ameliorated insulin resistance, increased the hepatic uptake and oxidation of lipids, reduced very-low-density lipoprotein triglyceride secretion and blood triglyceride levels, enhanced the expression and activity of enzymes involved in β-oxidation and attenuated the accumulation of triglycerides and their metabolites in tissues. Bilobetin also increased the phosphorylation, nuclear translocation and activity of PPARα accompanied by elevated cAMP level and PKA activity[1]. Bilobetin, an active component of Ginkgo biloba, can reduce blood lipids and improve the effects of insulin. Bilobetin ameliorated insulin resistance, increased the hepatic uptake and oxidation of lipids, reduced very-low-density lipoprotein triglyceride secretion and blood triglyceride levels, enhanced the expression and activity of enzymes involved in β-oxidation and attenuated the accumulation of triglycerides and their metabolites in tissues. Bilobetin also increased the phosphorylation, nuclear translocation and activity of PPARα accompanied by elevated cAMP level and PKA activity[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

2-{[14-(5-ethyl-6-methylheptan-2-yl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

pinitol

(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentol

C7H14O6 (194.079)


D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].

   

ST 29:1;O;Hex

stigmast-5-en-3beta-yl beta-D-galactopyranoside

C35H60O6 (576.439)


   

Taxiresinol

4-[4-[(4-Hydroxy-3-methoxyphenyl)methyl]-3-(hydroxymethyl)oxolan-2-yl]benzene-1,2-diol

C19H22O6 (346.1416)


A lignan that consists of tetrahydrofuran substituted by a 3,4-dihydroxyphenyl group at position 2, a hydroxymethyl group at position 3 and a 4-hydroxy-3-methoxybenzyl group at position 4. It has been isolated from Taxus yunnanensis.

   

Rhododendrol

Rhododendrol

C10H14O2 (166.0994)


   

α-Conidendrin

α-Conidendrin

C20H20O6 (356.126)


   

2,3-bis(4-Hydroxy-3-methoxybenzyl)butane-1,4-diol

2,3-bis(4-Hydroxy-3-methoxybenzyl)butane-1,4-diol

C20H26O6 (362.1729)


   

7-Epi Paclitaxel

7-Epi Paclitaxel

C47H51NO14 (853.3309)


   

Vanillate

4-Hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0423)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Zimco

InChI=1\C8H8O3\c1-11-8-4-6(5-9)2-3-7(8)10\h2-5,10H,1H

C8H8O3 (152.0473)


D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

Arbo 8

(R-(R*,R*))-2,3-Bis((4-hydroxy-3-methoxyphenyl)methyl)butane-1,4-diol

C20H26O6 (362.1729)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Secoisolariciresinol is a lignan, a type of phenylpropanoids. Secoisolariciresinol is a lignan, a type of phenylpropanoids.

   

Ferulaldehyde

InChI=1\C10H10O3\c1-13-10-7-8(3-2-6-11)4-5-9(10)12\h2-7,12H,1H3\b3-2

C10H10O3 (178.063)


Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].

   

Ginkgetin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-8-[5-(5-hydroxy-7-methoxy-4-oxo-4H-1-benzopyran-2-yl)-2-methoxyphenyl]-2-(4-hydroxyphenyl)-

C32H22O10 (566.1213)


Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5]. Ginkgetin, a biflavone, is isolated from Ginkgo biloba leaves. Ginkgetin exhibit anti-tumor, anti-inflammatory, neuroprotective, anti-fungal activities. Ginkgetin is also a potent inhibitor of Wnt signaling, with an IC50 of 5.92 μΜ[1][2][3][4][5].

   

Tanegool

Tanegool

C20H24O7 (376.1522)


A lignan that consists of tetrahydrofuran ring substituted by a 4-hydroxy-3-methoxyphenyl group at position 5, a hydroxyphenyl group at position 4 and a hydroxy(4-hydroxy-3-methoxyphenyl)methyl group at position 3. It has been isolated from Taxus yunnanensis.

   

(7R)-7-Hydroxylariciresinol

(7R)-7-Hydroxylariciresinol

C20H24O7 (376.1522)


A lignan that consists of a tetrahudrofuran substituted by a 4-hydroxy-3-methoxyphenyl group at position 5, a hydroxymethyl group at position 4 and a hydroxy(4-hydroxy-3-methoxyphenyl)methyl group at position 3. It has been isolated from Taxus yunnanensis.

   

Tasumatrol K

Tasumatrol K

C29H44O8 (520.3036)


A natural product found in Taxus sumatrana.

   

Tasumatrol I(rel)

Tasumatrol I(rel)

C29H36O10 (544.2308)


A natural product found in Taxus sumatrana.

   

UNII:12QWN45UL0

4-(3-Hydroxybutyl)phenol

C10H14O2 (166.0994)


   

3,12-bis(acetyloxy)-10,14-dihydroxy-7,11,16,16-tetramethyl-9-oxotricyclo[9.3.1.1⁴,⁸]hexadeca-1,7-dien-6-yl acetate

3,12-bis(acetyloxy)-10,14-dihydroxy-7,11,16,16-tetramethyl-9-oxotricyclo[9.3.1.1⁴,⁸]hexadeca-1,7-dien-6-yl acetate

C26H36O9 (492.2359)


   

(1r,8r,10r)-2,9,10-tris(acetyloxy)-8,12,15,15-tetramethyl-4-methylidene-13-oxotricyclo[9.3.1.0³,⁸]pentadec-11-en-5-yl (2e)-3-phenylprop-2-enoate

(1r,8r,10r)-2,9,10-tris(acetyloxy)-8,12,15,15-tetramethyl-4-methylidene-13-oxotricyclo[9.3.1.0³,⁸]pentadec-11-en-5-yl (2e)-3-phenylprop-2-enoate

C35H42O9 (606.2829)


   

(1s,2s,3r,4s,7r,9s,10r,12r)-4-(acetyloxy)-1,9,12-trihydroxy-10-(hydroxymethyl)-14,17,17-trimethyl-11,15-dioxo-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-2-yl benzoate

(1s,2s,3r,4s,7r,9s,10r,12r)-4-(acetyloxy)-1,9,12-trihydroxy-10-(hydroxymethyl)-14,17,17-trimethyl-11,15-dioxo-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-2-yl benzoate

C29H34O11 (558.2101)


   

(2s,3as,4ar,6s,8s,8as,9r,10r)-8,9-bis(acetyloxy)-2-hydroxy-3a-(2-hydroxypropan-2-yl)-1,8a-dimethyl-5-methylidene-6-{[(2e)-3-phenylprop-2-enoyl]oxy}-2h,3h,4h,4ah,6h,7h,8h,9h,10h-cyclohexa[f]azulen-10-yl benzoate

(2s,3as,4ar,6s,8s,8as,9r,10r)-8,9-bis(acetyloxy)-2-hydroxy-3a-(2-hydroxypropan-2-yl)-1,8a-dimethyl-5-methylidene-6-{[(2e)-3-phenylprop-2-enoyl]oxy}-2h,3h,4h,4ah,6h,7h,8h,9h,10h-cyclohexa[f]azulen-10-yl benzoate

C40H46O10 (686.3091)


   

(1s,2s,3r,4s,7r,9s,10s,12r,15s)-4,12-bis(acetyloxy)-1,15-dihydroxy-10,14,17,17-tetramethyl-11-oxo-9-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-2-yl benzoate

(1s,2s,3r,4s,7r,9s,10s,12r,15s)-4,12-bis(acetyloxy)-1,15-dihydroxy-10,14,17,17-tetramethyl-11-oxo-9-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-2-yl benzoate

C36H46O15 (718.2837)


   

[(1r,2r,3s,4r,5r,6s,8s,10r,11r,12r,15s)-3,4,6,8,11-pentakis(acetyloxy)-2-hydroxy-1,15-dimethyl-9-methylidene-14-oxo-16-oxatetracyclo[10.5.0.0²,¹⁵.0⁵,¹⁰]heptadecan-5-yl]methyl benzoate

[(1r,2r,3s,4r,5r,6s,8s,10r,11r,12r,15s)-3,4,6,8,11-pentakis(acetyloxy)-2-hydroxy-1,15-dimethyl-9-methylidene-14-oxo-16-oxatetracyclo[10.5.0.0²,¹⁵.0⁵,¹⁰]heptadecan-5-yl]methyl benzoate

C37H44O15 (728.268)


   

3,4,6,11-tetrakis(acetyloxy)-5-[(acetyloxy)methyl]-2-hydroxy-1,15-dimethyl-9-methylidene-14-oxo-16-oxatetracyclo[10.5.0.0²,¹⁵.0⁵,¹⁰]heptadecan-8-yl 3-phenylprop-2-enoate

3,4,6,11-tetrakis(acetyloxy)-5-[(acetyloxy)methyl]-2-hydroxy-1,15-dimethyl-9-methylidene-14-oxo-16-oxatetracyclo[10.5.0.0²,¹⁵.0⁵,¹⁰]heptadecan-8-yl 3-phenylprop-2-enoate

C39H46O15 (754.2837)


   

2',5'-bis(acetyloxy)-1',7',9',10'-tetrahydroxy-8',12',15',15'-tetramethylspiro[oxirane-2,4'-tricyclo[9.3.1.0³,⁸]pentadecan]-11'-en-13'-yl acetate

2',5'-bis(acetyloxy)-1',7',9',10'-tetrahydroxy-8',12',15',15'-tetramethylspiro[oxirane-2,4'-tricyclo[9.3.1.0³,⁸]pentadecan]-11'-en-13'-yl acetate

C26H38O11 (526.2414)


   

1-hydroxy-6,6,9a-trimethyl-1h,3h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-9-yl acetate

1-hydroxy-6,6,9a-trimethyl-1h,3h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-9-yl acetate

C17H26O4 (294.1831)


   

(3s,4r)-3-(4-hydroxy-3-methoxyphenyl)-6-methoxy-3,4-dihydro-2h-1-benzopyran-4-ol

(3s,4r)-3-(4-hydroxy-3-methoxyphenyl)-6-methoxy-3,4-dihydro-2h-1-benzopyran-4-ol

C17H18O5 (302.1154)


   

2,9-bis(acetyloxy)-5,8,11-trihydroxy-3-(2-hydroxypropan-2-yl)-6,10-dimethyl-14-oxatetracyclo[8.6.0.0³,⁷.0¹³,¹⁶]hexadec-6-en-16-yl acetate

2,9-bis(acetyloxy)-5,8,11-trihydroxy-3-(2-hydroxypropan-2-yl)-6,10-dimethyl-14-oxatetracyclo[8.6.0.0³,⁷.0¹³,¹⁶]hexadec-6-en-16-yl acetate

C26H38O11 (526.2414)


   

(1s,3r,4s,5s,7r,10s,12r)-4,10-dihydroxy-8,12,17,17-tetramethyl-11,15-dioxo-2-oxatetracyclo[10.3.1.1⁵,⁹.0¹,³]heptadeca-8,13-dien-7-yl acetate

(1s,3r,4s,5s,7r,10s,12r)-4,10-dihydroxy-8,12,17,17-tetramethyl-11,15-dioxo-2-oxatetracyclo[10.3.1.1⁵,⁹.0¹,³]heptadeca-8,13-dien-7-yl acetate

C22H28O7 (404.1835)


   

(1r,5as,9r,9as,9br)-1-hydroxy-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-9-yl acetate

(1r,5as,9r,9as,9br)-1-hydroxy-6,6,9a-trimethyl-3-oxo-1h,5h,5ah,7h,8h,9h,9bh-naphtho[1,2-c]furan-9-yl acetate

C17H24O5 (308.1624)


   

(1e,3s,4s,6s,9r,11s,12s,14s)-3,9,12-tris(acetyloxy)-14-hydroxy-7,11,16,16-tetramethyl-10-oxotricyclo[9.3.1.1⁴,⁸]hexadeca-1,7-dien-6-yl acetate

(1e,3s,4s,6s,9r,11s,12s,14s)-3,9,12-tris(acetyloxy)-14-hydroxy-7,11,16,16-tetramethyl-10-oxotricyclo[9.3.1.1⁴,⁸]hexadeca-1,7-dien-6-yl acetate

C28H38O10 (534.2465)


   

2,7,10,13-tetrakis(acetyloxy)-8,12,15,15-tetramethyl-9-oxotricyclo[9.3.1.1⁴,⁸]hexadeca-3,11-dien-5-yl 3-phenylprop-2-enoate

2,7,10,13-tetrakis(acetyloxy)-8,12,15,15-tetramethyl-9-oxotricyclo[9.3.1.1⁴,⁸]hexadeca-3,11-dien-5-yl 3-phenylprop-2-enoate

C37H44O11 (664.2883)


   

n-[(1s,2r)-3-{[(1s,2s,3r,4s,7r,9s,10s,12r,15s)-4,12-bis(acetyloxy)-2-(benzoyloxy)-1-hydroxy-10,14,17,17-tetramethyl-11-oxo-9-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-15-yl]oxy}-2-hydroxy-3-oxo-1-phenylpropyl]butanimidic acid

n-[(1s,2r)-3-{[(1s,2s,3r,4s,7r,9s,10s,12r,15s)-4,12-bis(acetyloxy)-2-(benzoyloxy)-1-hydroxy-10,14,17,17-tetramethyl-11-oxo-9-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-15-yl]oxy}-2-hydroxy-3-oxo-1-phenylpropyl]butanimidic acid

C49H61NO18 (951.3888)


   

(1r,2s,3e,5r,7s,8z,10r,13s)-2,7,9,10-tetrakis(acetyloxy)-5-hydroxy-4-(hydroxymethyl)-8,12,15,15-tetramethylbicyclo[9.3.1]pentadeca-3,8,11-trien-13-yl acetate

(1r,2s,3e,5r,7s,8z,10r,13s)-2,7,9,10-tetrakis(acetyloxy)-5-hydroxy-4-(hydroxymethyl)-8,12,15,15-tetramethylbicyclo[9.3.1]pentadeca-3,8,11-trien-13-yl acetate

C30H42O12 (594.2676)


   

2,10-bis(acetyloxy)-7-hydroxy-4,14,15,15-tetramethyl-3,13-dioxotricyclo[9.3.1.1⁴,⁸]hexadeca-1(14),8-dien-5-yl acetate

2,10-bis(acetyloxy)-7-hydroxy-4,14,15,15-tetramethyl-3,13-dioxotricyclo[9.3.1.1⁴,⁸]hexadeca-1(14),8-dien-5-yl acetate

C26H34O9 (490.2203)


   

(2s,3as,4s,4ar,5s,6s,8s,8as,9r,10r)-5-[(acetyloxy)methyl]-2,5,6,8,9,10-hexahydroxy-3a-(2-hydroxypropan-2-yl)-1,8a-dimethyl-2h,3h,4h,4ah,6h,7h,8h,9h,10h-cyclohexa[f]azulen-4-yl benzoate

(2s,3as,4s,4ar,5s,6s,8s,8as,9r,10r)-5-[(acetyloxy)methyl]-2,5,6,8,9,10-hexahydroxy-3a-(2-hydroxypropan-2-yl)-1,8a-dimethyl-2h,3h,4h,4ah,6h,7h,8h,9h,10h-cyclohexa[f]azulen-4-yl benzoate

C29H40O11 (564.257)


   

(1r,5s,8s,10s,11s,12r,13s,16r,18s)-13,18-bis(acetyloxy)-5,8-dihydroxy-10-(2-hydroxypropan-2-yl)-7-methyl-4-oxo-3,15-dioxapentacyclo[10.6.0.0¹,⁵.0⁶,¹⁰.0¹³,¹⁶]octadec-6-en-11-yl benzoate

(1r,5s,8s,10s,11s,12r,13s,16r,18s)-13,18-bis(acetyloxy)-5,8-dihydroxy-10-(2-hydroxypropan-2-yl)-7-methyl-4-oxo-3,15-dioxapentacyclo[10.6.0.0¹,⁵.0⁶,¹⁰.0¹³,¹⁶]octadec-6-en-11-yl benzoate

C31H36O12 (600.2207)


   

(2s,3as,4s,4ar,6s,8s,8as,9r,10r)-4,8,9-tris(acetyloxy)-2,6-dihydroxy-3a-(2-hydroxypropan-2-yl)-1,8a-dimethyl-5-methylidene-2h,3h,4h,4ah,6h,7h,8h,9h,10h-cyclohexa[f]azulen-10-yl benzoate

(2s,3as,4s,4ar,6s,8s,8as,9r,10r)-4,8,9-tris(acetyloxy)-2,6-dihydroxy-3a-(2-hydroxypropan-2-yl)-1,8a-dimethyl-5-methylidene-2h,3h,4h,4ah,6h,7h,8h,9h,10h-cyclohexa[f]azulen-10-yl benzoate

C33H42O11 (614.2727)


   

(1s,2s,3r,4s,7r,9s,10s,11s,14s)-4-(acetyloxy)-9,11,14-trihydroxy-10,13,16,16-tetramethyl-18-oxo-6,17-dioxapentacyclo[9.4.3.0¹,¹².0³,¹⁰.0⁴,⁷]octadec-12-en-2-yl benzoate

(1s,2s,3r,4s,7r,9s,10s,11s,14s)-4-(acetyloxy)-9,11,14-trihydroxy-10,13,16,16-tetramethyl-18-oxo-6,17-dioxapentacyclo[9.4.3.0¹,¹².0³,¹⁰.0⁴,⁷]octadec-12-en-2-yl benzoate

C29H34O10 (542.2152)


   

(16s,17s)-16-(4-hydroxy-3-methoxyphenyl)-17-(hydroxymethyl)-13-isopropyl-7,7-dimethyl-15,18-dioxatetracyclo[9.8.0.0³,⁸.0¹⁴,¹⁹]nonadeca-1(19),2,4,8,11,13-hexaene-6,10-dione

(16s,17s)-16-(4-hydroxy-3-methoxyphenyl)-17-(hydroxymethyl)-13-isopropyl-7,7-dimethyl-15,18-dioxatetracyclo[9.8.0.0³,⁸.0¹⁴,¹⁹]nonadeca-1(19),2,4,8,11,13-hexaene-6,10-dione

C30H30O7 (502.1991)


   

[(1s,2r,3e,7s,8e,10s,13r)-2,9,10,13-tetrakis(acetyloxy)-7-hydroxy-8,12,15,15-tetramethyl-5-oxobicyclo[9.3.1]pentadeca-3,8,11-trien-4-yl]methyl acetate

[(1s,2r,3e,7s,8e,10s,13r)-2,9,10,13-tetrakis(acetyloxy)-7-hydroxy-8,12,15,15-tetramethyl-5-oxobicyclo[9.3.1]pentadeca-3,8,11-trien-4-yl]methyl acetate

C30H40O12 (592.252)


   

(1r,2s,3e,5s,7s,8e,10r,13s)-5,9,10-tris(acetyloxy)-2,7-dihydroxy-4-(hydroxymethyl)-8,12,15,15-tetramethylbicyclo[9.3.1]pentadeca-3,8,11-trien-13-yl acetate

(1r,2s,3e,5s,7s,8e,10r,13s)-5,9,10-tris(acetyloxy)-2,7-dihydroxy-4-(hydroxymethyl)-8,12,15,15-tetramethylbicyclo[9.3.1]pentadeca-3,8,11-trien-13-yl acetate

C28H40O11 (552.257)


   

(1r,2s,3s,5s,8r,9r,10s,11s,13r,16s)-5,11,16-tris(acetyloxy)-2,9-bis(benzoyloxy)-3-(2-hydroxypropan-2-yl)-6,10-dimethyl-14-oxatetracyclo[8.6.0.0³,⁷.0¹³,¹⁶]hexadec-6-en-8-yl benzoate

(1r,2s,3s,5s,8r,9r,10s,11s,13r,16s)-5,11,16-tris(acetyloxy)-2,9-bis(benzoyloxy)-3-(2-hydroxypropan-2-yl)-6,10-dimethyl-14-oxatetracyclo[8.6.0.0³,⁷.0¹³,¹⁶]hexadec-6-en-8-yl benzoate

C47H50O14 (838.32)


   

2',5',7',9',10'-pentakis(acetyloxy)-1'-hydroxy-8',12',15',15'-tetramethylspiro[oxirane-2,4'-tricyclo[9.3.1.0³,⁸]pentadecan]-11'-en-13'-yl acetate

2',5',7',9',10'-pentakis(acetyloxy)-1'-hydroxy-8',12',15',15'-tetramethylspiro[oxirane-2,4'-tricyclo[9.3.1.0³,⁸]pentadecan]-11'-en-13'-yl acetate

C32H44O14 (652.2731)


   

3,9,12-tris(acetyloxy)-14-hydroxy-7,11,15,15,16,16-hexamethyl-10-oxotricyclo[9.3.1.1⁴,⁸]hexadeca-1,7-dien-6-yl acetate

3,9,12-tris(acetyloxy)-14-hydroxy-7,11,15,15,16,16-hexamethyl-10-oxotricyclo[9.3.1.1⁴,⁸]hexadeca-1,7-dien-6-yl acetate

C30H42O10 (562.2778)


   

5,7-dihydroxy-8-[2-(5-hydroxy-7-methoxy-4-oxochromen-2-yl)-5-methoxyphenyl]-2-(4-hydroxyphenyl)chromen-4-one

5,7-dihydroxy-8-[2-(5-hydroxy-7-methoxy-4-oxochromen-2-yl)-5-methoxyphenyl]-2-(4-hydroxyphenyl)chromen-4-one

C32H22O10 (566.1213)


   

(1s,2r,3r,4s,7r,9s,10s,11r,12r,15s)-2,9,11,12,15-pentakis(acetyloxy)-10,14,17,17-tetramethyl-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-4-yl acetate

(1s,2r,3r,4s,7r,9s,10s,11r,12r,15s)-2,9,11,12,15-pentakis(acetyloxy)-10,14,17,17-tetramethyl-6-oxatetracyclo[11.3.1.0³,¹⁰.0⁴,⁷]heptadec-13-en-4-yl acetate

C32H44O13 (636.2782)