NCBI Taxonomy: 461588

Fibraurea tinctoria (ncbi_taxid: 461588)

found 112 associated metabolites at species taxonomy rank level.

Ancestor: Fibraurea

Child Taxonomies: none taxonomy data.

Vanillic acid

4-hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Berberine

16,17-dimethoxy-5,7-dioxa-13lambda5-azapentacyclo[11.8.0.0^{2,10}.0^{4,8}.0^{15,20}]henicosa-1(21),2,4(8),9,13,15,17,19-octaen-13-ylium

[C20H18NO4]+ (336.1235768)


Berberine is an organic heteropentacyclic compound, an alkaloid antibiotic, a botanical anti-fungal agent and a berberine alkaloid. It has a role as an antilipemic drug, a hypoglycemic agent, an antioxidant, a potassium channel blocker, an antineoplastic agent, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.1.1.141 [15-hydroxyprostaglandin dehydrogenase (NAD(+))] inhibitor, an EC 1.13.11.52 (indoleamine 2,3-dioxygenase) inhibitor, an EC 1.21.3.3 (reticuline oxidase) inhibitor, an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor, an EC 3.1.1.4 (phospholipase A2) inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an EC 3.4.14.5 (dipeptidyl-peptidase IV) inhibitor, an EC 3.1.3.48 (protein-tyrosine-phosphatase) inhibitor, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an EC 2.7.11.10 (IkappaB kinase) inhibitor, an EC 2.1.1.122 [(S)-tetrahydroprotoberberine N-methyltransferase] inhibitor, a geroprotector and a metabolite. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Berberine is a quaternary ammonia compound found in many botanical products, including goldenseal, barberry and Oregon grape, which is used for its purported antioxidant and antimicrobial properties for a host of conditions, including obesity, diabetes, hyperlipidemia, heart failure, H. pylori infection and colonic adenoma prevention. Berberine has not been linked to serum aminotransferase elevations during therapy nor to instances of clinically apparent liver injury. Berberine is a natural product found in Berberis poiretii, Thalictrum delavayi, and other organisms with data available. Berberine is a quaternary ammonium salt of an isoquinoline alkaloid and active component of various Chinese herbs, with potential antineoplastic, radiosensitizing, anti-inflammatory, anti-lipidemic and antidiabetic activities. Although the mechanisms of action through which berberine exerts its effects are not yet fully elucidated, upon administration this agent appears to suppress the activation of various proteins and/or modulate the expression of a variety of genes involved in tumorigenesis and inflammation, including, but not limited to transcription factor nuclear factor-kappa B (NF-kB), myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), cyclooxygenase (COX)-2, tumor necrosis factor (TNF), interleukin (IL)-6, IL-12, inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 2 (CXCL2), cyclin D1, activator protein (AP-1), hypoxia-inducible factor 1 (HIF-1), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor (PPAR), arylamine N-acetyltransferase (NAT), and DNA topoisomerase I and II. The modulation of gene expression may induce cell cycle arrest and apoptosis, and inhibit cancer cell proliferation. In addition, berberine modulates lipid and glucose metabolism. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. See also: Goldenseal (part of); Berberis aristata stem (part of). Berberine is a quaternary ammonium salt that belongs to the protoberberine group of benzylisoquinoline alkaloids. Chemically, berberine is classified as an isoquinoline alkaloid. More specifically, berberine is a plant alkaloid derived from tyrosine through a complex 8 step biosynthetic process. Berberine is found in plants such as Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Mahonia aquifolium (Oregon grape) and Hydrastis canadensis (goldenseal). Two other known berberine-containing plants are Phellodendron chinense and Phellodendron amurense. Berberine is usually found in the roots, rhizomes, stems, and bark of Berberis plants. Due to berberines intense yellow color, plants that contain berberine were traditionally used to dye wool, leather, and wood. Under ultraviolet light, berberine shows a strong yellow fluorescence, making it useful in histology for staining heparin in mast cells. Berberine is a bioactive plant compound that has been frequently used in traditional medicine. Among the known physiological effects or bioactivities are: 1) Antimicrobial action against bacteria, fungi, protozoa, viruses, helminthes, and Chlamydia; 2) Antagonism against the effects of cholera and E coli heat-stable enterotoxin; 3) Inhibition of intestinal ion secretion and of smooth muscle contraction; 4) Reduction of inflammation and 5) Stimulation of bile secretion and bilirubin discharge (PMID:32335802). Berberine can inhibit bacterial growth in the gut, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Currently, berberine is sold as an Over-the-Counter (OTC) drug for treating gastrointestinal infections in China (PMID:18442638). Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis (PMID:32335802). Recent evidence has also confirmed that berberine improves the efficacy and safety of both chemo and radiotherapies for cancer treatment (PMID:32335802). Berberine has also been shown to regulate glucose and lipid metabolism in vitro and in vivo (PMID:18442638). In fact, berberine is the main active component of an ancient Chinese herb Coptis chinensis French, which has been used to treat diabetes for thousands of years. As an anti-diabetic, berberine increases glucose uptake by muscle fibers independent of insulin levels. It triggers AMPK activation and increases glycolysis, leading to decreased insulin resistance and decreased oxygen respiration. The same mechanism leads to a reduction in gluconeogenesis in the liver. AMPK activation by berberine also leads to an antiatherosclerotic effect in mice. Berberines AMPK activation may also underlie berberines anti-obesity effects and favorable influence on weight loss (PMID:18442638). While its use as a medication is widely touted, it is important to remember that berberine inhibits CYP2D6 and CYP3A4 enzymes, both of which are involved in the metabolism of many endogenous substances and xenobiotics, including a number of prescription drugs. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials [Raw Data] CBA98_Berberine_pos_50eV.txt [Raw Data] CBA98_Berberine_pos_10eV.txt [Raw Data] CBA98_Berberine_pos_20eV.txt [Raw Data] CBA98_Berberine_pos_40eV.txt [Raw Data] CBA98_Berberine_pos_30eV.txt Berberine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2086-83-1 (retrieved 2024-09-04) (CAS RN: 2086-83-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Vanillin

Vanillin melting point standard, Pharmaceutical Secondary Standard; Certified Reference Material

C8H8O3 (152.0473418)


Vanillin, also known as vanillaldehyde or lioxin, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is used by the food industry as well as ethylvanillin. Vanillin exists in all living species, ranging from bacteria to humans. Vanillin is a sweet, chocolate, and creamy tasting compound. Vanillin is found, on average, in the highest concentration within a few different foods, such as corns, ryes, and sherries and in a lower concentration in beers, rums, and oats. Vanillin has also been detected, but not quantified, in several different foods, such as gooseberries, other bread, brazil nuts, shea tree, and ohelo berries. This could make vanillin a potential biomarker for the consumption of these foods. Vanillin is a potentially toxic compound. Synthetic vanillin, instead of natural Vanillin extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. Vanillin is the primary component of the extract of the Vanillin bean. Because of the scarcity and expense of natural Vanillin extract, there has long been interest in the synthetic preparation of its predominant component. Artificial Vanillin flavoring is a solution of pure vanillin, usually of synthetic origin. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Vanillin appears as white or very slightly yellow needles. Vanillin is a member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, a flavouring agent, an antioxidant and an anticonvulsant. It is a member of phenols, a monomethoxybenzene and a member of benzaldehydes. Vanillin is a natural product found in Ficus erecta var. beecheyana, Pandanus utilis, and other organisms with data available. Vanillin is the primary component of the extract of the vanilla bean. Synthetic vanillin, instead of natural vanilla extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. It is used by the food industry as well as ethylvanillin.Artificial vanilla flavoring is a solution of pure vanillin, usually of synthetic origin. Because of the scarcity and expense of natural vanilla extract, there has long been interest in the synthetic preparation of its predominant component. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. (Wiki). Vanillin is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of vanilla (Vanilla subspecies) and many other plants, e.g. Peru balsam, clove bud oil. Widely used flavouring agent especies in cocoa products. obtained from spent wood-pulp liquors. Vanillin is found in many foods, some of which are pomes, elderberry, common cabbage, and dock. A member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; ML_ID 59 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

Caffeic acid

(E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0422568)


Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

4-Hydroxybenzaldehyde

4-hydroxybenzaldehyde

C7H6O2 (122.0367776)


4-Hydroxybenzaldehyde, also known as 4-formylphenol or 4-hydroxybenzenecarbonal, belongs to the class of organic compounds known as hydroxybenzaldehydes. These are organic aromatic compounds containing a benzene ring carrying an aldehyde group and a hydroxyl group. A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde exists in all living organisms, ranging from bacteria to humans. 4-Hydroxybenzaldehyde is a sweet, almond, and balsam tasting compound. 4-Hydroxybenzaldehyde is found, on average, in the highest concentration within vinegars and oats. 4-Hydroxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cardoons, colorado pinyons, oyster mushrooms, common chokecherries, and potato. This could make 4-hydroxybenzaldehyde a potential biomarker for the consumption of these foods. 4-hydroxybenzaldehyde is a hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. It has a role as a plant metabolite, a mouse metabolite and an EC 1.14.17.1 (dopamine beta-monooxygenase) inhibitor. 4-Hydroxybenzaldehyde is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. Occurs naturally combined in many glycosides. Constituent of vanillin. Isol. in free state from opium poppy (Papaver somniferum) A hydroxybenzaldehyde that is benzaldehyde substituted with a hydroxy group at position C-4. 4-Hydroxybenzaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-08-0 (retrieved 2024-07-02) (CAS RN: 123-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.

   

Palmatine

dibenzo(a,g)quinolizinium, 5,6-dihydro-2,3,9,10-tetramethoxy-, hydroxide (1:1)

[C21H22NO4]+ (352.15487520000005)


Annotation level-1 Palmatine is a berberine alkaloid and an organic heterotetracyclic compound. It has a role as a plant metabolite. Palmatine is a natural product found in Coptis chinensis var. brevisepala, Thalictrum petaloideum, and other organisms with data available. See also: Berberis aristata stem (part of). KEIO_ID P071; [MS2] KO009210 KEIO_ID P071

   

Parietin

1,8-Dihydroxy-3-methoxy-6-methylanthraquinone, Emodin-3-methyl ether

C16H12O5 (284.0684702)


Physcion is a dihydroxyanthraquinone that is 9,10-anthraquinone bearing hydroxy substituents at positions 1 and 8, a methoxy group at position 3, and a methyl group at position 6. It has been widely isolated and characterised from both terrestrial and marine sources. It has a role as an apoptosis inducer, an antineoplastic agent, a hepatoprotective agent, an anti-inflammatory agent, an antibacterial agent, an antifungal agent and a metabolite. It is functionally related to a 2-methylanthraquinone. Physcion is a natural product found in Rumex dentatus, Ageratina altissima, and other organisms with data available. See also: Reynoutria multiflora root (part of); Frangula purshiana Bark (part of). A dihydroxyanthraquinone that is 9,10-anthraquinone bearing hydroxy substituents at positions 1 and 8, a methoxy group at position 3, and a methyl group at position 6. It has been widely isolated and characterised from both terrestrial and marine sources. [Raw Data] CBA82_Physcion_pos_10eV.txt [Raw Data] CBA82_Physcion_pos_30eV.txt [Raw Data] CBA82_Physcion_pos_50eV.txt [Raw Data] CBA82_Physcion_pos_40eV.txt [Raw Data] CBA82_Physcion_pos_20eV.txt

   

Moupinamide

(Z,2E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C18H19NO4 (313.1314014)


N-feruloyltyramine is a member of tyramines. It has a role as a metabolite. Moupinamide is a natural product found in Zanthoxylum beecheyanum, Polyalthia suberosa, and other organisms with data available. See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Alkaloid from Piper nigrum. Moupinamide is found in many foods, some of which are nutmeg, amaranth, sapodilla, and orange bell pepper. Moupinamide is found in eggplant. Moupinamide is an alkaloid from Piper nigru CASMI2013 Challenge_1 MS2 data; [MS1] MSJ00001 CASMI2013 Challenge_1 MS1 data; [MS2] MSJ00002 N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1]. N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1].

   

Columbamine

2-Hydroxy-3,9,10-trimethoxy-5,6-dihydroisoquinolino[3,2-a]isoquinolin-7-ium

C20H20NO4+ (338.13922600000006)


Columbamine is a berberine alkaloid and an organic heterotetracyclic compound. Columbamine is a natural product found in Thalictrum podocarpum, Berberis thunbergii, and other organisms with data available.

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Makisteron A

(2S,3R,5R,9R,10R,13R,14S,17S)-2,3,14-trihydroxy-10,13-dimethyl-17-[(2R,3R,5R)-2,3,6-trihydroxy-5,6-dimethylheptan-2-yl]-2,3,4,5,9,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-6-one

C28H46O7 (494.3243366)


Makisterone A is a steroid. Makisterone A is a natural product found in Rhodnius prolixus, Dysdercus cingulatus, and other organisms with data available.

   

Syringic acid

InChI=1/C9H10O5/c1-13-6-3-5(9(11)12)4-7(14-2)8(6)10/h3-4,10H,1-2H3,(H,11,12

C9H10O5 (198.052821)


Syringic acid, also known as syringate or cedar acid, belongs to the class of organic compounds known as gallic acid and derivatives. Gallic acid and derivatives are compounds containing a 3,4,5-trihydroxybenzoic acid moiety. Outside of the human body, Syringic acid is found, on average, in the highest concentration within a few different foods, such as common walnuts, swiss chards, and olives and in a lower concentration in apples, tarragons, and peanuts. Syringic acid has also been detected, but not quantified in several different foods, such as sweet marjorams, silver lindens, bulgurs, annual wild rices, and barley. This could make syringic acid a potential biomarker for the consumption of these foods. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Research suggests that phenolics from wine may play a positive role against oxidation of low-density lipoprotein (LDL), which is a key step in the development of atherosclerosis. Syringic acid is a phenol present in some distilled alcohol beverages. It is also a product of microbial (gut) metabolism of anthocyanins and other polyphenols that have been consumed (in fruits and alcoholic beverages - PMID:18767860). Syringic acid is also a microbial metabolite that can be found in Bifidobacterium (PMID:24958563). Syringic acid is a dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. It has a role as a plant metabolite. It is a member of benzoic acids, a dimethoxybenzene and a member of phenols. It is functionally related to a gallic acid. It is a conjugate acid of a syringate. Syringic acid is a natural product found in Visnea mocanera, Pittosporum illicioides, and other organisms with data available. Syringic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Present in various plants free and combined, e.g. principal phenolic constituent of soyabean meal (Glycine max) A dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents KEIO_ID S018 Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.

   

Crustecdysone

(2S,3R,5R,9R,10R,13R,14S,17S)-2,3,14-trihydroxy-10,13-dimethyl-17-((2R,3R)-2,3,6-trihydroxy-6-methylheptan-2-yl)-1,2,3,4,5,9,10,11,12,13,14,15,16,17-tetradecahydro-6H-cyclopenta[a]phenanthren-6-one

C27H44O7 (480.3086874)


20-hydroxyecdysone is an ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. It has a role as a plant metabolite and an animal metabolite. It is a 20-hydroxy steroid, an ecdysteroid, a 14alpha-hydroxy steroid, a 3beta-sterol, a 2beta-hydroxy steroid, a 22-hydroxy steroid, a 25-hydroxy steroid and a phytoecdysteroid. It is functionally related to an ecdysone. 20-Hydroxyecdysone is a natural product found in Asparagus filicinus, Trichobilharzia ocellata, and other organisms with data available. A steroid hormone that regulates the processes of MOLTING or ecdysis in insects. Ecdysterone is the 20-hydroxylated ECDYSONE. Crustecdysone is found in crustaceans. Crustecdysone is isolated from the marine crayfish Jasus lalandei in low yield (2 mg/ton D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones An ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].

   
   

Dehydrozingerone

Methyl-3-methoxy-4-hydroxystyryl ketone, (e)-iosmer

C11H12O3 (192.0786402)


Dehydrozingerone is a flavouring ingredien Flavouring ingredient

   
   

Methyl vanillate

InChI=1/C9H10O4/c1-12-8-5-6(9(11)13-2)3-4-7(8)10/h3-5,10H,1-2H

C9H10O4 (182.057906)


Methyl vanillate is a member of the class of compounds known as m-methoxybenzoic acids and derivatives. These compounds are benzoic acids in which the hydrogen atom at position 3 of the benzene ring is replaced by a methoxy group. Methyl vanillate is considered to be a slightly soluble in water acidic compound. Methyl vanillate can be synthesized from vanillic acid. Vanillic acid is a phenolic acid or chlorogenic acid that is an oxidized form of vanillin. Vanillic acid is also an intermediate in the production of vanillin from ferulic acid. It is found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. Vanillic acid is also found in wine and vinegar. Vanillic acid is a metabolic by-product of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5-nucleotidase activity (PMID:16899266 ). Vanillic acid is also a microbial metabolite found in several bacterial genera including Amycolatopsis, Delftia, and Pseudomonas (PMID:11152072 , 10543794 , 11728709 , 9579070 ). Methyl vanillate has been identified in foods such as cows milk (PMID:4682334) and beer (PMID:20800742). Methyl vanillate is a benzoate ester that is the methyl ester of vanillic acid. It has a role as an antioxidant and a plant metabolite. It is a benzoate ester, a member of phenols and an aromatic ether. It is functionally related to a vanillic acid. Methyl vanillate is a natural product found in Cestrum parqui, Aristolochia elegans, and other organisms with data available. Methyl vanillate is a metabolite found in or produced by Saccharomyces cerevisiae. A benzoate ester that is the methyl ester of vanillic acid. Flavouring compound [Flavornet] Methyl vanillate, one of the ingredients in Oryza sativa Linn., is a Wnt/β-catenin pathway activator[1]. A benzoate ester that is the methyl ester of vanillic acid. It has a role as an antioxidant and a plant metabolite. Methyl vanillate, one of the ingredients in Oryza sativa Linn., is a Wnt/β-catenin pathway activator[1]. A benzoate ester that is the methyl ester of vanillic acid. It has a role as an antioxidant and a plant metabolite.

   

Syringaldehyde

InChI=1/C9H10O4/c1-12-7-3-6(5-10)4-8(13-2)9(7)11/h3-5,11H,1-2H

C9H10O4 (182.057906)


Syringaldehyde is a hydroxybenzaldehyde that is 4-hydroxybenzaldehyde substituted by methoxy groups at positions 3 and 5. Isolated from Pisonia aculeata and Panax japonicus var. major, it exhibits hypoglycemic activity. It has a role as a hypoglycemic agent and a plant metabolite. It is a hydroxybenzaldehyde and a dimethoxybenzene. Syringaldehyde is a natural product found in Ficus septica, Mikania laevigata, and other organisms with data available. Syringaldehyde is a metabolite found in or produced by Saccharomyces cerevisiae. A hydroxybenzaldehyde that is 4-hydroxybenzaldehyde substituted by methoxy groups at positions 3 and 5. Isolated from Pisonia aculeata and Panax japonicus var. major, it exhibits hypoglycemic activity. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

N-(p-Hydroxyphenyl)ethyl p-hydroxycinnamide

(Z,2E)-3-(4-hydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C17H17NO3 (283.1208372)


Trans-N-p-coumaroyl tyramine is a hydroxycinnamic acid. It has a role as a metabolite. p-Coumaroyltyramine is a natural product found in Ophiopogon japonicus, Polyalthia suberosa, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Constituent of Chinese onion (Allium chinense) and broad bean (Vicia faba). N-(p-Hydroxyphenyl)ethyl p-hydroxycinnamide is found in onion-family vegetables and pulses. N-p-cis-Coumaroyltyramine is found in onion-family vegetables. N-p-cis-Coumaroyltyramine is a constituent of Chinese onion Allium chinense. A natural product found particularly in Solanum melongena and Asimina triloba. N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2]. N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2].

   

cis-Caffeic acid

(2Z)-3-(3,4-Dihydroxyphenyl)-2-propenoic acid

C9H8O4 (180.0422568)


Caffeic acid, also known as caffeate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Caffeic acid exists in all living species, ranging from bacteria to humans. It is the precursor to ferulic acid, coniferyl alcohol, and sinapyl alcohol, all of which are significant building blocks in lignin. Outside of the human body, caffeic acid has been detected, but not quantified in fats and oils and nuts. Caffeic acid is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Caffeic acid has a variety of potential pharmacological effects in in vitro studies and in animal models, and the inhibitory effect of caffeic acid on cancer cell proliferation by an oxidative mechanism in the human HT-1080 fibrosarcoma cell line has recently been established. It occurs at high levels in black chokeberry (141 mg per 100 g) and in fairly high level in lingonberry (6 mg per 100 g). D020011 - Protective Agents > D000975 - Antioxidants Found in olive oil, peanuts and other plant sources Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

N-cis-Feruloyltyramine

(Z,2Z)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]propa-2-enimidic acid

C18H19NO4 (313.1314014)


Isolated from bell pepper. N-cis-Feruloyltyramine is found in many foods, some of which are cherimoya, yellow bell pepper, green bell pepper, and pepper (c. annuum). N-cis-Feruloyltyramine is found in cherimoya. N-cis-Feruloyltyramine is isolated from bell pepper.

   
   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

physcion

9,10-Anthracenedione, 1,8-dihydroxy-3-methoxy-6-methyl- (9CI)

C16H12O5 (284.0684702)


Physcion, also known as emodin monomethyl ether or parienin, is a member of the class of compounds known as anthraquinones. Anthraquinones are organic compounds containing either anthracene-9,10-quinone, 1,4-anthraquinone, or 1,2-anthraquinone. Physcion is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Physcion can be synthesized from 2-methylanthraquinone. Physcion can also be synthesized into torososide B and physcion 8-gentiobioside. Physcion can be found in common sage, garden rhubarb, and sorrel, which makes physcion a potential biomarker for the consumption of these food products. Physcion has also been shown to protect lichens against UV-B light, at high altitudes in Alpine regions. The UV-B light stimulates production of parietin and the parietin protects the lichens from damage. Lichens in arctic regions such as Svarlbard retain this capability though they do not encounter damaging levels of UV-B, a capability that could help protect the lichens in case of Ozone layer thinning .

   

Vanillin

4-hydroxy-3-methoxybenzaldehyde

C8H8O3 (152.0473418)


CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3579; ORIGINAL_PRECURSOR_SCAN_NO 3578 D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3566; ORIGINAL_PRECURSOR_SCAN_NO 3561 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3549; ORIGINAL_PRECURSOR_SCAN_NO 3546 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3560; ORIGINAL_PRECURSOR_SCAN_NO 3556 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3573; ORIGINAL_PRECURSOR_SCAN_NO 3570 CONFIDENCE standard compound; INTERNAL_ID 952; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3577; ORIGINAL_PRECURSOR_SCAN_NO 3575 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.504 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.503 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.500 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

Syringaldehyde

Syringaldehyde

C9H10O4 (182.057906)


Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 303; CONFIDENCE confident structure Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   
   
   

Berberine

Berberine

[C20H18NO4]+ (336.1235768)


Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2521; CONFIDENCE confident structure IPB_RECORD: 821; CONFIDENCE confident structure

   

Caffeate

(2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0422568)


D020011 - Protective Agents > D000975 - Antioxidants KEIO_ID C107 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Caffeic Acid

3,4-dihydroxy cinnamic acid

C9H8O4 (180.0422568)


A hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. 3,4-dihydroxycinnamic acid, also known as caffeic acid or trans-caffeate, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 3,4-dihydroxycinnamic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxycinnamic acid can be found in fats and oils and nuts, which makes 3,4-dihydroxycinnamic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxycinnamic acid exists in all eukaryotes, ranging from yeast to humans. Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is a key intermediate in the biosynthesis of lignin, one of the principal components of plant biomass and its residues . Caffeic acid is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food. (PMID:16870009) [HMDB]. Caffeic acid is found in many foods, some of which are cardoon, coriander, common persimmon, and irish moss. D020011 - Protective Agents > D000975 - Antioxidants Annotation level-2 CONFIDENCE standard compound; INTERNAL_ID 167 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.412 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.403 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

4-Hydroxybenzaldehyde

4-Hydroxybenzaldehyde

C7H6O2 (122.0367776)


p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.

   

Crustecdysone

20-Hydroxyecdysone

C27H44O7 (480.3086874)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials SubCategory_DNP: : The sterols, Cholestanes Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].

   

Palmatin

Palmatine

[C21H22NO4]+ (352.15487520000005)


Origin: Plant; Formula(Parent): C21H22NO4; Bottle Name:Palmatine chloride; PRIME Parent Name:Palmatine; PRIME in-house No.:V0288; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids

   

Palmatine

dibenzo(a,g)quinolizinium, 5,6-dihydro-2,3,9,10-tetramethoxy-, hydroxide (1:1)

C21H22NO4+ (352.15487520000005)


Palmatine is a berberine alkaloid and an organic heterotetracyclic compound. It has a role as a plant metabolite. Palmatine is a natural product found in Coptis chinensis var. brevisepala, Thalictrum petaloideum, and other organisms with data available. See also: Berberis aristata stem (part of).

   

N-cis-Feruloyltyramine

(2Z)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide

C18H19NO4 (313.1314014)


   

Paprazine

(2e)-3-(4-hydroxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide

C17H17NO3 (283.1208372)


N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2]. N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2].

   

Cinnamamide, p-hydroxy-N-(p-hydroxyphenethyl)-

Cinnamamide, p-hydroxy-N-(p-hydroxyphenethyl)-

C17H17NO3 (283.1208372)


   

Vanillate

4-Hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

AI3-63211

InChI=1\C9H8O4\c10-7-3-1-6(5-8(7)11)2-4-9(12)13\h1-5,10-11H,(H,12,13)\b4-2

C9H8O4 (180.0422568)


D020011 - Protective Agents > D000975 - Antioxidants Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Zimco

InChI=1\C8H8O3\c1-11-8-4-6(5-9)2-3-7(8)10\h2-5,10H,1H

C8H8O3 (152.0473418)


D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

Cedar acid

InChI=1\C9H10O5\c1-13-6-3-5(9(11)12)4-7(14-2)8(6)10\h3-4,10H,1-2H3,(H,11,12

C9H10O5 (198.052821)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.

   

FR-0985

4-08-00-00251 (Beilstein Handbook Reference)

C7H6O2 (122.0367776)


p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations. p-Hydroxybenzaldehyde is a one of the major components in vanilla aroma, with antagonistic effect on GABAA receptor of the α1β2γ2S subtype at high concentrations.

   

AI3-28796

InChI=1\C9H10O4\c1-12-7-3-6(5-10)4-8(13-2)9(7)11\h3-5,11H,1-2H

C9H10O4 (182.057906)


Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

Stepharanine

Stepharanine

C19H18NO4+ (324.1235768)


A berberine alkaloid with formula C19H18NO4 that is isolated from several species of Stephania.

   
   

2,9,10-Trimethoxy-5,6-dihydroisoquinolino[2,1-b]isoquinolin-3-one

2,9,10-Trimethoxy-5,6-dihydroisoquinolino[2,1-b]isoquinolin-3-one

C20H19NO4 (337.1314014000001)


   

2,9,10-trimethoxy-6,7-dihydro-5H-isoquinolino[2,1-b]isoquinolin-7-ium-3-one

2,9,10-trimethoxy-6,7-dihydro-5H-isoquinolino[2,1-b]isoquinolin-7-ium-3-one

C20H20NO4+ (338.13922600000006)


   

Berberine

16,17-dimethoxy-5,7-dioxa-13lambda5-azapentacyclo[11.8.0.0^{2,10}.0^{4,8}.0^{15,20}]henicosa-1(21),2,4(8),9,13,15,17,19-octaen-13-ylium

C20H18NO4+ (336.1235768)


Berberine is an organic heteropentacyclic compound, an alkaloid antibiotic, a botanical anti-fungal agent and a berberine alkaloid. It has a role as an antilipemic drug, a hypoglycemic agent, an antioxidant, a potassium channel blocker, an antineoplastic agent, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.1.1.141 [15-hydroxyprostaglandin dehydrogenase (NAD(+))] inhibitor, an EC 1.13.11.52 (indoleamine 2,3-dioxygenase) inhibitor, an EC 1.21.3.3 (reticuline oxidase) inhibitor, an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor, an EC 3.1.1.4 (phospholipase A2) inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an EC 3.4.14.5 (dipeptidyl-peptidase IV) inhibitor, an EC 3.1.3.48 (protein-tyrosine-phosphatase) inhibitor, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an EC 2.7.11.10 (IkappaB kinase) inhibitor, an EC 2.1.1.122 [(S)-tetrahydroprotoberberine N-methyltransferase] inhibitor, a geroprotector and a metabolite. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Berberine is a quaternary ammonia compound found in many botanical products, including goldenseal, barberry and Oregon grape, which is used for its purported antioxidant and antimicrobial properties for a host of conditions, including obesity, diabetes, hyperlipidemia, heart failure, H. pylori infection and colonic adenoma prevention. Berberine has not been linked to serum aminotransferase elevations during therapy nor to instances of clinically apparent liver injury. Berberine is a natural product found in Berberis poiretii, Thalictrum delavayi, and other organisms with data available. Berberine is a quaternary ammonium salt of an isoquinoline alkaloid and active component of various Chinese herbs, with potential antineoplastic, radiosensitizing, anti-inflammatory, anti-lipidemic and antidiabetic activities. Although the mechanisms of action through which berberine exerts its effects are not yet fully elucidated, upon administration this agent appears to suppress the activation of various proteins and/or modulate the expression of a variety of genes involved in tumorigenesis and inflammation, including, but not limited to transcription factor nuclear factor-kappa B (NF-kB), myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), cyclooxygenase (COX)-2, tumor necrosis factor (TNF), interleukin (IL)-6, IL-12, inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 2 (CXCL2), cyclin D1, activator protein (AP-1), hypoxia-inducible factor 1 (HIF-1), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor (PPAR), arylamine N-acetyltransferase (NAT), and DNA topoisomerase I and II. The modulation of gene expression may induce cell cycle arrest and apoptosis, and inhibit cancer cell proliferation. In addition, berberine modulates lipid and glucose metabolism. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. See also: Goldenseal (part of); Berberis aristata stem (part of). Berberine is a quaternary ammonium salt that belongs to the protoberberine group of benzylisoquinoline alkaloids. Chemically, berberine is classified as an isoquinoline alkaloid. More specifically, berberine is a plant alkaloid derived from tyrosine through a complex 8 step biosynthetic process. Berberine is found in plants such as Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Mahonia aquifolium (Oregon grape) and Hydrastis canadensis (goldenseal). Two other known berberine-containing plants are Phellodendron chinense and Phellodendron amurense. Berberine is usually found in the roots, rhizomes, stems, and bark of Berberis plants. Due to berberines intense yellow color, plants that contain berberine were traditionally used to dye wool, leather, and wood. Under ultraviolet light, berberine shows a strong yellow fluorescence, making it useful in histology for staining heparin in mast cells. Berberine is a bioactive plant compound that has been frequently used in traditional medicine. Among the known physiological effects or bioactivities are: 1) Antimicrobial action against bacteria, fungi, protozoa, viruses, helminthes, and Chlamydia; 2) Antagonism against the effects of cholera and E coli heat-stable enterotoxin; 3) Inhibition of intestinal ion secretion and of smooth muscle contraction; 4) Reduction of inflammation and 5) Stimulation of bile secretion and bilirubin discharge (PMID:32335802). Berberine can inhibit bacterial growth in the gut, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Currently, berberine is sold as an Over-the-Counter (OTC) drug for treating gastrointestinal infections in China (PMID:18442638). Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis (PMID:32335802). Recent evidence has also confirmed that berberine improves the efficacy and safety of both chemo and radiotherapies for cancer treatment (PMID:32335802). Berberine has also been shown to regulate glucose and lipid metabolism in vitro and in vivo (PMID:18442638). In fact, berberine is the main active component of an ancient Chinese herb Coptis chinensis French, which has been used to treat diabetes for thousands of years. As an anti-diabetic, berberine increases glucose uptake by muscle fibers independent of insulin levels. It triggers AMPK activation and increases glycolysis, leading to decreased insulin resistance and decreased oxygen respiration. The same mechanism leads to a reduction in gluconeogenesis in the liver. AMPK activation by berberine also leads to an antiatherosclerotic effect in mice. Berberines AMPK activation may also underlie berberines anti-obesity effects and favorable influence on weight loss (PMID:18442638). While its use as a medication is widely touted, it is important to remember that berberine inhibits CYP2D6 and CYP3A4 enzymes, both of which are involved in the metabolism of many endogenous substances and xenobiotics, including a number of prescription drugs. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Dehydrozingerone

4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one

C11H12O3 (192.0786402)