Sudan_IV
Sudan IV is a bis(azo) compound that is 2-naphthol substituted at position 1 by a {2-methyl-4-[(2-methylphenyl)diazenyl]phenyl}diazenyl group. A fat-soluble dye predominantly used for demonstrating triglycerides in frozen sections, but which may also stain some protein bound lipids in paraffin sections. It has a role as a histological dye, a fluorochrome and a carcinogenic agent. It is a bis(azo) compound, a member of naphthols and a member of azobenzenes. It is functionally related to a 2-naphthol. D004396 - Coloring Agents
L-Threonine
L-threonine is an optically active form of threonine having L-configuration. It has a role as a nutraceutical, a micronutrient, a Saccharomyces cerevisiae metabolite, a plant metabolite, an Escherichia coli metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is an aspartate family amino acid, a proteinogenic amino acid, a threonine and a L-alpha-amino acid. It is a conjugate base of a L-threoninium. It is a conjugate acid of a L-threoninate. It is an enantiomer of a D-threonine. It is a tautomer of a L-threonine zwitterion. An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Threonine is an essential amino acid in humans (provided by food), Threonine is an important residue of many proteins, such as tooth enamel, collagen, and elastin. An important amino acid for the nervous system, threonine also plays an important role in porphyrin and fat metabolism and prevents fat buildup in the liver. Useful with intestinal disorders and indigestion, threonine has also been used to alleviate anxiety and mild depression. (NCI04) Threonine is an essential amino acid in humans. It is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. This amino acid has been useful in the treatment of genetic spasticity disorders and multiple sclerosis at a dose of 1 gram daily. It is highly concentrated in meat products, cottage cheese and wheat germ. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Threonine catabolism in mammals appears to be due primarily (70-80\\\\\\%) to the activity of threonine dehydrogenase (EC 1.1.1.103) that oxidizes threonine to 2-amino-3-oxobutyrate, which forms glycine and acetyl CoA, whereas threonine dehydratase (EC 4.2.1.16) that catabolizes threonine into 2-oxobutyrate and ammonia, is significantly less active. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (A3450). An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. See also: Amlisimod (monomer of) ... View More ... Threonine (Thr) or L-threonine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-threonine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Threonine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. Threonine is sometimes considered as a branched chain amino acid. Threonine was actually the last of the 20 amino acids to be discovered (in 1938). It was named threonine because it was similar in structure to threonic acid, a four-carbon monosaccharide. Threonine is an essential amino acid in humans, meaning the body cannot synthesize it and that it must be obtained from the diet. Foods high in threonine include cottage cheese, poultry, fish, meat, lentils, black turtle bean and sesame seeds. Adult humans require about 20 mg/kg body weight/day. In plants and microorganisms, threonine is synthesized from aspartic acid via alpha-aspartyl-semialdehyde and homoserine. In proteins, the threonine residue is susceptible to numerous posttranslational modifications. The hydroxyl side-chain can undergo O-linked glycosylation and phosphorylation through the action of a threonine kinase. Threonine is abundant in human plasma, particularly in newborns. Severe deficiency of threonine causes neurological dysfunction and lameness in experimental animals. Threonine is an immunostimulant which promotes the growth of thymus gland. It also can probably promote cell immune defense function. The threonine content of most of the infant formulas currently on the market is approximately 20\\\\\\% higher than the threonine concentration in human milk. Due to this high threonine content the plasma threonine concentrations are up to twice as high in premature infants fed these formulas than in infants fed human milk. The whey proteins which are used for infant formulas are sweet whey proteins. Sweet whey results from cheese production. Increasing the threonine plasma concentrations leads to accumulation of threonine and glycine in the brain. Such accumulation affects the neurotransmitter balance which may have consequences for the brain development during early postnatal life. Thus, excessive threonine intake during infant feeding should be avoided. (PMID 9853925). Threonine is metabolized in at least two ways. In many animals it is converted to pyruvate via threonine dehydrogenase. An intermediate in this pathway can undergo thiolysis with CoA to produce acetyl-CoA and glycine. In humans the gene for threonine dehydrogenase is an inactive pseudogene, so threonine is converted to alpha-ketobutyrate. From wide variety of protein hydrolysates. Dietary supplement, nutrient L-Threonine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=72-19-5 (retrieved 2024-07-01) (CAS RN: 72-19-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].
Eldelin
Deltaline is a diterpene alkaloid, a tertiary alcohol, a tertiary amino compound, an acetate ester, a cyclic acetal and an organic polycyclic compound. It derives from a hydride of an aconitane. Deltaline is a natural product found in Delphinium cheilanthum, Delphinium andersonii, and other organisms with data available. Deltaline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6836-11-9 (retrieved 2024-07-09) (CAS RN: 6836-11-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Deltaline is a diterpenoid alkaloid and isolated from plants of the genus Delphinium delavayi Franch. Deltaline itself has analgesic properties, and plants of the genus Delphinium delavayi Franch have also been therapeutically used to treat rheumaticpain, paralysis due to stroke, rheumatoid arthritis[1]. Deltaline is a diterpenoid alkaloid and isolated from plants of the genus Delphinium delavayi Franch. Deltaline itself has analgesic properties, and plants of the genus Delphinium delavayi Franch have also been therapeutically used to treat rheumaticpain, paralysis due to stroke, rheumatoid arthritis[1].
Myristoleate (14:1n5)
Myristoleic acid, also known as 9-tetradecenoate or myristoleate, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristoleic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Myristoleic acid exists in all eukaryotes, ranging from yeast to humans. Outside of the human body, myristoleic acid is found in the highest concentration within a few different foods, such as milk (cow), butter, and margarine-like spreads, and in a lower concentration in creams, meat bouillons, and chocolates. Myristoleic acid has also been detected, but not quantified in, several different foods, such as anchovies, loganberries, sunflowers, yellow zucchinis, and dates. This could make myristoleic acid a potential biomarker for the consumption of these foods. Myristoleic acid is a monounsaturated fatty acid that represents approximately 0.3-0.7\\\\% of the total fatty acid composition of adipose tissue triacylglycerol in humans (PMID: 10393134). It has been suggested that its effective cytotoxic (i.e. cell death inducer) activity could be used for the treatment of prostate cancer (PMID: 11304730). Myristoleic acid is a tetradecenoic acid in which the double bond is at the 9-10 position and has Z configuration. Myristoleic acid has been isolated from Serenoa repens and has cytotoxic and apoptosis-inducing effects. It has a role as an apoptosis inducer, a plant metabolite and an EC 3.1.1.1 (carboxylesterase) inhibitor. It is a tetradecenoic acid and a long-chain fatty acid. It is a conjugate acid of a myristoleate. Myristoleic acid is a natural product found in Gladiolus italicus, Erucaria microcarpa, and other organisms with data available. Myristoleic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A tetradecenoic acid in which the double bond is at the 9-10 position and has Z configuration. Myristoleic acid has been isolated from Serenoa repens and has cytotoxic and apoptosis-inducing effects. Occurs in natural fats, e.g. Cottonseed oil KEIO_ID M044 Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells[1]. Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells[1].
2',4',6'-Trihydroxyacetophenone
2,4,6-trihydroxyacetophenone is a benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. It has a role as a MALDI matrix material and a plant metabolite. It is a methyl ketone, a benzenetriol and an aromatic ketone. 2,4,6-Trihydroxyacetophenone is a natural product found in Artemisia gypsacea, Daldinia eschscholtzii, and other organisms with data available. A benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. 2,4,6-Trihydroxyacetophenone is found in fruits. 2,4,6-Trihydroxyacetophenone is isolated from bark of Prunus domestica (plum Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].
2-hydroxyphenylacetate
ortho-Hydroxyphenylacetic acid, also known as (o-hydroxyphenyl)acetate or 2-hydroxybenzeneacetic acid, is a member of the class of compounds known as 2(hydroxyphenyl)acetic acids. 2(Hydroxyphenyl)acetic acids are phenylacetic acids that carry a hydroxyl group at the 2-position. ortho-Hydroxyphenylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). ortho-Hydroxyphenylacetic acid can be found in a number of food items such as natal plum, lemon verbena, half-highbush blueberry, and parsley, which makes ortho-hydroxyphenylacetic acid a potential biomarker for the consumption of these food products. ortho-Hydroxyphenylacetic acid can be found primarily in blood, feces, and urine. Moreover, ortho-hydroxyphenylacetic acid is found to be associated with phenylketonuria, which is an inborn error of metabolism. ortho-Hydroxyphenylacetic acid is a substrate of the enzyme oxidoreductases (EC 1.14.13.-) in the pathway styrene degradation (KEGG). ortho-Hydroxyphenylacetic acid is also a microbial metabolite. ortho-Hydroxyphenylacetic acid is a substrate of the enzyme oxidoreductases [EC 1.14.13.-] in the pathway styrene degradation. (KEGG) [HMDB]. 2-Hydroxyphenylacetic acid is found in many foods, some of which are rambutan, common oregano, burbot, and wild leek. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 155 INTERNAL_ID 155; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 46 COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU).
2-Oxo-4-methylthiobutanoic acid
2-oxo-4-methylthiobutanoate, also known as 2-keto-4-methylthiobutyric acid, 2-keto-4-methylthiobutyrate or 4-(methylsulfanyl)-2-oxobutanoic acid, is a member of the class of compounds known as thia- fatty acids. Thia-fatty acids are fatty acid derivatives obtained by insertion of a sulfur atom at specific positions in the chain. Thus, 2-oxo-4-methylthiobutanoate is a fatty acid lipid molecule. 2-oxo-4-methylthiobutanoate is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-oxo-4-methylthiobutanoate can be synthesized from L-methionine and butyric acid. 2-oxo-4-methylthiobutanoate can also be synthesized into S-adenosyl-4-methylthio-2-oxobutanoic acid. 2-oxo-4-methylthiobutanoate can be found in a number of food items such as cloves, highbush blueberries, common beets, and cashew nuts. 2-oxo-4-methylthiobutanoate can be found in urine. Within the cell, 2-oxo-4-methylthiobutanoate is primarily located in the cytoplasm and in the membrane. 2-oxo-4-methylthiobutanoate has been found in all living species, from bacteria to humans. In humans, 2-oxo-4-methylthiobutanoate is found to be involved in several metabolic disorders, some of those are S-adenosylhomocysteine (SAH) hydrolase deficiency, methylenetetrahydrofolate reductase deficiency (MTHFRD), methionine adenosyltransferase deficiency, and glycine N-methyltransferase deficiency. 4-Methylthio-2-oxobutanoic acid is the direct precursor of methional, which is a potent inducer of apoptosis in a BAF3 murine lymphoid cell line which is interleukin-3 (IL3)-dependent (PMID: 7848263). 2-oxo-4-methylthiobutanoic acid, also known as 2-keto-4-methylthiobutyrate or 4-methylthio-2-oxobutanoate, is a member of the class of compounds known as thia fatty acids. Thia fatty acids are fatty acid derivatives obtained by insertion of a sulfur atom at specific positions in the chain. Thus, 2-oxo-4-methylthiobutanoic acid is considered to be a fatty acid lipid molecule. 2-oxo-4-methylthiobutanoic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 2-oxo-4-methylthiobutanoic acid can be synthesized from L-methionine and butyric acid. 2-oxo-4-methylthiobutanoic acid can also be synthesized into S-adenosyl-4-methylthio-2-oxobutanoic acid. 2-oxo-4-methylthiobutanoic acid can be found in a number of food items such as leek, hickory nut, brussel sprouts, and giant butterbur, which makes 2-oxo-4-methylthiobutanoic acid a potential biomarker for the consumption of these food products. 2-oxo-4-methylthiobutanoic acid can be found primarily in urine. 2-oxo-4-methylthiobutanoic acid exists in all living species, ranging from bacteria to humans. In humans, 2-oxo-4-methylthiobutanoic acid is involved in the methionine metabolism. 2-oxo-4-methylthiobutanoic acid is also involved in several metabolic disorders, some of which include s-adenosylhomocysteine (SAH) hydrolase deficiency, homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblg complementation type, glycine n-methyltransferase deficiency, and cystathionine beta-synthase deficiency.
3-Indoleacetonitrile
3-Indoleacetonitrile is a phytoalexin. Phytoalexins are antibiotics produced by plants that are under attack. Phytoalexins tend to fall into several classes including terpenoids, glycosteroids, and alkaloids; however, researchers often find it convenient to extend the definition to include all phytochemicals that are part of the plants defensive arsenal. Phytoalexins produced in plants act as toxins to the attacking organism. They may puncture the cell wall, delay maturation, disrupt metabolism, or prevent the reproduction of the pathogen in question. However, phytoalexins are often targeted to specific predators; a plant that has anti-insect phytoalexins may not have the ability to repel a fungal attack. 3-Indoleacetonitrile is common in cruciferous vegetables such as cabbage, cauliflower, broccoli, and Brussels sprouts. Dietary indoles in cruciferous vegetables induce cytochrome P450 enzymes and have prevented tumours in various animal models. Consumption of Brassica vegetables is associated with a reduced risk of cancer of the alimentary tract in animal models and human populations (PMID:15612779, 15884814, 2342128, 3014947, 3880668, 6334634, 6419397, 6426808, 6584878, 6725517, 6838646, 7123561). Myrosinase-induced hydrolysis product of indole glucosinolates, found in cabbage and other crucifers Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID I022 3-Indoleacetonitrile is an endogenous metabolite. 3-Indoleacetonitrile is an endogenous metabolite.
Indoleacetic acid
Indoleacetic acid (IAA) is a breakdown product of tryptophan metabolism and is often produced by the action of bacteria in the mammalian gut. Higher levels of IAA are associated with bacteria from Clostridium species including C. stricklandii, C. lituseburense, C. subterminale, and C. putrefaciens (PMID: 12173102). IAA can be found in Agrobacterium, Azospirillum, Bacillus, Bradyrhizobium, Clostridium, Enterobacter, Pantoea, Pseudomonas, Rhizobium (PMID: 12173102, PMID: 17555270, PMID: 12147474, PMID: 19400643, PMID: 9450337, PMID: 21397014) (https://link.springer.com/chapter/10.1007/978-1-4612-3084-7_7) (https://escholarship.org/uc/item/1bf1b5m3). Some endogenous production of IAA in mammalian tissues also occurs. It may be produced by the decarboxylation of tryptamine or the oxidative deamination of tryptophan. IAA frequently occurs at low levels in urine and has been found in elevated levels in the urine of patients with phenylketonuria (PMID: 13610897). IAA has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Using material extracted from human urine, it was discovered by Kogl in 1933 that indoleacetic acid is also an important plant hormone (PMID: 13610897). Specifically, IAA is a member of the group of phytohormones called auxins. IAA is generally considered to be the most important native auxin. Plant cells synthesize IAA from tryptophan (Wikipedia). IAA and some derivatives can be oxidized by horseradish peroxidase (HRP) into cytotoxic species. IAA is only toxic after oxidative decarboxylation; the effect of IAA/HRP is thought to be due in part to the formation of methylene-oxindole, which may conjugate with DNA bases and protein thiols. IAA/HRP could be used as the basis for targeted cancer, a potential new role for plant auxins in cancer therapy (PMID: 11163327). 1h-indol-3-ylacetic acid, also known as (indol-3-yl)acetate or heteroauxin, belongs to indole-3-acetic acid derivatives class of compounds. Those are compounds containing an acetic acid (or a derivative) linked to the C3 carbon atom of an indole. 1h-indol-3-ylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 1h-indol-3-ylacetic acid is a mild, odorless, and sour tasting compound and can be found in a number of food items such as sweet bay, chinese bayberry, winter squash, and linden, which makes 1h-indol-3-ylacetic acid a potential biomarker for the consumption of these food products. 1h-indol-3-ylacetic acid can be found primarily in most biofluids, including blood, feces, saliva, and urine, as well as throughout most human tissues. 1h-indol-3-ylacetic acid exists in all living species, ranging from bacteria to humans. In humans, 1h-indol-3-ylacetic acid is involved in the tryptophan metabolism. Moreover, 1h-indol-3-ylacetic acid is found to be associated with appendicitis and irritable bowel syndrome. 1h-indol-3-ylacetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Chronic Exposure: Kidney dialysis is usually needed to relieve the symptoms of uremic syndrome until normal kidney function can be restored. CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3375; ORIGINAL_PRECURSOR_SCAN_NO 3371 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3366; ORIGINAL_PRECURSOR_SCAN_NO 3363 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3365; ORIGINAL_PRECURSOR_SCAN_NO 3361 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3395; ORIGINAL_PRECURSOR_SCAN_NO 3391 DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3366; ORIGINAL_PRECURSOR_SCAN_NO 3363 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3369; ORIGINAL_PRECURSOR_SCAN_NO 3366 CONFIDENCE standard compound; INTERNAL_ID 190; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3385; ORIGINAL_PRECURSOR_SCAN_NO 3380 D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 275; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 2796 CONFIDENCE standard compound; INTERNAL_ID 166 COVID info from COVID-19 Disease Map Corona-virus KEIO_ID I038 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division. 3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division.
Indolepyruvate
The thiamin diphosphate (ThDP)-dependent enzyme indolepyruvate decarboxylase (IPDC) is involved in the biosynthetic pathway of the phytohormone 3-indoleacetic acid and catalyzes the nonoxidative decarboxylation of 3-indolepyruvate to 3-indoleacetaldehyde and carbon dioxide. (PMID:15835904)  In addition, the enzyme was compared with the phenylpyruvate decarboxylase from Azospirillum brasilense and the indolepyruvate decarboxylase from Enterobacter cloacae. (PMID:21501384) Indole-3-pyruvate is a microbial metabolite, urinary indole-3-pyruvate is produced by Clostridium sporogenes (PMID:29168502) and Trypanasoma brucei (PMID:27856732). Indolepyruvate, also known as indolepyruvic acid or (indol-3-yl)pyruvate, belongs to indolyl carboxylic acids and derivatives class of compounds. Those are compounds containing a carboxylic acid chain (of at least 2 carbon atoms) linked to an indole ring. Indolepyruvate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Indolepyruvate can be found in a number of food items such as spelt, strawberry, gram bean, and oregon yampah, which makes indolepyruvate a potential biomarker for the consumption of these food products. Indolepyruvate exists in all eukaryotes, ranging from yeast to humans. D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants KEIO_ID I002
L-Serine
Serine (Ser) or L-serine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-serine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Serine is found in all organisms ranging from bacteria to plants to animals. It is classified as a polar, uncharged (at physiological pH), aliphatic amino acid. In humans, serine is a nonessential amino acid that can be easily derived from glycine. A non-essential amino acid is an amino acid that can be synthesized from central metabolic pathway intermediates in humans and is not required in the diet. Like all the amino acid building blocks of protein and peptides, serine can become essential under certain conditions, and is thus important in maintaining health and preventing disease. L-Serine may be derived from four possible sources: dietary intake; biosynthesis from the glycolytic intermediate 3-phosphoglycerate; from glycine; and by protein and phospholipid degradation. Little data is available on the relative contributions of each of these four sources of l-serine to serine homoeostasis. It is very likely that the predominant source of l-serine will be very different in different tissues and during different stages of human development. In the biosynthetic pathway, the glycolytic intermediate 3-phosphoglycerate is converted into phosphohydroxypyruvate, in a reaction catalyzed by 3-phosphoglycerate dehydrogenase (3- PGDH; EC 1.1.1.95). Phosphohydroxypyruvate is metabolized to phosphoserine by phosphohydroxypyruvate aminotransferase (EC 2.6.1.52) and, finally, phosphoserine is converted into l-serine by phosphoserine phosphatase (PSP; EC 3.1.3.3). In liver tissue, the serine biosynthetic pathway is regulated in response to dietary and hormonal changes. Of the three synthetic enzymes, the properties of 3-PGDH and PSP are the best documented. Hormonal factors such as glucagon and corticosteroids also influence 3-PGDH and PSP activities in interactions dependent upon the diet. L-serine is the predominant source of one-carbon groups for the de novo synthesis of purine nucleotides and deoxythymidine monophosphate. It has long been recognized that, in cell cultures, L-serine is a conditional essential amino acid, because it cannot be synthesized in sufficient quantities to meet the cellular demands for its utilization. In recent years, L-serine and the products of its metabolism have been recognized not only to be essential for cell proliferation, but also to be necessary for specific functions in the central nervous system. The findings of altered levels of serine and glycine in patients with psychiatric disorders and the severe neurological abnormalities in patients with defects of L-serine synthesis underscore the importance of L-serine in brain development and function. (PMID 12534373). [Spectral] L-Serine (exact mass = 105.04259) and D-2-Aminobutyrate (exact mass = 103.06333) and 4-Aminobutanoate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Dietary supplement. L-Serine is found in many foods, some of which are cold cut, mammee apple, coho salmon, and carrot. L-Serine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-45-1 (retrieved 2024-07-01) (CAS RN: 56-45-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.
Nα-Acetyl-L-lysine
N-epsilon-Acetyl-L-lysine also known as Nepsilon-Acetyllysine or N6-Acetyllysine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at one of its nitrogen atoms. N-epsilon-Acetyl-L-lysine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-epsilon-Acetyl-L-lysine is a biologically available sidechain, N-capped form of the proteinogenic alpha amino acid L-lysine. Unlike L-lysine, acetylated lysine derivatives such as N-epsilon-Acetyl-L-lysine are zwitterionic compounds. These are molecules that contains an equal number of positively- and negatively-charged functional groups. N-epsilon-Acetyl-L-lysine is found naturally in eukaryotes ranging from yeast to plants to humans. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins (often histones) by specific hydrolases. N-epsilon-Acetyl-L-lysine can be biosynthesized from L-lysine and acetyl-CoA via the enzyme known as Lysine N-acetyltransferase. Post-translational lysine-acetylation is one of two major modifications of lysine residues in various proteins – either N-terminal or N-alpha acetylation or N6 (sidechain) acetylation. Side-chain acetylation of specific lysine residues in the N-terminal domains of core histones is a biochemical marker of active genes. Acetylation is now known to play a major role in eukaryotic transcription. Specifically, acetyltransferase enzymes that act on particular lysine side chains of histones and other proteins are intimately involved in transcriptional activation. By modifying chromatin proteins and transcription-related factors, these acetylases are believed to regulate the transcription of many genes. The best-characterized mechanism is acetylation, catalyzed by histone acetyltransferase (HAT) enzymes. HATs function enzymatically by transferring an acetyl group from acetyl-coenzyme A (acetyl-CoA) to the amino group of certain lysine side chains within a histones basic N-terminal tail region. Within a histone octamer, these regions extend out from the associated globular domains, and in the context of a nucleosome, they are believed to bind the DNA through charge interactions (positively charged histone tails associated with negatively charged DNA) or mediate interactions between nucleosomes. Lysine acetylation, which neutralizes part of a tail regions positive charge, is postulated to weaken histone-DNA or nucleosome-nucleosome interactions and/or signal a conformational change, thereby destabilizing nucleosome structure or arrangement and giving other nuclear factors, such as the transcription complex, more access to a genetic locus. In agreement with this is the fact that acetylated chromatin has long been associated with states of transcriptional activation. Specific recognition of N6-acetyl-L-lysine is a conserved function of all bromodomains found in different proteins, recognized as an emerging intracellular signalling mechanism that plays critical roles in regulating gene transcription, cell-cycle progression, apoptosis, DNA repair, and cytoskeletal organization (PMID: 9169194 , 10827952 , 17340003 , 16247734 , 9478947 , 10839822 ). N-acetylated amino acids, such as N-epsilon-Acetyl-L-lysine can be released by an N-acylpeptide hydrolase from histones going through proteolytic degradation (PMID: 16465618). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Isolated from sugarbeet (Beta vulgaris) KEIO_ID A174 Nepsilon-Acetyl-L-lysine is a derivative of the amino acid lysine.
Hydrocinnamic acid
Hydrocinnamic acid, also known as 3-phenylpropanoic acid or dihydrocinnamic acid, belongs to the class of organic compounds known as phenylpropanoic acids. Phenylpropanoic acids are compounds with a structure containing a benzene ring conjugated to a propanoic acid (C6-C3). Phenylpropanoic acid can be prepared from cinnamic acid by hydrogenation. Hydrocinnamic acid is a sweet, balsamic, and cinnamon tasting compound. This compound is used frequently in cosmetic products such as perfumes, bath gels, detergent powders, liquid detergents, fabric softeners, and soaps as it gives off a floral scent. A characteristic reaction of phenylpropanoic acid is its cyclization to indanones. Phenylpropanoic acid is used in the food industry to preserve and maintain the original aroma quality of frozen foods. Phenylpropanoic acid is also added to food for technological purposes in a wide variety including manufacturing, processing, preparation, treatment, packaging, transportation or storage, and food additives. This compound is used as a sweetener as well to sweeten food and can be found in tabletop sweeteners. Hydrocinnamic acid is an analogue of phenylalanine. It is a substrate of the enzyme oxidoreductases [EC 1.14.12.-] in the pathway phenylalanine metabolism (KEGG). 3-Phenylpropanoic acid is found in many foods, some of which are purple laver, quinoa, custard apple, and conch. KEIO_ID P109 Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
Deoxyribose 5-phosphate
Deoxyribose 5-phosphate is a a metabolite in the pentose phosphate pathway. It can be generated from D-glyceraldehdye-3 phosphate via the enzyme 2-Deoxyribose 5-phosphate aldolase (DERA). Alternately Deoxyribose 5-phosphate can be converted to D-glyceraldehyde-3 phosphate that can then feed into the pentose phosphate pathway. Deoxyribose 5-phosphate can also be generated from 2-Deoxy-D-ribose via the enzyme Ribokinase (EC 2.7.1.15). It has been shown in a number of organisms that deoxynucleosides or deoxyriboses cause the induction of aldolases (such as DERA) involved in their catabolism, leading to the utilisation of the pentose moiety as carbon and energy source. [HMDB] Deoxyribose 5-phosphate is a a metabolite in the pentose phosphate pathway. It can be generated from D-glyceraldehdye-3 phosphate via the enzyme 2-Deoxyribose 5-phosphate aldolase (DERA). Alternately Deoxyribose 5-phosphate can be converted to D-glyceraldehyde-3 phosphate that can then feed into the pentose phosphate pathway. Deoxyribose 5-phosphate can also be generated from 2-Deoxy-D-ribose via the enzyme Ribokinase (EC 2.7.1.15). It has been shown in a number of organisms that deoxynucleosides or deoxyriboses cause the induction of aldolases (such as DERA) involved in their catabolism, leading to the utilisation of the pentose moiety as carbon and energy source. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID D026
Bromoxynil
CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4334; ORIGINAL_PRECURSOR_SCAN_NO 4332 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4314; ORIGINAL_PRECURSOR_SCAN_NO 4312 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4343; ORIGINAL_PRECURSOR_SCAN_NO 4340 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4300; ORIGINAL_PRECURSOR_SCAN_NO 4297 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4318; ORIGINAL_PRECURSOR_SCAN_NO 4315 CONFIDENCE standard compound; INTERNAL_ID 549; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4333; ORIGINAL_PRECURSOR_SCAN_NO 4328 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8440 CONFIDENCE standard compound; EAWAG_UCHEM_ID 24
Dimethylbenzimidazole
Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. Dimethylbenzimidazole is the second to last step for the synthesis of alpha-Ribazole. It is converted from Riboflavin then it is converted to N1-(5-Phospho-alpha-D-ribosyl)-5,6-dimethylbenzimidazole via the enzyme nicotinate-nucleotide--dimethylbenzimidazole phosphoribosyltransferase (EC 2.4.2.21). Dimethylbenzimidazole is an intermediate in Riboflavin metabolism. KEIO_ID D087 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.
Glucosamine
Glucosamine (C6H13NO5) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids. Glucosamine is part of the structure of two polysaccharides, chitosan and chitin. Glucosamine is one of the most abundant monosaccharides. Produced commercially by the hydrolysis of shellfish exoskeletons or, less commonly, by fermentation of a grain such as corn or wheat, glucosamine has many names depending on country. Although a common dietary supplement, there is little evidence that it is effective for relief of arthritis or pain, and is not an approved prescription drug. In the United States, glucosamine is not approved by the Food and Drug Administration for medical use in humans. Since glucosamine is classified as a dietary supplement, evidence of safety and efficacy is not required as long as it is not advertised as a treatment for a medical condition. Nevertheless, glucosamine is a popular alternative medicine used by consumers for the treatment of osteoarthritis. Glucosamine is also extensively used in veterinary medicine as an unregulated but widely accepted supplement. Treatment with oral glucosamine is commonly used for the treatment of osteoarthritis. Since glucosamine is a precursor for glycosaminoglycans, and glycosaminoglycans are a major component of joint cartilage, supplemental glucosamine may help to rebuild cartilage and treat arthritis. However, there is little evidence that any clinical effect of glucosamine works this way. Its use as a therapy for osteoarthritis appears safe but there is conflicting evidence as to its effectiveness. Glucosamine is naturally present in the shells of shellfish, animal bones, bone marrow, and fungi. D-Glucosamine is made naturally in the form of glucosamine-6-phosphate, and is the biochemical precursor of all nitrogen-containing sugars. Specifically in humans, glucosamine-6-phosphate is synthesized from fructose 6-phosphate and glutamine by glutamine—fructose-6-phosphate transaminase as the first step of the hexosamine biosynthesis pathway. The end-product of this pathway is uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is then used for making glycosaminoglycans, proteoglycans, and glycolipids. As the formation of glucosamine-6-phosphate is the first step for the synthesis of these products, glucosamine may be important in regulating their production; however, the way that the hexosamine biosynthesis pathway is actually regulated, and whether this could be involved in contributing to human disease remains unclear. Present in mucopolysaccharides and in polysaccharides found in bacteria, fungi, higher plants, invertebrates, vertebrates, antibiotics and UDP complexes. Obt. comly. by hydrol. of seashells [CCD] M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G051 Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1].
(E)-Monocrotophos
(e)-monocrotophos, also known as azodrin or dimethyl (E)-3-hydroxy-N-methylcrotonamide, is a member of the class of compounds known as dialkyl phosphates. Dialkyl phosphates are organic compounds containing a phosphate group that is linked to exactly two alkyl chain (e)-monocrotophos is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Within the cell, (e)-monocrotophos is primarily located in the cytoplasm. It can also be found in the extracellular space (e)-monocrotophos is a non-carcinogenic (not listed by IARC) potentially toxic compound. If the compound has been ingested, rapid gastric lavage should be performed using 5\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors (E)-Monocrotophos is an Agricultural insecticide with both systemic and contact actio D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor CONFIDENCE standard compound; INTERNAL_ID 3133 D010575 - Pesticides > D007306 - Insecticides D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals
N-Acetyl-D-glucosamine
N-Acetyl-D-Glucosamine (N-acetlyglucosamine) is a monosaccharide derivative of glucose. Chemically it is an amide between glucosamine and acetic acid. A single N-acetlyglucosamine moiety linked to serine or threonine residues on nuclear and cytoplasmic proteins -O-GlcNAc, is an ubiquitous post-translational protein modification. O-GlcNAc modified proteins are involved in sensing the nutrient status of the surrounding cellular environment and adjusting the activity of cellular proteins accordingly. O-GlcNAc regulates cellular responses to hormones such as insulin, initiates a protective response to stress, modulates a cells capacity to grow and divide, and regulates gene transcription. In humans, it exists in skin, cartilage and blood vessel as a component of hyaluronic acid, and bone tissue, cornea and aorta as a component of keratan sulfate. (PMID 16237703). Monomer of Chitinand is also in the exopolysaccharide from blue-green alga Cyanospira capsulata (CCD) N-Acetyl-D-Glucosamine (N-Acetyl-2-amino-2-deoxy-D-glucose) is a monosaccharide derivative of glucose.
UDP-α-D-N-Acetylglucosamine disodium
Uridine diphosphate-N-acetylglucosamine (uridine 5-diphosphate-GlcNAc, or UDP-Glc-NAc) is an acetylated aminosugar nucleotide. UDP-GlcNAc is the donor substrate for modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (O-GlcNAc). Nutrient sensing in mammals is done through the hexosamine biosynthetic pathway (HSP), which produces uridine 5-diphospho-N-acetylglucosamine (UDP-Glc-NAc) as its end product. Mammals respond to nutrient excess by activating O-GlcNAcylation (addition of O-linked N-acetylglucosamine). O-GlcNAc addition (and removal) is key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. (PMID: 16317114) Due to the chemical makeup of UDP-GlcNAc, it is well positioned to serve as a glucose sensor in that it is a high-energy compound that requires and/or responds to glucose, amino acid, fatty acid and nucleotide metabolism for synthesis. Elevated levels of O-GlcNAc have an effect on insulin-stimulated glucose uptake. (PMID: 12678487). Uridine 5-diphosphate-GlcNAc (UDP-Glc-NAc )respond to nutrient excess to activate O-GlcNAcylation (addition of O-linked N-acetylglucosamine) in the hexosamine signaling pathway (HSP). O-GlcNAc addition (and removal) is key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. (PMID: 16317114) Acquisition and generation of the data is financially supported in part by CREST/JST.
Rhamnetin
Acquisition and generation of the data is financially supported in part by CREST/JST. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].
3,9,15-Tribenzyl-4,10,16-trimethyl-6,12,18-tri(propan-2-yl)-1,7,13-trioxa-4,10,16-triazacyclooctadecane-2,5,8,11,14,17-hexone
[Raw Data] CBA19_Beauvericin_pos_20eV_1-1_01_1374.txt [Raw Data] CBA19_Beauvericin_pos_50eV_1-1_01_1485.txt [Raw Data] CBA19_Beauvericin_pos_10eV_1-1_01_1352.txt [Raw Data] CBA19_Beauvericin_pos_40eV_1-1_01_1376.txt [Raw Data] CBA19_Beauvericin_pos_30eV_1-1_01_1483.txt Beauvericin is a Fusarium mycotoxin. Beauvericin inhibits acyl-CoA: cholesterol acyltransferase (ACAT) activity with an IC50 of 3 μM in an enzyme assay using rat liver microsomes[1]. Beauvericin is a Fusarium mycotoxin. Beauvericin inhibits acyl-CoA: cholesterol acyltransferase (ACAT) activity with an IC50 of 3 μM in an enzyme assay using rat liver microsomes[1].
Glucosamine 6-phosphate
Glucosamine 6-phosphate (CAS: 3616-42-0) is normally produced in endothelial cells via de novo glucosamine synthesis by the enzyme fructose-6-phosphate amidotransferase and the modulation of this pathway by hyperglycemia and glutamine. Glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals.It is a member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. As glucosamine inhibits endothelial nitric oxide synthesis it has important implications for impaired endothelium-dependent relaxation and vascular dysfunction in diabetes mellitus (PMID:11270676, 11842094). Glucosamine 6-phosphate is normally produced in endothelial cells via the de novo glucosamine synthesis by the enzyme fructose-6-phosphate amidotransferase and the modulation of this pathway by hyperglycemia and glutamine. glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals. A member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. As glucosamine inhibits endothelial nitric oxide synthesis it has important implications for impaired endothelium-dependent relaxation and vascular dysfunction in diabetes mellitus. (PMID 11270676, 11842094) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID G021; [MS2] KO008968 KEIO_ID G021
Diguanosine tetraphosphate
P(1),p(4)-bis(5-guanosyl) tetraphosphate, also known as gp4g or gppppg, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. P(1),p(4)-bis(5-guanosyl) tetraphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). P(1),p(4)-bis(5-guanosyl) tetraphosphate can be found in a number of food items such as allium (onion), pasta, rocket salad (sspecies), and vanilla, which makes p(1),p(4)-bis(5-guanosyl) tetraphosphate a potential biomarker for the consumption of these food products. P(1),p(4)-bis(5-guanosyl) tetraphosphate exists in all living species, ranging from bacteria to humans. In humans, p(1),p(4)-bis(5-guanosyl) tetraphosphate is involved in few metabolic pathways, which include azathioprine action pathway, mercaptopurine action pathway, purine metabolism, and thioguanine action pathway. P(1),p(4)-bis(5-guanosyl) tetraphosphate is also involved in several metabolic disorders, some of which include lesch-nyhan syndrome (LNS), myoadenylate deaminase deficiency, mitochondrial DNA depletion syndrome, and xanthine dehydrogenase deficiency (xanthinuria). Diguanosine tetraphosphate is a diguanosine polyphosphate. Diguanosine polyphosphates (GpnGs) are found in human platelets, among a number of dinucleoside polyphosphates, which vary with respect to the number of phosphate groups and the nucleoside moieties; not only diguanosine polyphosphates (GpnG) are found, but also mixed dinucleoside polyphosphates containing one adenosine and one guanosine moiety (ApnG). The vasoactive nucleotides that can be detected in human plasma contain shorter (n=2-3) and longer (n=4-6) polyphosphate chains. GpnGs have not yet been characterized so far with respect to their effects on kidney vasculature. (PMID: 11159696, 11682456, 11115507).
Uridine 5'-diphosphate
Uridine 5-diphosphate, also known as 5-UDP, UDP or uridine diphosphoric acid, belongs to the class of organic compounds known as pyrimidine ribonucleoside diphosphates. These are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. UDP is also classified as a nucleotide diphosphate. It is an ester of pyrophosphoric acid with the nucleoside uridine. UDP consists of a pyrophosphate group, a pentose sugar ribose, and the nucleobase uracil. UDP exists in all living species, ranging from bacteria to plants to humans. In mammals UDP is an important factor in glycogenesis or the formation of glycogen in the liver. Before glucose can be stored as glycogen in the liver and muscles, the enzyme UDP-glucose pyrophosphorylase forms a UDP-glucose unit by combining glucose 1-phosphate with uridine triphosphate, cleaving a pyrophosphate ion in the process. Then, the enzyme glycogen synthase combines UDP-glucose units to form a glycogen chain. UDP is also an important extracellular pyrimidine signaling molecule that mediates diverse biological effects via P1 and P2 purinergic receptors, such as the uptake of thymidine and proliferation of gliomas. UDP plays a key role in the function of Uridine 5-diphospho-glucuronosyltransferases (UDP-glucuronosyltransferases, UGTs) which catalyze the transfer of the glucuronic acid component of UDP-glucuronic acid to a small hydrophobic molecule. UDP-Glucuronosyltransferases are responsible for the process of glucuronidation, a major part of phase II metabolism. The reaction catalyzed by UGT enzymes involves the addition of a glucuronic acid moiety to xenobiotics and is the most important pathway for the human bodys elimination of the most frequently prescribed drugs. It is also the major pathway for foreign chemical (dietary, environmental, pharmaceutical) removal for most drugs, dietary substances, toxins and endogenous substances. UGT is present in humans, other animals, plants, and bacteria. Famously, UGT enzymes are not present in the genus Felis (PMID: 10862526) and this accounts for a number of unusual toxicities in the cat family. Uridine-5-diphosphate, also known as udp or uridine 5-diphosphoric acid, is a member of the class of compounds known as pyrimidine ribonucleoside diphosphates. Pyrimidine ribonucleoside diphosphates are pyrimidine ribonucleotides with diphosphate group linked to the ribose moiety. Uridine-5-diphosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Uridine-5-diphosphate can be found in a number of food items such as napa cabbage, lichee, tea leaf willow, and parsnip, which makes uridine-5-diphosphate a potential biomarker for the consumption of these food products. Uridine-5-diphosphate can be found primarily in blood, as well as in human placenta, prostate and thyroid gland tissues. Uridine-5-diphosphate exists in all living species, ranging from bacteria to humans. In humans, uridine-5-diphosphate is involved in several metabolic pathways, some of which include morphine action pathway, androgen and estrogen metabolism, estrone metabolism, and amino sugar metabolism. Uridine-5-diphosphate is also involved in several metabolic disorders, some of which include 17-beta hydroxysteroid dehydrogenase III deficiency, acute intermittent porphyria, beta ureidopropionase deficiency, and g(m2)-gangliosidosis: variant B, tay-sachs disease. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
N-Acetyl-glucosamine 1-phosphate
N-Acetyl-glucosamine 1-phosphate is an intermediate in aminosugar metabolism. It is a substrate for the enzymes phosphoglucomutase 3 [EC:5.4.2.2 and EC:5.4.2.3] and UDP-N-acteylglucosamine pyrophosphorylase 1 [EC:2.7.7.23] (KEGG). It is involved in UDP-N-acetyl-D-glucosamine biosynthesis and UDP-N-acetylgalactosamine biosynthesis (BioCyc). N-Acetyl-glucosamine 1-phosphate is an intermeiate in the Aminosugars metabolism, a substrate for the enzymes phosphoglucomutase 3 [EC:5.4.2.2 5.4.2.3] and UDP-N-acteylglucosamine pyrophosphorylase 1 [EC:2.7.7.23] (KEGG), in UDP-N-acetyl-D-glucosamine biosynthesis and UDP-N-acetylgalactosamine biosynthesis (BioCyc) [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
N2-acetyllysine
N-alpha-Acetyl-L-lysine also known as Nalpha-Acetyllysine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-alpha-Acetyl-L-lysine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-alpha-Acetyl-L-lysine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-lysine. Unlike L-lysine, acetylated lysine derivatives such as N-alpha-Acetyl-L-lysine are zwitterionic compounds. These are molecules that contains an equal number of positively- and negatively-charged functional groups. N-alpha-Acetyl-L-lysine is found naturally in eukaryotes ranging from yeast to plants to humans. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-alpha-Acetyl-L-lysine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free lysine can also occur. In particular, N-alpha-Acetyl-L-lysine can be biosynthesized from L-lysine and acetyl-CoA via the enzyme known as Lysine N-acetyltransferase. Individuals with hyperlysinaemia due to L-lysine alpha-ketoglutarate reductase deficiency will excrete high levels of N-alpha-Acetyl-L-lysine in their urine (PMID: 116084). L-lysine alpha-ketoglutarate reductase deficiency, if untreated, can lead to neurological and behavioral deficits (PMID: 116084). Many N-acetylamino acids are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). Acetyl-L-lysine is an endogenous metabolite.
Meta-Tyrosine
Meta-Tyrosine, or M-Tyrosine for short, is a natural weed suppressant found in certain Fine fescue grass. M-tyrosine exudes out of the grass plants roots and is then absorbed by neighbouring weed seedlings. The weed plants will either die or be stunted from the toxic acid. DL-m-Tyrosine shows effects on Arabidopsis root growth. Carbidopa combination with DL-m-tyrosine shows a potent hypotensive effect[1][2].
5,6-dihydrouracil
Dihydrouracil belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Dihydrouracil is an intermediate breakdown product of uracil. Dihydrouracil exists in all living organisms, ranging from bacteria to plants to humans. Within humans, dihydrouracil participates in a number of enzymatic reactions. In particular, dihydrouracil can be biosynthesized from uracil; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. The breakdown of uracil is a multistep reaction that leads to the production of beta-alanine. The reaction process begins with the enzyme known as dihydropyrimidine dehydrogenase (DHP), which catalyzes the reduction of uracil into dihydrouracil. Then the enzyme known as dihydropyrimidinase hydrolyzes dihydrouracil into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. There is at least one metabolic disorder that is associated with altered levels of dihydrouracil. In particular, dihydropyrimidinase deficiency is an inborn metabolic disorder that leads to highly increased concentrations of dihydrouracil and 5,6-dihydrothymine, and moderately increased concentrations of uracil and thymine in urine. Dihydropyrimidinase deficiency can cause neurological and gastrointestinal problems in some affected individuals (OMIM: 222748). In particular, patients with dihydropyrimidinase deficiency exhibit a number of neurological abnormalities including intellectual disability, seizures, weak muscle tone (hypotonia), an abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. 3,4-dihydrouracil, also known as 2,4-dioxotetrahydropyrimidine or 5,6-dihydro-2,4-dihydroxypyrimidine, is a member of the class of compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 3,4-dihydrouracil is soluble (in water) and a very weakly acidic compound (based on its pKa). 3,4-dihydrouracil can be found in a number of food items such as colorado pinyon, rocket salad (sspecies), wax gourd, and boysenberry, which makes 3,4-dihydrouracil a potential biomarker for the consumption of these food products. 3,4-dihydrouracil can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as throughout most human tissues. 3,4-dihydrouracil exists in all living organisms, ranging from bacteria to humans. In humans, 3,4-dihydrouracil is involved in a couple of metabolic pathways, which include beta-alanine metabolism and pyrimidine metabolism. 3,4-dihydrouracil is also involved in several metabolic disorders, some of which include UMP synthase deficiency (orotic aciduria), dihydropyrimidinase deficiency, ureidopropionase deficiency, and carnosinuria, carnosinemia. Moreover, 3,4-dihydrouracil is found to be associated with dihydropyrimidine dehydrogenase deficiency and hypertension. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
Indole-3-acetamide
Indole-3-acetamide, also known as 2-(3-indolyl)acetamide or IAM, belongs to the class of organic compounds known as 3-alkylindoles. 3-Alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-acetamide has been detected, but not quantified, in several different foods, such as Alaska wild rhubarbs, lingonberries, butternut squash, pineapples, and agaves. Indole-3-acetamide is also found in the common pea and has been isolated from the etiolated seedlings of the black gram (Phaseolus mungo). Isolated from etiolated seedlings of the black gram (Phaseolus mungo). 1H-Indole-3-acetamide is found in many foods, some of which are elderberry, barley, american cranberry, and herbs and spices. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids KEIO_ID I030 Indole-3-acetamide is a biosynthesis intermediate of indole-3-acetic acid (HY-18569). Indole-3-acetic acid is the most common natural plant growth hormone of the auxin class[1].
L-3-Cyanoalanine
3-cyano-l-alanine, also known as L-beta-cyanoalanine or 3-cyanoalanine, (D)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. 3-cyano-l-alanine is soluble (in water) and an extremely strong acidic compound (based on its pKa). 3-cyano-l-alanine can be found in a number of food items such as conch, abiyuch, rubus (blackberry, raspberry), and lemon thyme, which makes 3-cyano-l-alanine a potential biomarker for the consumption of these food products. 3-cyano-l-alanine exists in all living organisms, ranging from bacteria to humans. L-3-Cyanoalanine, also known as L-beta-cyanoalanine, belongs to the class of organic compounds known as L-alpha-amino acids. These are alpha-amino acids which have the L-configuration of the alpha-carbon atom. L-3-Cyanoalanine is a very strong basic compound (based on its pKa). L-3-Cyanoalanine exists in all living organisms, ranging from bacteria to humans. Outside of the human body, L-3-cyanoalanine has been detected, but not quantified in, several different foods, such as summer savouries, orange bell peppers, red rices, mixed nuts, and green bell peppers. This could make L-3-cyanoalanine a potential biomarker for the consumption of these foods.
Glucobrassicin
Constituent of Brassica and Raphanus subspecies, e.g. rape (Brassica napus variety napus) and Brussels sprouts (Brassica oleracea variety gemmifera). Glucobrassicin is found in many foods, some of which are capers, swede, white cabbage, and common cabbage. Glucobrassicin is found in brassicas. Glucobrassicin is a constituent of Brassica and Raphanus species, e.g. rape (Brassica napus var. napus) and Brussels sprouts (Brassica oleracea var. gemmifera)
Nadide
[Spectral] NAD+ (exact mass = 663.10912) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Cytidine (exact mass = 243.08552) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] NAD+ (exact mass = 663.10912) and NADP+ (exact mass = 743.07545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
N-Acetyl-D-Glucosamine 6-Phosphate
N-Acetyl-D-Glucosamine 6-Phosphate is an intermediate in the metabolism of Aminosugars. It is a substrate for Glucosamine 6-phosphate N-acetyltransferase. [HMDB] N-Acetyl-D-Glucosamine 6-Phosphate is an intermediate in the metabolism of Aminosugars. It is a substrate for Glucosamine 6-phosphate N-acetyltransferase. KEIO_ID A144
(S)-2-Azetidinecarboxylic acid
Azetidine-2-carboxylic acid is an azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. It has a role as a plant metabolite and a teratogenic agent. It is an azetidinecarboxylic acid and an amino acid. A proline analog that acts as a stoichiometric replacement of proline. It causes the production of abnormal proteins with impaired biological activity. (S)-2-Azetidinecarboxylic acid is found in common beet. (S)-2-Azetidinecarboxylic acid is present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the US Present in roots and leaves of Convallaria majalis (lily-of-the-valley). Convallaria majalis is banned by the FDA from food use in the USA. (S)-2-Azetidinecarboxylic acid is found in red beetroot and common beet. An azetidinecarboxylic acid that is azetidine substituted by a carboxy group at position 2. It is a plant non-protein amino acid. KEIO_ID A219 Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. Azetidine-2-carboxylic acid is a non proteinogenic amino acid homologue of proline. Found in common beets. Azetidine-2-carboxylic acid can be misincorporated into proteins in place of proline in many species, including humans. Toxic and teratogenic agent[1][2]. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.
β-D-Fructose 6-phosphate
Fructose 6-phosphate (F6P) belongs to the class of organic compounds known as hexose phosphates. These are carbohydrate derivatives containing a hexose substituted by one or more phosphate groups. F6P is a derivative of fructose, which has been phosphorylated at the 6-hydroxy group. Fructose 6-phosphate is a fundamental metabolite and exists in all living species, ranging from bacteria to plants to humans. The great majority of glucose is converted to fructose 6-phosphate as part of the glycolytic metabolic pathway (glycolysis). Specifically, F6P is produce is produced by the isomerisation of glucose 6-phosphate via the enzyme phosphoglucose isomerase. F6P is in turn further phosphorylated to fructose-1,6-bisphosphate by the enzyme phosphofructokinase-1. Glycolysis is the metabolic pathway that converts glucose into pyruvic acid. The free energy released in this process is used to form ATP and reduced nicotinamide adenine dinucleotide (NADH). In addition to its key involvement in glycolysis, fructose 6-phosphate can also be biosynthesized from glucosamine 6-phosphate via the enzyme glucosamine-6-phosphate isomerase 1. In addition, fructose 6-phosphate and L-glutamine can be converted into glucosamine 6-phosphate and L-glutamic acid through the action of the enzyme glutamine--fructose-6-phosphate aminotransferase. An important intermediate in the Carbohydrates pathway. The interconversion of glucose-6-phosphate and fructose-6-phosphate, the second step of the Embden-Meyerhof glycolytic pathway, is catalyzed by the enzyme phosphoglucose isomerase (PGI). In gluconeogenesis, fructose-6-phosphate is the immediate precursor of glucose-6-phosphate (wikipedia) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID F001
2-Oxoadipic acid
2-Oxoadipic acid is produced from lysine in the cytosol of cells via the saccharopine and the pipecolic acid pathways. Catabolites of hydroxylysine and tryptophan enter these pathways as 2-aminoadipic- -semialdehyde and 2-oxoadipate, respectively. In the matrix of mitochondria, 2-oxoadipate is decarboxylated to glutaryl-CoA by the 2-oxoadipate dehydrogenase complex and then converted to acetyl-CoA. 2-Oxoadipic aciduria is an in-born error of metabolism of lysine, tryptophan, and hydroxylysine, in which abnormal quantities of 2-aminoadipic acid are found in body fluids along with 2-oxoadipic acid. Patients with 2-Oxoadipic acidemias are mentally retarded with hypotonia or seizures. 2-Oxoadipic aciduria can occur in patients with Kearns-Sayre Syndrome, a progressive disorder with onset prior to 20 years of age in which multiple organ systems are affected, including progressive external ophthalmoplegia, retinopathy, and the age of onset, and these are associated classically with abnormalities in cardiac conduction, cerebellar signs, and elevated cerebrospinal fluid protein (PMID: 10655159, 16183823, 11083877). Oxoadipic acid is found to be associated with alpha-aminoadipic aciduria, which is an inborn error of metabolism. Present in pea seedlings KEIO_ID K009 Oxoadipic acid is a key metabolite of the essential amino acids tryptophan and lysine.
2-Methylserine
Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M025
UDP-L-rhamnose
UDP-L-rhamnose is synthesized from UDP-D-glucose. [HMDB]. UDP-L-rhamnose is found in many foods, some of which are maitake, orange bell pepper, common mushroom, and horseradish tree. Acquisition and generation of the data is financially supported in part by CREST/JST. UDP-L-rhamnose is synthesized from UDP-D-glucose.
UDP Xylose
Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
L-Homocysteic acid
L-homocysteic acid is a homocysteic acid with L-configuration. It has a role as a NMDA receptor agonist. It is an enantiomer of a D-homocysteic acid. L-Homocysteic acid is a sulfur-containing glutamic acid analog and a potent NMDA receptor agonist. It is related to homocysteine, a by-product of methionine metabolism. It belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom. Short-term incubation of lymphocytes with homocysteine or its oxidation product homocysteinic acid increased the formation of reactive oxygen species and cell necrosis [HMDB]
Glutaryl-CoA
Glutaryl-CoA is a substrate for 2-oxoglutarate dehydrogenase E1 component (mitochondrial), Dihydrolipoyllysine-residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex (mitochondrial) and Glutaryl-CoA dehydrogenase (mitochondrial). [HMDB] Glutaryl-CoA is a substrate for 2-oxoglutarate dehydrogenase E1 component (mitochondrial), Dihydrolipoyllysine-residue succinyltransferase component of 2- oxoglutarate dehydrogenase complex (mitochondrial) and Glutaryl-CoA dehydrogenase (mitochondrial).
Succinyl-CoA
Succinyl-CoA is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase (EC 1.2.4.2) through decarboxylation, and is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (EC 6.2.1.5). Succinyl-CoA may be an end product of peroxisomal beta-oxidation of dicarboxylic fatty acids; the identification of an apparently specific succinyl-CoA thioesterase (ACOT4, EC 3.1.2.3, hydrolyzes succinyl-CoA) in peroxisomes strongly suggests that succinyl-CoA is formed in peroxisomes. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A, thereby regulating levels of these compounds. (PMID: 16141203) [HMDB]. Succinyl-CoA is found in many foods, some of which are fruits, sea-buckthornberry, pomegranate, and sweet orange. Succinyl-CoA is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase (EC 1.2.4.2) through decarboxylation, and is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (EC 6.2.1.5). Succinyl-CoA may be an end product of peroxisomal beta-oxidation of dicarboxylic fatty acids; the identification of an apparently specific succinyl-CoA thioesterase (ACOT4, EC 3.1.2.3, hydrolyzes succinyl-CoA) in peroxisomes strongly suggests that succinyl-CoA is formed in peroxisomes. Acyl-CoA thioesterases (ACOTs) are a family of enzymes that catalyze the hydrolysis of the CoA esters of various lipids to the free acids and coenzyme A, thereby regulating levels of these compounds. (PMID: 16141203).
Cytidine 5'-monophosphate-N-acetylneuraminic acid
Cytidine 5-monophosphate-N-acetylneuraminic acid (CMP-Neu5Ac), also known as CMP-N-acetyl-β-neuraminic acid, belongs to the class of organic compounds known as pyrimidine nucleotide sugars. These are pyrimidine nucleotides bound to a saccharide derivative through the terminal phosphate group. CMP-Neu5Ac is an extremely weak basic (essentially neutral) compound (based on its pKa). CMP-Neu5Ac donates N-acetylneuraminic acid to the terminal sugar of a ganglioside or glycoprotein. A nucleoside monophosphate sugar which donates N-acetylneuraminic acid to the terminal sugar of a ganglioside or glycoprotein. [HMDB] COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Carbamoyl phosphate
Carbamoyl phosphate is a precursor of both arginine and pyrimidine biosynthesis. It is a labile and potentially toxic intermediate. Carbamoyl phosphate is a molecule that is involved in ridding the body of excess nitrogen in the urea cycle, and also in the synthesis of pyrimidines. It is produced from carbon dioxide, ammonia, and phosphate (from ATP) by the enzyme carbamoyl phosphate synthase. -- Wikipedia. Carbamoyl phosphate is a molecule that is involved in ridding the body of excess nitrogen in the urea cycle, and also in the synthesis of pyrimidines. It is produced from carbon dioxide, ammonia, and phosphate (from ATP) by the enzyme carbamoyl phosphate synthase. -- Wikipedia [HMDB]. Carbamoylphosphate is found in many foods, some of which are pepper (spice), rapini, endive, and rye.
2-Keto-glutaramic acid
deaminated metabolite of glutamine in csf of patients with hepatic coma; intermediate in the detoxification of ammonia in brain; structure [HMDB] deaminated metabolite of glutamine in csf of patients with hepatic coma; intermediate in the detoxification of ammonia in brain; structure.
ADP-Ribosyl-L-arginine
ADP-Ribosyl-L-arginine is the substrate of the protein ADP-ribosylarginine hydrolase (EC-Number 3.2.2.19 ), removing ADP-ribose from arginine residues in ADP ribosylated proteins. Arginine residues in proteins act as acceptors, catalyzing the NAD (+)-dependent activation of the enzyme adenylate cyclase (EC 4.6.1.1). (MetaCyc) [HMDB] ADP-Ribosyl-L-arginine is the substrate of the protein ADP-ribosylarginine hydrolase (EC-Number 3.2.2.19 ), removing ADP-ribose from arginine residues in ADP ribosylated proteins. Arginine residues in proteins act as acceptors, catalyzing the NAD (+)-dependent activation of the enzyme adenylate cyclase (EC 4.6.1.1). (MetaCyc).
Selenium
Selenium-dependent enzymes and selenoprotein P regulate immune and endothelial cell function. (PMID: 16607122). Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). (PMID: 16131327). The trace element nutrient selenium (Se) discharges its well-known nutritional antioxidant activity through the Se-dependent glutathione peroxidases. It also regulates nuclear factor activities by redox mechanisms through the selenoprotein thioredoxin reductases. Converging data from epidemiological, ecological, and clinical studies have shown that Se can decrease the risk for some types of human cancers, especially those of the prostate, lung, and colon. Mechanistic studies have indicated that the methylselenol metabolite pool has many desirable attributes of chemoprevention, targeting both cancer cells and vascular endothelial cells, whereas the hydrogen selenide pool in excess of selenoprotein synthesis can lead to DNA single strand breaks, which may be mediated by some reactive oxygen species. (PMID: 16356132). SePP (selenoprotein P) is the major transporter of Se in the serum. Moreover, in the sanctuary area of the brain, SePP was shown to play a hitherto unexpected role as a local Se storage and recycling protein that directly maintains brain Se levels. Physiologically, it exists as an ion in the body. The function of Se is important in normal brain metabolism, redox regulation, antioxidant defenses, thyroid hormone metabolism and the development of neurodegenerative conditions. (PMID: 15720294). In areas where soils are low in bioavailable selenium (Se), potential Se deficiencies cause health risks for humans. (PMID: 16028492) Dietary selenium comes from cereals, meat, fish, and eggs. The recommended dietary allowance for adults is 55 micrograms per day. D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014131 - Trace Elements Essential dietary component
2-Aminoacrylic acid
Dehydroalanine (or (alpha)-(beta)-di-dehydroalanine) is an uncommon amino acid found in peptides of microbial origin (an unsaturated amino acid). [HMDB] Dehydroalanine (or (alpha)-(beta)-di-dehydroalanine) is an uncommon amino acid found in peptides of microbial origin (an unsaturated amino acid).
Diadenosine triphosphate
Diadenosine triphosphate (AP3A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP3A is a primer for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. AP3A is synthesized in cells by tryptophanyl-tRNA synthetase (WRS); cellular level of AP3A significantly increases after interferon treatment. AP3A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP3A accumulates in cells in response to various physiological factors. AP3A FHIT (Fragile histidine Triad) is a human tumor suppressor gene. The Fhit protein is believed to inhibit tumor growth by inducing apoptosis through interaction with AP3A. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 9187362, 16401072, 12833632, 11896678). Diadenosine triphosphate (AP3A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP3A is a primer for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. AP3A is synthesized in cells by tryptophanyl-tRNA synthetase (WRS); cellular level of AP3A significantly increases after interferon treatment. AP3A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP3A accumulates in cells in response to various physiological factors.
1,3-Dichloropropene
1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. [HMDB] 1,3-Dichloropropene, also known as Telone or simply 1,3-D, is a colorless liquid with a sweet smell. It exists as a mixture of the geometric isomers cis-1,3-dichloropropene and trans-1,3-dichloropropene. It dissolves in water and evaporates easily. It is used mainly in farming as a pesticide, specifically as a preplant fumigant and nematicide. It widely used in the US and other countries, but in the process of being phased out in the European Union. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Methylarsonate
Methylarsonate is used as a contact herbicide in either the monosodium or disodium salt form. It goes by the trade names Weed-E-Rad, Ansar 170 H.C., Ansar 529 H.C., DiTac and others. Methylarsonate is considered only slightly toxic, having an oral LD50 of 2200 mg/Kg for rats. The inhalation risk is greater with LD50 Rats >20 mg. Long term studies with people exposed to organoarsenicals has shown an increased risk of skin cancer (Spiewak, 2001), lung cancer and some liver cancers, although some recent studies have shown some arsenic containing compounds (specifically Arsine trioxide) may have anticarcinogenic properties (Wang, 2001). In mammals, Methylarsonate is also an intermediate in the detoxification of inorganic arsenic. In the arsenate detoxification I pathway, arsenite reacts with S-adenosyl-L-methionine to produce methylarsonate and S-adenosyl-L-homocysteine. Arsenite methyltransferase catalyzes this reaction. Methylarsonate then reacts with 2 glutathione molecules to produce glutathione disulfide and methylarsonite. This reaction is catalyzed by methylarsonate reductase. Methylarsonate is an organic arsenic compound with adverse effects similar to those of arsenic trioxide. Arsenic is found in the environment primarily as arsenate and arsenite species. Arsenate is reduced to arsenite by arsenate reductase and can be subsequently methylated to Methylarsonate. This is then reduced and methylated to Dimethylarsinate, which can excreted and is considerably less toxic to the organism than any of the previous intermediate compounds. Methylarsonate was formerly included in some vitamin and mineral preparations. It was once used to treat tuberculosis, chorea, and other affections in which the cacodylates were used. Methylarsonate is used as a contact herbicide in either the monosodium or disodium salt form. It goes by the trade names Weed-E-Rad, Ansar 170 H.C., Ansar 529 H.C., DiTac and others. Methylarsonate is considered only slightly toxic, having an oral LD50 of 2200 mg/Kg for rats. The inhalation risk is greater with LD50 Rats >20 mg. Long term studies with people exposed to organoarsenicals has shown an increased risk of skin cancer (Spiewak, 2001), lung cancer and some liver cancers, although some recent studies have shown some arsenic containing compounds (specifically Arsine trioxide) may have anticarcinogenic properties (Wang, 2001). In mammals, Methylarsonate is also an intermediate in the detoxification of inorganic arsenic. D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals
Reverse-triiodthyronine
This compound belongs to the family of Phenylpropanoic Acids. These are compounds whose structure contain a benzene ring conjugated to a propanoic acid. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Cryptopleurine
An organic heteropentacyclic compound that is (14aR)-11,12,13,14,14a,15-hexahydro-9H-dibenzo[f,h]pyrido[1,2-b]isoquinoline substituted at positions 2, 3 and 6 by methoxy groups. D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors
Robustine
A quinoline alkaloid that is furo[2,3-b]quinoline substituted by a methoxy and a hydroxy group at positions 4 and 8 respectively. Robustine, a furoquinoline alkaloid, from Dictamnus albus, exhibits inhibitory potency against human phosphodiesterase 5 (hPDE5A) in vitro[1]. Robustine, a furoquinoline alkaloid, from Dictamnus albus, exhibits inhibitory potency against human phosphodiesterase 5 (hPDE5A) in vitro[1].
Calicheamicin
A calcheamicin in which contains 3-O-methyl-alpha-L-rhamnosyl, 2,6-dideoxy-4-thio-beta-D-ribo-hexopyranosyl, and 4-amino-4,6-dideoxy-2-O-[2,4-dideoxy-4-(ethylamino)-3-O-methyl-alpha-L-threo-pentopyranosyl]-alpha-L-idopyranose units and in which the aromatic ring contains an iodo substituent. D009676 - Noxae > D009153 - Mutagens D000970 - Antineoplastic Agents
Benzeneacetonitrile
Isolated from oil of garden cress (Lepidium sativum) and other plant oils. Benzeneacetonitrile is found in many foods, some of which are peppermint, garden tomato (variety), papaya, and kohlrabi. Benzeneacetonitrile is found in garden cress. Benzeneacetonitrile is isolated from oil of garden cress (Lepidium sativum) and other plant oils.
UDP-D-Xylose
Uridine diphosphate xylose is important intermediate in the Nucleotide sugars metabolism and chondroitin sulfate biosynthesis (KEGG); The decarboxylation product of UDPglucuronic acid, which is used for formation of the xylosides of seryl hydroxyl groups in mucoprotein synthesis.; Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a ?-N1-glycosidic bond. Udp-xylose is found in soy bean. Uridine diphosphate xylose is important intermediate in the Nucleotide sugars metabolism and chondroitin sulfate biosynthesis (KEGG). The decarboxylation product of UDPglucuronic acid, which is used for formation of the xylosides of seryl hydroxyl groups in mucoprotein synthesis. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
AP3A-lyophilized
(5-Acetamido-3,4,6-trihydroxyoxan-2-yl)methyl dihydrogen phosphate
Scarlet red
D004396 - Coloring Agents
Threonine
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS DL-Threonine, an essential amino acid, has the potential to treat hypostatic leg ulceration[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1]. L-Threonine is a natural amino acid, can be produced by microbial fermentation, and is used in food, medicine, or feed[1].
FA 14:1
Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells[1]. Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells[1].
3-phenylpropanoic acid
Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
Indoleacetic acid
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division. 3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division.
Benzyl cyanide
A nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a phenyl group.
dihydrouracil
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
N-Acetylhexosamine
N-Acetyl-D-Glucosamine (N-Acetyl-2-amino-2-deoxy-D-glucose) is a monosaccharide derivative of glucose.
Rhamnetin
Rhamnetin is a monomethoxyflavone that is quercetin methylated at position 7. It has a role as a metabolite, an antioxidant and an anti-inflammatory agent. It is a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a rhamnetin-3-olate. Rhamnetin is a natural product found in Ageratina altissima, Ammannia auriculata, and other organisms with data available. A monomethoxyflavone that is quercetin methylated at position 7. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one, also known as 7-methoxyquercetin or quercetin 7-methyl ether, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one can be found in a number of food items such as tea, apple, sweet orange, and parsley, which makes 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4h-chromen-4-one a potential biomarker for the consumption of these food products. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1]. Rhamnetin is a quercetin derivative found in Coriandrum sativum, inhibits secretory phospholipase A2, with antioxidant and anti-inflammatory activity[1].
SERINE
An alpha-amino acid that is alanine substituted at position 3 by a hydroxy group. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported by the Max-Planck-Society L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation. L-Serine ((-)-Serine; (S)-Serine), one of the so-called non-essential amino acids, plays a central role in cellular proliferation.
Indolylmethyl glucosinolate
Annotation level-3 Acquisition and generation of the data is financially supported by the Max-Planck-Society
3-Indoleacetic acid
A monocarboxylic acid that is acetic acid in which one of the methyl hydrogens has been replaced by a 1H-indol-3-yl group. D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; SEOVTRFCIGRIMH-UHFFFAOYSA-N_STSL_0200_3-Indoleacetic Acid_2000fmol_180831_S2_L02M02_62; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division. 3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division.
Indole-3-pyrubate
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants
Oxoadipic acid
An oxo dicarboxylic acid that is adipic acid substituted by an oxo group at position 2. Oxoadipic acid is a key metabolite of the essential amino acids tryptophan and lysine.
3-Indoleacetonitrile
3-Indoleacetonitrile is an endogenous metabolite. 3-Indoleacetonitrile is an endogenous metabolite.
N-Acetyl-D-glucosamine
The D isomer of N-acetylglucosamine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OVRNDRQMDRJTHS-RTRLPJTCSA-N_STSL_0234_N-Acetyl-D-glucosamine_1000fmol_190403_S2_LC02MS02_033; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. N-Acetyl-D-Glucosamine (N-Acetyl-2-amino-2-deoxy-D-glucose) is a monosaccharide derivative of glucose.
2-Hydroxyphenylacetic acid
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). D-(-)-Mandelic acid is a natural compound isolated from bitter almonds. D-(-)-Mandelic acid is a natural compound isolated from bitter almonds.
MONOCROTOPHOS
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D009676 - Noxae > D009153 - Mutagens D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 3133
N6-acetyl-L-lysine
An N(6)-acyl-L-lysine where the N(6)-acyl group is specified as acetyl. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; DTERQYGMUDWYAZ-ZETCQYMHSA-N_STSL_0232_N-epsilon-Acetyl-L-lysine (N6)_8000fmol_190114_S2_LC02MS02_018; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Nepsilon-Acetyl-L-lysine is a derivative of the amino acid lysine.
5,6-Dimethylbenzimidazole
A dimethylbenzimidazole carrying methyl substituents at positions 5 and 6. 5,6-Dimethyl-1H-benzo[d]imidazole is an endogenous metabolite.
indole-3-acetamide
A member of the class of indoles that is acetamide substituted by a 1H-indol-3-yl group at position 2. It is an intermediate in the production of plant hormone indole acetic acid (IAA). D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids Indole-3-acetamide is a biosynthesis intermediate of indole-3-acetic acid (HY-18569). Indole-3-acetic acid is the most common natural plant growth hormone of the auxin class[1].
D-Glucosamine
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1]. Glucosamine (D-Glucosamine) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids, is used as a dietary supplement. Glucosamine also is a natural constituent of glycosaminoglycans in the cartilage matrix and synovial fluid, which when administered exogenously, exerts pharmacological effects on osteoarthritic cartilage and chondrocytes[1].
3,3,5-triiodothyronine
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
Glutaryl-CoA
An omega-carboxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with one of the carboxy groups of glutaric acid.
3-phenylpropanoic acid
A monocarboxylic acid that is propionic acid substituted at position 3 by a phenyl group. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities. Hydrocinnamic acid is the major rhizospheric compound with known growth regulatory activities.
3-IAA
D006133 - Growth Substances > D010937 - Plant Growth Regulators > D007210 - Indoleacetic Acids COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division. 3-Indoleacetic acid (Indole-3-acetic acid) is the most common natural plant growth hormone of the auxin class. It can be added to cell culture medium to induce plant cell elongation and division.
480-66-0
Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].
FR-0140
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
614-75-5
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU). 2-Hydroxyphenylacetic acid is a potential biomarker for the food products, and found to be associated with phenylketonuria (PKU).
trans-1,3-Dichloropropene
D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
Methylarsonic acid
D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals
NICOTINAMIDE-adenine-dinucleotide
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
URIDINE-diphosphATE-N-acetylglucosamine
A UDP-amino sugar having N-acetyl-alpha-D-glucosamine as the amino sugar component.
L-m-Tyrosine
A hydroxyphenylalanine that is L-phenylalanine with a substituent hydroxy group at position 3.
L-Azetidine-2-carboxylic acid
The (S)-enantiomer of azetidine-2-carboxylic acid. L-Azetidine-2-carboxylic acid is an endogenous metabolite. L-Azetidine-2-carboxylic acid is an endogenous metabolite.
Uridine-5-diphosphate
COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
N-Acetyl-D-Glucosamine 6-Phosphate
An N-acyl-D-glucosamine 6-phosphate that is the N-acetyl derivative of D-glucosamine 6-phosphate. It is a component of the aminosugar metabolism.
N-Acetylglucosamine-1-phosphate
A N-acetyl-D-glucosamine 1-phosphate that is 2-deoxy-D-glucopyranose 1-(dihydrogen phosphate) substituted by an acetamido group at position 2. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2-Deoxy-D-ribofuranose 5-phosphate
The furanose form of 2-deoxy-D-ribose 5-phosphate.
phosphonoacetaldehyde
A phosphonic acid consisting of acetaldehyde with the phospho group at the 2-position.