(E)-indol-3-ylacetaldoxime (BioDeep_00001869370)

Main id: BioDeep_00000005042

 


代谢物信息卡片


(E)-indol-3-ylacetaldoxime

化学式: C10H10N2O (174.0793)
中文名称:
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=CC=C2C(=C1)C(=CN2)CC=NO
InChI: InChI=1S/C10H10N2O/c13-12-6-5-8-7-11-10-4-2-1-3-9(8)10/h1-4,6-7,11,13H,5H2/b12-6+

描述信息

同义名列表

1 个代谢物同义名

(E)-indol-3-ylacetaldoxime



数据库引用编号

8 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

0 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AHR, CYP2A6, CYP2C19, CYP2D6, CYP2E1, DDC, IDO1, MAPK3, NIT1, NR3C1, TXN
Peripheral membrane protein 5 CYP11A1, CYP1B1, CYP2E1, GBA1, PRTN3
Endoplasmic reticulum membrane 6 CYP1A2, CYP1B1, CYP2A6, CYP2C19, CYP2D6, CYP2E1
Mitochondrion membrane 1 CYP11A1
Nucleus 6 AHR, MAPK3, MYB, NIT1, NR3C1, TXN
cytosol 9 AHR, DDC, GLS, IDO1, MAPK3, MYB, NR3C1, PRTN3, TXN
trans-Golgi network 1 GBA1
centrosome 1 NR3C1
nucleoplasm 5 AHR, MAPK3, MYB, NR3C1, TXN
RNA polymerase II transcription regulator complex 1 MYB
Cell membrane 2 AVPR1B, PRTN3
Cytoplasmic granule 1 PRTN3
Multi-pass membrane protein 1 AVPR1B
Synapse 2 GLS, NR3C1
glutamatergic synapse 1 MAPK3
Golgi apparatus 4 ATRN, AVPR1B, GBA1, MAPK3
lysosomal membrane 1 GBA1
mitochondrial inner membrane 2 CYP11A1, CYP2E1
Cytoplasm, cytosol 2 GLS, IDO1
Lysosome 1 GBA1
endosome 1 AVPR1B
plasma membrane 5 ATRN, AVPR1B, CYP2C19, MAPK3, PRTN3
Membrane 6 CYP11A1, CYP1B1, CYP2A6, CYP2D6, MYB, NR3C1
caveola 1 MAPK3
extracellular exosome 5 ATRN, DDC, GBA1, PRTN3, TXN
Lysosome membrane 1 GBA1
Lumenal side 1 GBA1
endoplasmic reticulum 2 CYP2D6, GBA1
extracellular space 2 ATRN, PRTN3
lysosomal lumen 1 GBA1
mitochondrion 7 CYP11A1, CYP1B1, CYP2D6, GLS, MAPK3, NIT1, NR3C1
protein-containing complex 2 AHR, NR3C1
intracellular membrane-bounded organelle 7 CYP1A2, CYP1B1, CYP2A6, CYP2C19, CYP2D6, CYP2E1, PRTN3
Microsome membrane 4 CYP1A2, CYP1B1, CYP2D6, CYP2E1
Single-pass type I membrane protein 1 ATRN
Secreted 2 PRTN3, TXN
extracellular region 2 PRTN3, TXN
Single-pass membrane protein 1 CYP2D6
[Isoform 2]: Secreted 1 ATRN
mitochondrial matrix 3 CYP11A1, GLS, NR3C1
Extracellular side 1 PRTN3
transcription regulator complex 1 AHR
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 NR3C1
Early endosome 1 MAPK3
Mitochondrion inner membrane 2 CYP11A1, CYP2E1
Membrane raft 1 PRTN3
Cell junction, focal adhesion 1 MAPK3
Cytoplasm, cytoskeleton, spindle 1 NR3C1
focal adhesion 1 MAPK3
spindle 1 NR3C1
nuclear speck 1 NR3C1
Late endosome 1 MAPK3
chromatin 2 AHR, NR3C1
stereocilium bundle 1 IDO1
Chromosome 1 NR3C1
cytoskeleton 1 MAPK3
[Isoform 1]: Mitochondrion 1 GLS
[Isoform 2]: Mitochondrion 1 NIT1
[Isoform 3]: Secreted 1 ATRN
nuclear envelope 1 MAPK3
Membrane, caveola 1 MAPK3
aryl hydrocarbon receptor complex 1 AHR
Nucleus, nucleoplasm 1 NR3C1
pseudopodium 1 MAPK3
[Isoform 1]: Cytoplasm 1 NIT1
plasma membrane raft 1 PRTN3
endoplasmic reticulum lumen 1 MAPK3
nuclear matrix 1 MYB
azurophil granule lumen 1 PRTN3
cytoplasmic microtubule 1 CYP2A6
[Isoform 1]: Cell membrane 1 ATRN
[Isoform 3]: Mitochondrion 1 GLS
[Isoform Alpha]: Cytoplasm 1 NR3C1
[Glutaminase kidney isoform, mitochondrial 68 kDa chain]: Mitochondrion matrix 1 GLS
[Glutaminase kidney isoform, mitochondrial 65 kDa chain]: Mitochondrion matrix 1 GLS
[Isoform Beta]: Nucleus 1 NR3C1
[Isoform Alpha-B]: Nucleus 1 NR3C1
smooth muscle contractile fiber 1 IDO1
nuclear aryl hydrocarbon receptor complex 1 AHR
cytosolic aryl hydrocarbon receptor complex 1 AHR


文献列表

  • Angela Roman, Joaquín Montenegro, Laura Fraile, Marina Urra, Javier Buezo, Alfonso Cornejo, Jose Fernando Moran, Yolanda Gogorcena. Indole-3-acetaldoxime delays root iron-deficiency responses and modify auxin homeostasis in Medicago truncatula. Plant science : an international journal of experimental plant biology. 2023 Apr; 332(?):111718. doi: 10.1016/j.plantsci.2023.111718. [PMID: 37105378]
  • M Caleb Bagley, Anna N Stepanova, Måns Ekelöf, Jose M Alonso, David C Muddiman. Development of a relative quantification method for infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging of Arabidopsis seedlings. Rapid communications in mass spectrometry : RCM. 2020 Mar; 34(6):e8616. doi: 10.1002/rcm.8616. [PMID: 31658400]
  • Yuki Aoi, Keita Tanaka, Sam David Cook, Ken-Ichiro Hayashi, Hiroyuki Kasahara. GH3 Auxin-Amido Synthetases Alter the Ratio of Indole-3-Acetic Acid and Phenylacetic Acid in Arabidopsis. Plant & cell physiology. 2020 Mar; 61(3):596-605. doi: 10.1093/pcp/pcz223. [PMID: 31808940]
  • Javier Buezo, Raquel Esteban, Alfonso Cornejo, Pedro López-Gómez, Daniel Marino, Alejandro Chamizo-Ampudia, María J Gil, Víctor Martínez-Merino, Jose F Moran. IAOx induces the SUR phenotype and differential signalling from IAA under different types of nitrogen nutrition in Medicago truncatula roots. Plant science : an international journal of experimental plant biology. 2019 Oct; 287(?):110176. doi: 10.1016/j.plantsci.2019.110176. [PMID: 31481210]
  • Henning Frerigmann, Mariola Piślewska-Bednarek, Andrea Sánchez-Vallet, Antonio Molina, Erich Glawischnig, Tamara Gigolashvili, Paweł Bednarek. Regulation of Pathogen-Triggered Tryptophan Metabolism in Arabidopsis thaliana by MYB Transcription Factors and Indole Glucosinolate Conversion Products. Molecular plant. 2016 05; 9(5):682-695. doi: 10.1016/j.molp.2016.01.006. [PMID: 26802248]
  • Hiroyuki Kasahara. Current aspects of auxin biosynthesis in plants. Bioscience, biotechnology, and biochemistry. 2016; 80(1):34-42. doi: 10.1080/09168451.2015.1086259. [PMID: 26364770]
  • Teresa M Müller, Christoph Böttcher, Robert Morbitzer, Cornelia C Götz, Johannes Lehmann, Thomas Lahaye, Erich Glawischnig. TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-Mediated Generation and Metabolic Analysis of Camalexin-Deficient cyp71a12 cyp71a13 Double Knockout Lines. Plant physiology. 2015 Jul; 168(3):849-58. doi: 10.1104/pp.15.00481. [PMID: 25953104]
  • Sandra Irmisch, Philipp Zeltner, Vinzenz Handrick, Jonathan Gershenzon, Tobias G Köllner. The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation. BMC plant biology. 2015 May; 15(?):128. doi: 10.1186/s12870-015-0526-1. [PMID: 26017568]
  • Jeong Im Kim, Whitney L Dolan, Nickolas A Anderson, Clint Chapple. Indole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana. The Plant cell. 2015 May; 27(5):1529-46. doi: 10.1105/tpc.15.00127. [PMID: 25944103]
  • Wenwen Kong, Yong Li, Mengmeng Zhang, Feng Jin, Jing Li. A Novel Arabidopsis microRNA promotes IAA biosynthesis via the indole-3-acetaldoxime pathway by suppressing superroot1. Plant & cell physiology. 2015 Apr; 56(4):715-26. doi: 10.1093/pcp/pcu216. [PMID: 25552472]
  • Pyniarlang L Nongbri, Joy Michal Johnson, Irena Sherameti, Erich Glawischnig, Barbara Ann Halkier, Ralf Oelmüller. Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. Molecular plant-microbe interactions : MPMI. 2012 Sep; 25(9):1186-97. doi: 10.1094/mpmi-03-12-0071-r. [PMID: 22852809]
  • Heather Nonhebel, Youxi Yuan, Hussein Al-Amier, Michael Pieck, Enne Akor, Arifa Ahamed, Jerry D Cohen, John L Celenza, Jennifer Normanly. Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene. Phytochemistry. 2011 Jan; 72(1):37-48. doi: 10.1016/j.phytochem.2010.10.018. [PMID: 21111431]
  • Michael Dalgaard Mikkelsen, Victoria L Fuller, Bjarne Gram Hansen, Majse Nafisi, Carl Erik Olsen, Henrik Bjørn Nielsen, Barbara Ann Halkier. Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2. Planta. 2009 May; 229(6):1209-17. doi: 10.1007/s00425-009-0907-5. [PMID: 19263076]
  • Satoko Sugawara, Shojiro Hishiyama, Yusuke Jikumaru, Atsushi Hanada, Takeshi Nishimura, Tomokazu Koshiba, Yunde Zhao, Yuji Kamiya, Hiroyuki Kasahara. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 2009 Mar; 106(13):5430-5. doi: 10.1073/pnas.0811226106. [PMID: 19279202]
  • Majse Nafisi, Sameer Goregaoker, Christopher J Botanga, Erich Glawischnig, Carl E Olsen, Barbara A Halkier, Jane Glazebrook. Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. The Plant cell. 2007 Jun; 19(6):2039-52. doi: 10.1105/tpc.107.051383. [PMID: 17573535]
  • S Pollmann, A Müller, E W Weiler. Many roads lead to 'auxin': of nitrilases, synthases, and amidases. Plant biology (Stuttgart, Germany). 2006 May; 8(3):326-33. doi: 10.1055/s-2006-924075. [PMID: 16807824]
  • Erich Glawischnig, Bjarne Gram Hansen, Carl Erik Olsen, Barbara Ann Halkier. Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 2004 May; 101(21):8245-50. doi: 10.1073/pnas.0305876101. [PMID: 15148388]
  • Michael Dalgaard Mikkelsen, Peter Naur, Barbara Ann Halkier. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. The Plant journal : for cell and molecular biology. 2004 Mar; 37(5):770-7. doi: 10.1111/j.1365-313x.2004.02002.x. [PMID: 14871316]
  • M Soledade C Pedras, Sabine Montaut. Probing crucial metabolic pathways in fungal pathogens of crucifers: biotransformation of indole-3-acetaldoxime, 4-hydroxyphenylacetaldoxime, and their metabolites. Bioorganic & medicinal chemistry. 2003 Jul; 11(14):3115-20. doi: 10.1016/s0968-0896(03)00241-4. [PMID: 12818674]
  • Peter Naur, Carsten Hørslev Hansen, Søren Bak, Bjarne Gram Hansen, Niels Bjerg Jensen, Hanne Linde Nielsen, Barbara Ann Halkier. CYP79B1 from Sinapis alba converts tryptophan to indole-3-acetaldoxime. Archives of biochemistry and biophysics. 2003 Jan; 409(1):235-41. doi: 10.1016/s0003-9861(02)00567-2. [PMID: 12464264]
  • Yunde Zhao, Anna K Hull, Neeru R Gupta, Kendrick A Goss, José Alonso, Joseph R Ecker, Jennifer Normanly, Joanne Chory, John L Celenza. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes & development. 2002 Dec; 16(23):3100-12. doi: 10.1101/gad.1035402. [PMID: 12464638]
  • M S Pedras, S Montaut, Y Xu, A Q Khan, A Loukaci. Assembling the biosynthetic puzzle of crucifer metabolites: indole-3-acetaldoxime is incorporated efficiently into phytoalexins but glucobrassicin is not. Chemical communications (Cambridge, England). 2001 Sep; ?(17):1572-3. doi: 10.1039/b103442c. [PMID: 12240387]