Subcellular Location: I(KACh) inward rectifier potassium channel complex

Found 85 associated metabolites.

2 associated genes. KCNJ3, KCNJ5

Aconitine

(1S,2R,3R,4R,5R,6S,7S,8R,9R,13R,14R,16S,17S,18R)-8-(acetyloxy)-11-ethyl-5,7,14-trihydroxy-6,16,18-trimethoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1^{2,5}.0^{1,10}.0^{3,8}.0^{13,17}]nonadecan-4-yl benzoate

C34H47NO11 (645.3149)


D049990 - Membrane Transport Modulators > D062687 - Sodium Channel Agonists > D061585 - Voltage-Gated Sodium Channel Agonists D007155 - Immunologic Factors Aconitine is a diterpenoid that is 20-ethyl-3alpha,13,15alpha-trihydroxy-1alpha,6alpha,16beta-trimethoxy-4-(methoxymethyl)aconitane-8,14alpha-diol having acetate and benzoate groups at the 8- and 14-positions respectively. It is functionally related to an aconitane. Aconitine is a natural product found in Aconitum anthora, Aconitum napellus, and other organisms with data available. Aconitine is a plant toxin found in species of wolfsbane (Aconitum genus). It is a neurotoxin previously used as an antipyretic and analgesic, and still has some limited application in herbal medicine. (L1235). The toxic effects of Aconitine have been tested in a variety of different test animals, including mammals (dog, cat, guinea pig, mouse, rat and rabbit), frogs and pigeons. Depending on the route of exposure, the observed toxic effects were: local anesthetic effect, diarrhea, convulsions, arrhythmias or death. According to a review of different reports of aconite poisoning in humans the following clinical features were observed: Neurological, Cardiovascular, Ventricular arrhythmias, Gastrointestinal. A C19 norditerpenoid alkaloid (DITERPENES) from the root of ACONITUM; DELPHINIUM and larkspurs. It activates VOLTAGE-GATED SODIUM CHANNELS. It has been used to induce ARRHYTHMIAS in experimental animals and it has anti-inflammatory and anti-neuralgic properties. See also: Aconitum coreanum root (part of). Origin: Plant; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2309

   

Ginsenoside

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O14 (800.4922)


Ginsenoside Rf is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid, a 20-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside Rf is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and other organisms with data available. See also: Asian Ginseng (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside Rg1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as a neuroprotective agent and a pro-angiogenic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a tetracyclic triterpenoid, a ginsenoside and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rg1 Appears to be most abundant in Panax ginseng (Chinese/Korean Ginseng). It improves spatial learning and increase hippocampal synaptophysin level in mice, plus demonstrates estrogen-like activity. Ginsenoside RG1 is a natural product found in Panax vietnamensis, Panax ginseng, and Panax notoginseng with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. D002491 - Central Nervous System Agents Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.

   

Apigenin

5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O5 (270.0528)


Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Phorbol

1,1a,1b,4,4a,7a,7b,8,9,9a-Decahydro-4a,7b,9,9a-tetrahydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-5H-cyclopropa(3,4)benz(1,2-e)azulen-5-one (1aR-(1aalpha,1bbeta,4abeta,7aalpha,7balpha,8alpha,9beta,9aalpha))-

C20H28O6 (364.1886)


Phorbol is a white solid. (NTP, 1992) Phorbol is a diterpenoid with the structure of tigliane hydroxylated at C-4, -9, -12(beta), -13 and -20, with an oxo group at C-3 and unsaturation at the 1- and 6-positions. It is a tetracyclic diterpenoid, an enone, a cyclic ketone, a tertiary alcohol and a tertiary alpha-hydroxy ketone. It derives from a hydride of a tigliane. Phorbol is a natural product found in Euphorbia tirucalli, Croton tiglium, and Rehmannia glutinosa with data available. Phorbol is a natural, plant-derived organic compound. It is a member of the tigliane family of diterpenes. Phorbol was first isolated in 1934 as the hydrolysis product of croton oil, which is derived from the seeds of the purging croton, Croton tiglium. The structure of phorbol was determined in 1967. It is very soluble in most polar organic solvents, as well as in water. Phorbol is a highly toxic diterpene, whose esters have important biological properties. Phorbol is a highly toxic diterpene, whose esters have important biological properties.

   

Karacoline

(1S,2R,3R,4S,5S,6S,8S,9S,13R,16S,17R)-11-ethyl-6-methoxy-13-methyl-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecane-4,8,16-triol

C22H35NO4 (377.2566)


Karakoline is an organonitrogen heterocyclic compound that is aconitane bearing hydroxy groups at the 1alpha, 8, and 14alpha positions and substituted at on the nitrogen and at positions 4 and 16beta by ethyl, methyl, and methoxy groups, respectively. It has a role as a phytotoxin. It is a tertiary amino compound, a tertiary alcohol, a secondary alcohol, an alkaloid, an organonitrogen heterocyclic compound and a bridged compound. It derives from a hydride of an aconitane. Carmicheline is a natural product found in Aconitum karakolicum, Euglena gracilis, and Aconitum carmichaelii with data available. Origin: Plant; Formula(Parent): C22H35NO4; Bottle Name:Karakoline hydrochloride; PRIME Parent Name:Karakoline; PRIME in-house No.:V0337; SubCategory_DNP: Terpenoid alkaloids, Diterpene alkaloid, Aconitum alkaloid

   

Nortriptyline

methyl({3-[(2E)-tricyclo[9.4.0.0^{3,8}]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-ylidene]propyl})amine

C19H21N (263.1674)


Nortriptyline is an organic tricyclic compound that is 10,11-dihydro-5H-dibenzo[a,d][7]annulene substituted by a 3-(methylamino)propylidene group at position 5. It is an active metabolite of amitriptyline. It has a role as a drug metabolite, an antidepressant, an adrenergic uptake inhibitor, an analgesic, an antineoplastic agent and an apoptosis inducer. It is an organic tricyclic compound and a secondary amine. It is functionally related to an amitriptyline. It derives from a hydride of a dibenzo[a,d][7]annulene. Nortriptyline hydrochloride, the active metabolite of [amitriptyline], is a tricyclic antidepressant (TCA). It is used in the treatment of major depression and is also used off-label for chronic pain and other conditions. Nortriptyline is a Tricyclic Antidepressant. Nortriptyline is a tricyclic antidepressant that is also used in smoking cessation. Nortriptyline can cause mild and transient serum enzyme elevations and is rare cause of clinically apparent acute and chronic cholestatic liver injury. Nortriptyline is a natural product found in Senegalia berlandieri with data available. Nortriptyline is a tricyclic antidepressant agent used for short-term treatment of various forms of depression. Nortriptyline blocks the norepinephrine presynaptic receptors, thereby blocking the reuptake of this neurotransmitter and raising the concentration in the synaptic cleft in the CNS. Nortriptyline also binds to alpha-adrenergic, histaminergic and cholinergic receptors. Long-term treatment with nortriptyline produces a downregulation of adrenergic receptors due to the increased stimulation of these receptors. Nortriptyline hydrochloride, the N-demethylated active metabolite of amitriptyline, is a dibenzocycloheptene-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, nortriptyline does not affect mood or arousal, but may cause sedation. In depressed individuals, nortriptyline exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. Secondary amine TCAs, such as nortriptyline, are more potent inhibitors of norepinephrine reuptake than tertiary amine TCAs, such as amitriptyline. TCAs also down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine-H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. See toxicity section below for a complete listing of side effects. Nortriptyline exerts less anticholinergic and sedative side effects compared to the tertiary amine TCAs, amitriptyline and clomipramine. Nortriptyline may be used to treat depression, chronic pain (unlabeled use), irritable bowel syndrome (unlabeled use), diabetic neuropathy (unlabeled use), post-traumatic stress disorder (unlabeled use), and for migraine prophylaxis (unlabeled use). A metabolite of AMITRIPTYLINE that is also used as an antidepressive agent. Nortriptyline is used in major depression, dysthymia, and atypical depressions. See also: Nortriptyline Hydrochloride (active moiety of). Nortriptyline hydrochloride, the N-demethylated active metabolite of amitriptyline, is a dibenzocycloheptene-derivative tricyclic antidepressant (TCA). TCAs are structurally similar to phenothiazines. They contain a tricyclic ring system with an alkyl amine substituent on the central ring. In non-depressed individuals, nortriptyline does not affect mood or arousal, but may cause sedation. In depressed individuals, nortriptyline exerts a positive effect on mood. TCAs are potent inhibitors of serotonin and norepinephrine reuptake. Secondary amine TCAs, such as nortriptyline, are more potent inhibitors of norepinephrine reuptake than tertiary amine TCAs, such as amitriptyline. TCAs also down-regulate cerebral cortical β-adrenergic receptors and sensitize post-synaptic serotonergic receptors with chronic use. The antidepressant effects of TCAs are thought to be due to an overall increase in serotonergic neurotransmission. TCAs also block histamine-H1 receptors, α1-adrenergic receptors and muscarinic receptors, which accounts for their sedative, hypotensive and anticholinergic effects (e.g. blurred vision, dry mouth, constipation, urinary retention), respectively. See toxicity section below for a complete listing of side effects. Nortriptyline exerts less anticholinergic and sedative side effects compared to the tertiary amine TCAs, amitriptyline and clomipramine. Nortriptyline may be used to treat depression, chronic pain (unlabeled use), irritable bowel syndrome (unlabeled use), diabetic neuropathy (unlabeled use), post-traumatic stress disorder (unlabeled use), and for migraine prophylaxis (unlabeled use). An organic tricyclic compound that is 10,11-dihydro-5H-dibenzo[a,d][7]annulene substituted by a 3-(methylamino)propylidene group at position 5. It is an active metabolite of amitriptyline. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators CONFIDENCE standard compound; EAWAG_UCHEM_ID 3692 Nortriptyline (Desmethylamitriptyline), the main active metabolite of Amitriptyline, is a tricyclic antidepressant. Nortriptyline is a potent autophagy inhibitor and has anticancer effects[1][2][3]. N

   

napelline

(1R,2R,4S,5S,7R,8R,9R,13R,16S,17R)-11-ethyl-13-methyl-6-methylidene-11-azahexacyclo[7.7.2.15,8.01,10.02,8.013,17]nonadecane-4,7,16-triol

C22H33NO3 (359.246)


LSM-1634 is a kaurane diterpenoid. Napelline is a natural product found in Aconitum karakolicum, Aconitum baicalense, and other organisms with data available. 12-Epinapelline is a kaurane diterpenoid. 12-Epinapelline is a natural product found in Aconitum napellus, Delphinium leroyi, and other organisms with data available. Annotation level-1 12-Epinapelline is a diterpene alkaloid isolated from Aconitum baikalense. 12-Epinapelline exhibits Anti-inflammatory activity and stimulates the growth of colonies from fibroblast precursors[1][2]. 12-Epinapelline is a diterpene alkaloid isolated from Aconitum baikalense. 12-Epinapelline exhibits Anti-inflammatory activity and stimulates the growth of colonies from fibroblast precursors[1][2].

   

Carbofuran

1-[(2,2-dimethyl-2,3-dihydro-1-benzofuran-7-yl)oxy]-N-methylmethanimidic acid

C12H15NO3 (221.1052)


CONFIDENCE standard compound; INTERNAL_ID 779; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7935; ORIGINAL_PRECURSOR_SCAN_NO 7933 CONFIDENCE standard compound; INTERNAL_ID 779; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3474; ORIGINAL_PRECURSOR_SCAN_NO 3473 CONFIDENCE standard compound; INTERNAL_ID 779; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7945; ORIGINAL_PRECURSOR_SCAN_NO 7944 CONFIDENCE standard compound; INTERNAL_ID 779; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3475; ORIGINAL_PRECURSOR_SCAN_NO 3474 CONFIDENCE standard compound; INTERNAL_ID 779; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7942; ORIGINAL_PRECURSOR_SCAN_NO 7940 CONFIDENCE standard compound; INTERNAL_ID 779; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3451; ORIGINAL_PRECURSOR_SCAN_NO 3450 CONFIDENCE standard compound; INTERNAL_ID 779; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7941; ORIGINAL_PRECURSOR_SCAN_NO 7940 CONFIDENCE standard compound; INTERNAL_ID 779; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7946; ORIGINAL_PRECURSOR_SCAN_NO 7943 CONFIDENCE standard compound; INTERNAL_ID 779; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3456; ORIGINAL_PRECURSOR_SCAN_NO 3455 CONFIDENCE standard compound; INTERNAL_ID 779; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3454; ORIGINAL_PRECURSOR_SCAN_NO 3452 CONFIDENCE standard compound; INTERNAL_ID 779; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3511; ORIGINAL_PRECURSOR_SCAN_NO 3510 CONFIDENCE standard compound; INTERNAL_ID 779; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7918; ORIGINAL_PRECURSOR_SCAN_NO 7917 D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor Systemic agricultural insecticide, acaricide and nematocid CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1084 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3040 D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Aldosterone

(1S,2R,10S,11S,14S,15R,17S)-17-hydroxy-14-(2-hydroxyacetyl)-2-methyl-5-oxotetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-ene-15-carbaldehyde

C21H28O5 (360.1937)


Aldosterone is a steroid hormone produced by the adrenal cortex in the adrenal gland to regulate sodium and potassium balance in the blood. Specifically it regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. It is synthesized from cholesterol by aldosterone synthase, which is absent in other sections of the adrenal gland. It is the sole endogenous member of the class of mineralocorticoids. Aldosterone increases the permeability of the apical (luminal) membrane of the kidneys collecting ducts to potassium and sodium and activates their basolateral Na+/K+ pumps, stimulating ATP hydrolysis, reabsorbing sodium (Na+) ions and water into the blood, and excreting potassium (K+) ions into the urine. [HMDB] Aldosterone is a steroid hormone produced by the adrenal cortex in the adrenal gland to regulate sodium and potassium balance in the blood. Specifically, it regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium. It is synthesized from cholesterol by aldosterone synthase, which is absent in other sections of the adrenal gland. It is the sole endogenous member of the class of mineralocorticoids. Aldosterone increases the permeability of the apical (luminal) membrane of the kidneys collecting ducts to potassium and sodium and activates their basolateral Na+/K+ pumps, stimulating ATP hydrolysis, reabsorbing sodium (Na+) ions and water into the blood, and excreting potassium (K+) ions into the urine. H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones CONFIDENCE standard compound; INTERNAL_ID 2819 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Morphine-3-glucuronide

(2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-{[(1S,5R,13R,14S,17R)-14-hydroxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraen-10-yl]oxy}oxane-2-carboxylic acid

C23H27NO9 (461.1686)


Morphine-3-glucuronide belongs to the family of Morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants

   

Baclofen

beta-(Aminomethyl)-4-chlorobenzenepropanoic acid

C10H12ClNO2 (213.0557)


Baclofen is a gamma-amino-butyric acid (GABA) derivative used as a skeletal muscle relaxant. Baclofen stimulates GABA-B receptors leading to decreased frequency and amplitude of muscle spasms. It is especially useful in treating muscle spasticity associated with spinal cord injury. It appears to act primarily at the spinal cord level by inhibiting spinal polysynaptic afferent pathways and, to a lesser extent, monosynaptic afferent pathways. M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents (R)-Baclofen (Arbaclofen) is a selective GABAB receptor agonist[1]. Baclofen, a lipophilic derivative of γ-aminobutyric acid (GABA), is an orally active, selective metabotropic GABAB receptor (GABABR) agonist. Baclofen mimics the action of GABA and produces slow presynaptic inhibition through the GABAB receptor. Baclofen has high blood brain barrier penetrance. Baclofen has the potential for muscle spasticity research[1][2][3].

   

Roxithromycin

(3R,4S,5S,6R,7R,9R,11S,12R,13S,14R)-6-{[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-14-ethyl-7,12,13-trihydroxy-4-{[(2R,4R,5S,6S)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy}-3,5,7,9,11,13-hexamethyl-10-(2,4,7-trioxa-1-azaoctan-1-ylidene)-1-oxacyclotetradecan-2-one

C41H76N2O15 (836.5245)


Roxithromycin is a semi-synthetic macrolide antibiotic. It is very similar in composition, chemical structure and mechanism of action to erythromycin, azithromycin, or clarithromycin. Roxithromycin prevents bacteria from growing, by interfering with their protein synthesis. Roxithromycin binds to the subunit 50S of the bacterial ribosome, and thus inhibits the translocation of peptides. Roxithromycin has similar antimicrobial spectrum as erythromycin, but is more effective against certain gram-negative bacteria, particularly Legionella pneumophila. It can treat respiratory tract, urinary and soft tissue infections. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

Aminosalicylic Acid

p-Aminosalicylic acid, monosodium salt, dihydrate

C7H7NO3 (153.0426)


Aminosalicylic Acid is only found in individuals that have used or taken this drug. It is an antitubercular agent often administered in association with isoniazid. The sodium salt of the drug is better tolerated than the free acid. [PubChem]There are two mechanisms responsible for aminosalicylic acids bacteriostatic action against Mycobacterium tuberculosis. Firstly, aminosalicylic acid inhibits folic acid synthesis (without potentiation with antifolic compounds). The binding of para-aminobenzoic acid to pteridine synthetase acts as the first step in folic acid synthesis. Aminosalicylic acid binds pteridine synthetase with greater affinity than para-aminobenzoic acid, effectively inhibiting the synthesis of folic acid. As bacteria are unable to use external sources of folic acid, cell growth and multiplication slows. Secondly, aminosalicylic acid may inhibit the synthesis of the cell wall component, mycobactin, thus reducing iron uptake by M. tuberculosis. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AA - Aminosalicylic acid and derivatives D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent COVID info from PDB, Protein Data Bank KEIO_ID A129 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Astemizole

1-[(4-fluorophenyl)methyl]-N-{1-[2-(4-methoxyphenyl)ethyl]piperidin-4-yl}-1H-1,3-benzodiazol-2-amine

C28H31FN4O (458.2482)


Astemizole is a long-acting, non-sedating second generation antihistamine used in the treatment of allergy symptoms. It was withdrawn from market by the manufacturer in 1999 due to the potential to cause arrhythmias at high doses, especially when when taken with CYP inhibitors or grapefruit juice. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Astemizole (R 43512), a second-generation antihistamine agent to diminish allergic symptoms with a long duration of action, is a histamine H1-receptor antagonist, with an IC50 of 4 nM. Astemizole also shows potent hERG K+ channel blocking activity with an IC50 of 0.9 nM. Astemizole has antipruritic effects[1][2].

   

Propoxyphene

(3R)-4-(dimethylamino)-3-methyl-1,2-diphenylbutan-2-yl propanoate

C22H29NO2 (339.2198)


Propoxyphene is only found in individuals that have used or taken this drug. It is a narcotic analgesic structurally related to methadone. Only the dextro-isomer has an analgesic effect; the levo-isomer appears to exert an antitussive effect. [PubChem]Propoxyphene acts as a weak agonist at OP1, OP2, and OP3 opiate receptors within the central nervous system (CNS). Propoxyphene primarily affects OP3 receptors, which are coupled with G-protein receptors and function as modulators, both positive and negative, of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. Opioids such as propoxyphene also inhibit the release of vasopressin, somatostatin, insulin, and glucagon. Opioids close N-type voltage-operated calcium channels (OP2-receptor agonist) and open calcium-dependent inwardly rectifying potassium channels (OP3 and OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AC - Diphenylpropylamine derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Flecainide

N-(piperidin-2-ylmethyl)-2,5-bis(2,2,2-trifluoroethoxy)benzamide

C17H20F6N2O3 (414.1378)


A potent anti-arrhythmia agent, effective in a wide range of ventricular and atrial arrhythmias and tachycardias. Paradoxically, however, in myocardial infarct patients with either symptomatic or asymptomatic arrhythmia, flecainide exacerbates the arrhythmia and is not recommended for use in these patients. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3020 CONFIDENCE standard compound; INTERNAL_ID 2276 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Maprotiline

methyl(3-{tetracyclo[6.6.2.0²,⁷.0⁹,¹⁴]hexadeca-2,4,6,9,11,13-hexaen-1-yl}propyl)amine

C20H23N (277.183)


Maprotiline is a tetracyclic antidepressant with similar pharmacological properties to tricyclic antidepressants (TCAs). Similar to TCAs, maprotiline inhibits neuronal norepinephrine reuptake, possesses some anticholinergic activity, and does not affect monoamine oxidase activity. It differs from TCAs in that it does not appear to block serotonin reuptake. Maprotiline may be used to treat depressive affective disorders, including dysthymic disorder (depressive neurosis) and major depressive disorder. Maprotiline is effective at reducing symptoms of anxiety associated with depression. CONFIDENCE standard compound; INTERNAL_ID 835; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8225; ORIGINAL_PRECURSOR_SCAN_NO 8223 CONFIDENCE standard compound; INTERNAL_ID 835; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8170; ORIGINAL_PRECURSOR_SCAN_NO 8168 CONFIDENCE standard compound; INTERNAL_ID 835; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8212; ORIGINAL_PRECURSOR_SCAN_NO 8209 CONFIDENCE standard compound; INTERNAL_ID 835; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8187; ORIGINAL_PRECURSOR_SCAN_NO 8185 CONFIDENCE standard compound; INTERNAL_ID 835; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8233; ORIGINAL_PRECURSOR_SCAN_NO 8231 CONFIDENCE standard compound; INTERNAL_ID 835; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8247; ORIGINAL_PRECURSOR_SCAN_NO 8245 N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3317 CONFIDENCE standard compound; INTERNAL_ID 2221 D049990 - Membrane Transport Modulators

   

Propafenone

1-(2-(2-Hydroxy-3-(propylamino)propoxy)phenyl)-3-phenyl-1-propanone

C21H27NO3 (341.1991)


Propafenone is only found in individuals that have used or taken this drug. It is an antiarrhythmia agent that is particularly effective in ventricular arrhythmias. It also has weak beta-blocking activity. The drug is generally well tolerated. [PubChem]The electrophysiological effect of propafenone manifests itself in a reduction of upstroke velocity (Phase 0) of the monophasic action potential. In Purkinje fibers, and to a lesser extent myocardial fibers, propafenone reduces the fast inward current carried by sodium ions, which is responsible for the drugs antiarrhythmic actions. Diastolic excitability threshold is increased and effective refractory period prolonged. Propafenone reduces spontaneous automaticity and depresses triggered activity. At very high concentrations in vitro, propafenone can inhibit the slow inward current carried by calcium but this calcium antagonist effect probably does not contribute to antiarrhythmic efficacy. C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents CONFIDENCE standard compound; INTERNAL_ID 2285 D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Propafenone (SA-79), a sodium-channel blocker, acts an antiarrhythmic agent. Propafenone also has high affinity for the β receptor (IC50=32 nM)[1]. Propafenone blocks the transient outward current (Ito) and the sustained delayed rectifier K current (Isus) with IC50 values of 4.9?μm and 8.6?μm, respectively[2]. Propafenone suppresses esophageal cancer proliferation through inducing mitochondrial dysfunction and induce apoptosis[3].

   

Nefazodone

1-{3-[4-(3-chlorophenyl)piperazin-1-yl]propyl}-3-ethyl-4-(2-phenoxyethyl)-4,5-dihydro-1H-1,2,4-triazol-5-one

C25H32ClN5O2 (469.2244)


Nefazodone hydrochloride (trade name Serzone) is an antidepressant drug marketed by Bristol-Myers Squibb. Its sale was discontinued in 2003 in some countries, due to the small possibility of hepatic (liver) injury, which could lead to the need for a liver transplant, or even death. The incidence of severe liver damage is approximately 1 in 250,000 to 300,000 patient-years. On May 20, 2004, Bristol-Myers Squibb discontinued the sale of Serzone in the United States. [Wikipedia] D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D000068760 - Serotonin and Noradrenaline Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D049990 - Membrane Transport Modulators Nefazodone is an orally active phenylpiperazine antidepressant. Nefazodone can potently and selectively block postsynaptic 5-HT2A receptors, and moderately inhibit 5-HT and noradrenaline reuptake. Nefazodone can also relieve the adverse effects of stress on the the immune system of mice. Nefazodone has a high affinity for CYP3A4 isoenzyme, which indicates that it has certain risk of agent-agent interaction. Nefazodone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83366-66-9 (retrieved 2024-10-16) (CAS RN: 83366-66-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Dichlorphenamide

4,5-Dichloro-benzene-1,3-disulphonic acid diamide

C6H6Cl2N2O4S2 (303.9146)


Dichlorphenamide is only found in individuals that have used or taken this drug. It is a carbonic anhydrase inhibitor that is used in the treatment of glaucoma. [PubChem]Carbonic anhydrase inhibitors reduce intraocular pressure by partially suppressing the secretion of aqueous humor (inflow), although the mechanism by which they do this is not fully understood. Evidence suggests that HCO3- ions are produced in the ciliary body by hydration of carbon dioxide under the influence of carbonic anhydrase and diffuse into the posterior chamber which contains more Na+ and HCO3- ions than does plasma and consequently is hypertonic. Water is then attracted to the posterior chamber by osmosis, resulting in a drop in pressure. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor

   

Pentamidine

American pharmaceutical partners brand 1 OF pentamidine isethionate

C19H24N4O2 (340.1899)


Pentamidine is only found in individuals that have used or taken this drug. It is an antiprotozoal agent effective in trypanosomiasis, leishmaniasis, and some fungal infections; used in treatment of pneumocystis pneumonia in HIV-infected patients. It may cause diabetes mellitus, central nervous system damage, and other toxic effects. [PubChem]The mode of action of pentamidine is not fully understood. It is thought that the drug interferes with nuclear metabolism producing inhibition of the synthesis of DNA, RNA, phospholipids, and proteins. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

Phosphatidylcholine O-34:2

Phosphorodithioic acid, O,O-diethyl S-((ethylthio)methyl) ester

C7H17O2PS3 (260.0128)


Phosphatidylcholine O-34:2, also known as Thimet or O,O-Diethyl S-ethylmercaptomethyl dithiophosphate, is classified as a member of the Dithiophosphate O-esters. Dithiophosphate O-esters are o-ester derivatives of dithiophosphates, with the general structure RSP(O)(O)=S (R = organyl group). Phosphatidylcholine O-34:2 is a non-carcinogenic (not listed by IARC) potentially toxic compound D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Sufentanil

N-[4-(methoxymethyl)-1-[2-(thiophen-2-yl)ethyl]piperidin-4-yl]-N-phenylpropanamide

C22H30N2O2S (386.2028)


Sufentanil is only found in individuals that have used or taken this drug. It is an opioid analgesic that is used as an adjunct in anesthesia, in balanced anesthesia, and as a primary anesthetic agent. [PubChem]Opiate receptors are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine and noradrenaline is inhibited. Opioids also inhibit the release of vasopressin, somatostatin, insulin and glucagon. Sufentanils analgesic activity is, most likely, due to its conversion to morphine. Opioids open calcium-dependent inwardly rectifying potassium channels (OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AH - Opioid anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Normorphine

(1S,5R,13R,14S,17R)-12-oxa-4-azapentacyclo[9.6.1.0^{1,13}.0^{5,17}.0^{7,18}]octadeca-7,9,11(18),15-tetraene-10,14-diol

C16H17NO3 (271.1208)


Normorphine, also known as desmethylmorphine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. The compound has relatively little opioid activity in its own right, but is a useful intermediate which can be used to produce both opioid antagonists such as nalorphine, and also potent opioid agonists such as N-phenethylnormorphine. Normorphine is a very strong basic compound (based on its pKa). Its formation from morphine is catalyzed by the liver enzymes CYP3A4 and CYP2C8. Normorphine is a controlled substance listed under the Single Convention On Narcotic Drugs 1961 and the laws in various states implementing it; for example, in the United States, it is a Schedule I Narcotic controlled substance, with an ACSCN of 9313 and an annual aggregate manufacturing quota of 18 grams in 2014, unchanged from the prior year. Normorphine is an opiate analogue, the N-demethylated derivative of morphine, that was first described in the 1950s when a large group of N-substituted morphine analogues were characterized for activity. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist

   

3b-Allotetrahydrocortisol

2-hydroxy-1-[(1S,2S,5S,7S,10S,11S,14R,15S,17S)-5,14,17-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]ethan-1-one

C21H34O5 (366.2406)


3b-Allotetrahydrocortisol is one of the tetrahydrometabolites of cortisol. The 11-beta-hydroxysteroid dehydrogenase (11beta-HSD) is responsible for the interconversion of both the hormonally inactive cortisone and the active cortisol, which has implications in the pathogenesis of numerous diseases, as reflected in the ratio of tetrahydrometabolites of cortisol. (PMID: 16310418). The daily excretion of allotetrahydrocortisol is above normal in hyperthyroid patients; In contrast, in hyperthyroidism the excretion is diminished below normal levels to approximately half that of normal subjects. (PMID 13906284). A decreased activity of the enzyme 11beta-HSD produces a pattern of urinary steroid metabolites with an abnormal elevation of tetrahydrocortisol and allo-tetrahydrocortisol compared to tetrahydrocortisone; this pattern of steroid excretion is essential for the diagnosis of the syndrome of apparent mineralocorticoid excess type 1. (PMID: 8834992). 3b-Allotetrahydrocortisol is one of the tetrahydrometabolites of cortisol. The 11-beta-hydroxysteroid dehydrogenase (11beta-HSD) is responsible for the interconversion of both the hormonally inactive cortisone and the active cortisol, which has implications in the pathogenesis of numerous diseases, as reflected in the ratio of tetrahydrometabolites of cortisol. (PMID: 16310418) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].

   

Morphine-6-glucuronide

(2S,3S,4S,5R,6R)-3,4,5-trihydroxy-6-{[(1S,5R,13R,14S,17R)-10-hydroxy-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraen-14-yl]oxy}oxane-2-carboxylic acid

C23H27NO9 (461.1686)


Morphine-6-glucuronide (M6G) is a major active metabolite of morphine, and as such is the molecule responsible for much of the pain-relieving effects of morphine (and thus heroin). M6G is formed from morphine by the enzyme UDP-Glucuronosyltransferase-2B7 (UGT2B7). M6G can accumulate to toxic levels in kidney failure. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate

   

Acetylcholine

Bournonville brand OF acetylcholine chloride

[C7H16NO2]+ (146.1181)


Acetylcholine (ACh) is a neurotransmitter. Acetylcholine in vertebrates is the major transmitter at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. Its physiological and pharmacological effects, metabolism, release, and receptors have been well documented in several species. ACh has been considered an important excitatory neurotransmitter in the carotid body (CB). Various nicotinic and muscarinic ACh receptors are present in both afferent nerve endings and glomus cells. Therefore, ACh can depolarize or hyperpolarize the cell membrane depending on the available receptor type in the vicinity. Binding of ACh to its receptor can create a wide variety of cellular responses including opening cation channels (nicotinic ACh receptor activation), releasing Ca2+ from intracellular storage sites (via muscarinic ACh receptors), and modulating activities of K+ and Ca2+ channels. Interactions between ACh and other neurotransmitters (dopamine, adenosine, nitric oxide) have been known, and they may induce complicated responses. Cholinergic biology in the CB differs among species and even within the same species due to different genetic composition. Development and environment influence cholinergic biology. Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been shown to increase the strength of afferent input relative to feedback, to contribute to theta rhythm oscillations, activate intrinsic mechanisms for persistent spiking, and increase the modification of synapses. These effects might enhance different types of encoding in different cortical structures. In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for encoding new episodic memories. The role of ACh in attention has been repeatedly demonstrated in several tasks. Acetylcholine is linked to response accuracy in voluntary and reflexive attention and also to response speed in reflexive attention. It is well known that those with Attention-deficit/hyperactivity disorders tend to be inaccurate and slow to respond. (PMID:17284361, 17011181, 15556286). Acetylcholine has been found to be a microbial product, urinary acetylcholine is produced by Lactobacillus (PMID:24621061). S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists Acquisition and generation of the data is financially supported in part by CREST/JST. C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents IPB_RECORD: 232; CONFIDENCE confident structure COVID info from COVID-19 Disease Map Corona-virus KEIO_ID A060 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Dofetilide

N-[4-(2-{[2-(4-methanesulfonamidophenyl)ethyl](methyl)amino}ethoxy)phenyl]methanesulfonamide

C19H27N3O5S2 (441.1392)


Dofetilide is a class III antiarrhythmic agent that is approved by the Food and Drug Administration (FDA) for the maintenance of sinus rhythm in individuals prone to the formation of atrial fibrillation and flutter, and for the chemical cardioversion to sinus rhythm from atrial fibrillation and flutter. [Wikipedia] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Tolterodine

2-[(1R)-3-[bis(propan-2-yl)amino]-1-phenylpropyl]-4-methylphenol

C22H31NO (325.2406)


Tolterodine is only found in individuals that have used or taken this drug. It is an antimuscarinic drug that is used to treat urinary incontinence. Tolterodine acts on M2 and M3 subtypes of muscarinic receptors.Both tolterodine and its active metabolite, 5-hydroxymethyltolterodine, act as competitive antagonists at muscarinic receptors. This antagonism results in inhibition of bladder contraction, decrease in detrusor pressure, and an incomplete emptying of the bladder. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tolterodine(PNU-200583) is a potent muscarinic receptor antagonists that show selectivity for the urinary bladder over salivary glands in vivo. IC50 Value: Target: mAChR in vitro: Carbachol-induced contractions of isolated guinea pig bladder were effectively inhibited by tolterodine (IC50 14 nM) and 5-HM (IC50 5.7 nM). The IC50 values were in the microM range and the antimuscarinic potency of tolterodine was 27, 200 and 370-485 times higher, respectively, than its potency in blocking histamine receptors, alpha-adrenoceptors and calcium channels. The active metabolite, 5-HM, was >900 times less potent at these sites than at bladder muscarinic receptors [1]. in vivo: Tolterodine was extensively metabolized in vivo [2]. In the passive-avoidance test, tolterodine at 1 or 3 mg/kg had no effect on memory; the latency to cross and percentage of animals crossing were comparable to controls. In contrast, scopolamine induced a memory deficit; the latency to cross was decreased, and the number of animals crossing was increased [3].

   

Blasticidin S

(2S,3S,6R)-3-{[(3R)-3-amino-1-hydroxy-5-(N-methylcarbamimidamido)pentylidene]amino}-6-(2-hydroxy-4-imino-1,4-dihydropyrimidin-1-yl)-3,6-dihydro-2H-pyran-2-carboxylate

C17H26N8O5 (422.2026)


Contact fungicide used against rice blast disease in Japan Blasticidin S is an antibiotic used to select transformed cells in genetic engineering. In short, DNA of interest is fused to DNA encoding a resistance gene, and then is transformed into cells. After allowing time for recovery and for cells to begin transcribing and translating their new DNA, blasticidin is added. Now only the cells that have the new DNA can grow D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents KEIO_ID B019; [MS3] KO008877 KEIO_ID B019; [MS2] KO008876 D004791 - Enzyme Inhibitors KEIO_ID B019

   

DAMGO

(D-Ala(2)-mephe(4)-gly-ol(5))enkephalin

C26H35N5O6 (513.2587)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004745 - Enkephalins KEIO_ID A226; [MS2] KO008836 KEIO_ID A226; [MS3] KO008837 KEIO_ID A226 DAMGO is a μ-opioid receptor (μ-OPR ) selective agonist with a Kd of 3.46 nM for native μ-OPR[1].

   

Glycolaldehyde

Monomethylolformaldehyde

C2H4O2 (60.0211)


Glycolaldehyde, also known as hydroxyacetaldehyde or methylol formaldehyde, is a member of the class of compounds known as short-chain aldehydes. Short-chain aldehydes are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Glycolaldehyde is soluble (in water) and a very weakly acidic compound (based on its pKa). Glycolaldehyde can be found in a number of food items such as acorn, elderberry, dandelion, and conch, which makes glycolaldehyde a potential biomarker for the consumption of these food products. Glycolaldehyde can be found primarily in human neuron tissue. Glycolaldehyde exists in all living organisms, ranging from bacteria to humans. In humans, glycolaldehyde is involved in the vitamin B6 metabolism. Glycolaldehyde is also involved in hypophosphatasia, which is a metabolic disorder. Glycolaldehyde is the organic compound with the formula HOCH2-CHO. It is the smallest possible molecule that contains both an aldehyde group and a hydroxyl group. It is a highly reactive molecule that occurs both in the biosphere and in the interstellar medium. It is normally supplied as a white solid. Although it conforms to the general formula for carbohydrates, Cn(H2O)n, it is not generally considered to be a saccharide . Glycolaldehyde (HOCH2-CH=O, IUPAC name 2-hydroxyethanal) is a type of diose (2-carbon monosaccharide). Glycolaldehyde is readily converted to acetyl coenzyme A. It has an aldehyde and a hydroxyl group. However, it is not actually a sugar, because there is only one hydroxyl group. Glycolaldehyde is formed from many sources, including the amino acid glycine and from purone catabolism. It can form by action of ketolase on fructose 1,6-bisphosphate in an alternate glycolysis pathway. This compound is transferred by thiamin pyrophosphate during the pentose phosphate shunt.

   

Laevuflex

L-Sorbose

C6H12O6 (180.0634)


(3S,4R,5S)-1,3,4,5,6-Pentahydroxyhexan-2-one is an endogenous metabolite. (3S,4R,5S)-1,3,4,5,6-Pentahydroxyhexan-2-one is an endogenous metabolite.

   

Potassium

Liver regeneration factor 1

K+ (38.9637)


Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675) [HMDB]. Potassium is found in many foods, some of which are half-highbush blueberry, liquor, grouper, and squashberry. Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675).

   

GTPgammaS

5-Guanosine-diphosphate-monothiophosphate

C10H16N5O13P3S (538.9678)


   

Propylene glycol

(R)-2-Hydroxy-1-propanol

C3H8O2 (76.0524)


Propylene glycol (CAS: 57-55-6), also known as 1,2-propanediol, is an organic compound (a diol alcohol), usually a tasteless, odourless, and colourless clear oily liquid that is hygroscopic and miscible with water, acetone, and chloroform. It is manufactured by the hydration of propylene oxide. Propylene glycol is used as a solvent for intravenous, oral, and topical pharmaceutical preparations It is generally considered safe. However, in large doses, it can be toxic, especially if given over a short period of time. Intravenous lorazepam contains the largest amount of propylene glycol of commonly used drugs. In adults with normal liver and kidney function, the terminal half-life of propylene glycol ranges from 1.4 to 3.3 hours. Propylene glycol is metabolized by the liver to form lactate, acetate, and pyruvate. The nonmetabolized drug is excreted in the urine mainly as the glucuronide conjugate, approximately 12 to 45 percent is excreted unchanged in urine. Renal clearance decreases as the dose administered increases (390 ml/minute/173 m2 at a dose of 5 g/day but only 144 ml/minute/173 m2 at a dose of 21 g/day). These data suggest that renal clearance declines at higher propylene glycol doses because of the saturation of proximal tubular secretion of the drug. As an acceptable level of propylene glycol has not been defined, the clinical implication of a propylene glycol level is unclear. The World Health Organization (WHO) recommends a maximum consumption of 25 mg/kg/day (1.8 g/day for a 75 kg male) of propylene glycol when used as a food additive, but this limit does not address its use as a drug solvent. No maximum dose is recommended in the literature for intravenous therapy with propylene glycol. Intoxication occurs at much higher doses than the WHO dose limit and is exclusive to pharmacologic exposure. Propylene glycol toxicity includes the development of serum hyperosmolality, lactic acidosis, and kidney failure. It has been suggested that proximal tubular necrosis is the cause of acute kidney injury from propylene glycol. Along these lines, proximal tubular cell injury occurs in cultured human cells exposed to propylene glycol. Acute tubular necrosis was described with propylene glycol toxicity in a case of concomitant administration of intravenous lorazepam and trimethoprim sulfamethoxazole. Propylene glycol induced intoxication can also mimic sepsis or systemic inflammatory response syndrome (SIRS). Patients suspected of having sepsis with negative cultures should be evaluated for propylene glycol toxicity if they have been exposed to high dose lorazepam or other medications containing this solvent (PMID:17555487). Propylene glycol is an anticaking agent, antioxidant, dough strengthener, emulsifier, flavouring agent, formulation aid, humectant, solvent, preservative, stabiliser, hog/poultry scald agent, and surface active agent. It is found in foods such as roasted sesame seeds, oats, truffle and other mushrooms. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

Oxotremorine

1-[4-(pyrrolidin-1-yl)but-2-yn-1-yl]pyrrolidin-2-one

C12H18N2O (206.1419)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists

   

Pirenzepine

2-[2-(4-methylpiperazin-1-yl)acetyl]-2,4,9-triazatricyclo[9.4.0.0³,⁸]pentadeca-1(15),3(8),4,6,11,13-hexaen-10-one

C19H21N5O2 (351.1695)


An antimuscarinic agent that inhibits gastric secretion at lower doses than are required to affect gastrointestinal motility, salivary, central nervous system, cardiovascular, ocular, and urinary function. It promotes the healing of duodenal ulcers and due to its cytoprotective action is beneficial in the prevention of duodenal ulcer recurrence. It also potentiates the effect of other antiulcer agents such as cimetidine and ranitidine. It is generally well tolerated by patients. [PubChem] A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents

   

Jatrophon

Jatrophone

C20H24O3 (312.1725)


   

Bremazocine

Bremazocine

C20H29NO2 (315.2198)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Cyclothiazide

3-{bicyclo[2.2.1]hept-5-en-2-yl}-6-chloro-1,1-dioxo-3,4-dihydro-2H-1λ⁶,2,4-benzothiadiazine-7-sulfonamide

C14H16ClN3O4S2 (389.0271)


As a diuretic, cyclothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like cyclothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of cyclothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. Cyclothiazide is indicated as adjunctive therapy in edema associated with congestive heart failure, hepatic cirrhosis, and corticosteroid and estrogen therapy. It is also indicated in the management of hypertension either as the sole therapeutic agent or to enhance the effectiveness of other antihypertensive drugs in the more severe forms of hypertension. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics Same as: D01256 Cyclothiazide, a positive allosteric modulator of AMPA receptors, is used frequently to block the desensitization of both native and heterologously expressed AMPA receptors. Cyclothiazide is known to produce a fast inhibition of AMPA receptor desensitization and a much slower potentiation of the AMPA current[1].

   

S9947

2-(Benzyloxycarbonylaminomethyl)biphenyl-2-carboxylic acid 2-(2-pyridyl)ethylamide

C29H27N3O3 (465.2052)


   

N-(6-Cyano-3-hydroxy-2,2-dimethyl-3,4-dihydrochromen-4-yl)-N-methylethanesulfonamide

N-(6-cyano-3-hydroxy-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-4-yl)-N-methylethane-1-sulfonamide

C15H20N2O4S (324.1144)


D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators

   

1-EBIO

1-Ethyl-1,3-dihydro-2H-benzimidazol-2-one

C9H10N2O (162.0793)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents > D002120 - Calcium Channel Agonists D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators

   

Rimonabant

N-(Piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride

C22H21Cl3N4O (462.0781)


Rimonabant is an anorectic anti-obesity drug produced and marketed by Sanofi-Aventis. It is an inverse agonist for the cannabinoid receptor CB1. Its main avenue of effect is reduction in appetite. Rimonabant is the first selective CB1 receptor blocker to be approved for use anywhere in the world. Rimonabant is approved in 38 countries including the E.U., Mexico, and Brazil. It was rejected for approval for use in the United States. This decision was made after a U.S. advisory panel recommended the medicine not be approved because it may increase suicidal thinking and depression. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063387 - Cannabinoid Receptor Antagonists C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D019440 - Anti-Obesity Agents Same as: D05731

   

Baclofen

(+-)-Baclofen

C10H12ClNO2 (213.0557)


M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID B013; [MS2] KO008869 KEIO_ID B013 Baclofen, a lipophilic derivative of γ-aminobutyric acid (GABA), is an orally active, selective metabotropic GABAB receptor (GABABR) agonist. Baclofen mimics the action of GABA and produces slow presynaptic inhibition through the GABAB receptor. Baclofen has high blood brain barrier penetrance. Baclofen has the potential for muscle spasticity research[1][2][3].

   

pentamidine

pentamidine

C19H24N4O2 (340.1899)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent [Raw Data] CB201_Pentamidine_pos_50eV_isCID-10eV_rep000006.txt [Raw Data] CB201_Pentamidine_pos_40eV_isCID-10eV_rep000006.txt [Raw Data] CB201_Pentamidine_pos_30eV_isCID-10eV_rep000006.txt [Raw Data] CB201_Pentamidine_pos_20eV_isCID-10eV_rep000006.txt [Raw Data] CB201_Pentamidine_pos_10eV_isCID-10eV_rep000006.txt KEIO_ID P209; [MS2] KO009179 KEIO_ID P209; [MS3] KO009180 KEIO_ID P209

   

4alpha-Phorbol

1,6,13,14-tetrahydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyltetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-5-one

C20H28O6 (364.1886)


   

Roxithromycin

(3R,4S,5S,6R,7R,9R,10E,11S,12R,13S,14R)-6-{[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyltetrahydro-2H-pyran-2-yl]oxy}-14-ethyl-7,12,13-trihydroxy-4-{[(2R,4R,5S,6S)-5-hydroxy-4-methoxy-4,6-dimethyltetrahydro-2H-pyran-2-yl]oxy}-3,5,7,9,11,13-hexamethyloxacyclotetradecane-2,10-dione 10-{O-[(2-methoxyethoxy)methyl]oxime} (non-preferred name)

C41H76N2O15 (836.5245)


Semisynthetic derivative of erythromycin A. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents A minor geometrical isomer of roxithromycin. Roxithromycin is semisynthetic derivative of erythromycin A. It has a role as an antibacterial drug. It is an erythromycin derivative, a macrolide and a semisynthetic derivative. It is functionally related to an erythromycin A. Roxithromycin is a semi-synthethic macrolide antibiotic that is structurally and pharmacologically similar to [erythromycin], [azithromycin], or [clarithromycin]. It was shown to be more effective against certain Gram-negative bacteria, particularly Legionella pneumophila. Roxithromycin exerts its antibacterial action by binding to the bacterial ribosome and interfering with bacterial protein synthesis. It is marketed in Australia as a treatment for respiratory tract, urinary and soft tissue infections. Roxithromycin is a semi-synthetic derivative of the macrolide antibiotic erythromycin that includes an N-oxime side chain on the lactone ring, with antibacterial and anti-malarial activities. Roxithromycin binds to the subunit 50S of the bacterial ribosome, which inhibits bacterial protein synthesis and leads to inhibition of bacterial cell growth and replication. Semisynthetic derivative of erythromycin. It is concentrated by human phagocytes and is bioactive intracellularly. While the drug is active against a wide spectrum of pathogens, it is particularly effective in the treatment of respiratory and genital tract infections. C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic CONFIDENCE standard compound; INTERNAL_ID 409; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8421; ORIGINAL_PRECURSOR_SCAN_NO 8419 CONFIDENCE standard compound; INTERNAL_ID 409; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8435; ORIGINAL_PRECURSOR_SCAN_NO 8434 CONFIDENCE standard compound; INTERNAL_ID 409; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8464; ORIGINAL_PRECURSOR_SCAN_NO 8462 CONFIDENCE standard compound; INTERNAL_ID 409; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8460; ORIGINAL_PRECURSOR_SCAN_NO 8458 CONFIDENCE standard compound; INTERNAL_ID 409; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8482; ORIGINAL_PRECURSOR_SCAN_NO 8478 CONFIDENCE standard compound; INTERNAL_ID 409; DATASET 20200303_ENTACT_RP_MIX499; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8375; ORIGINAL_PRECURSOR_SCAN_NO 8373 CONFIDENCE standard compound; INTERNAL_ID 2185 CONFIDENCE standard compound; INTERNAL_ID 4097

   

Nortriptyline

Nortriptyline

C19H21N (263.1674)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents CONFIDENCE standard compound; INTERNAL_ID 1567 D049990 - Membrane Transport Modulators Nortriptyline (Desmethylamitriptyline), the main active metabolite of Amitriptyline, is a tricyclic antidepressant. Nortriptyline is a potent autophagy inhibitor and has anticancer effects[1][2][3]. N

   

Rulide

Roxithromycin

C41H76N2O15 (836.5245)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic CONFIDENCE standard compound; INTERNAL_ID 2185 CONFIDENCE standard compound; EAWAG_UCHEM_ID 192 EAWAG_UCHEM_ID 192; CONFIDENCE standard compound

   

Propoxyphene

dextropropoxyphene

C22H29NO2 (339.2198)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AC - Diphenylpropylamine derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3344

   

SUFENTANIL

SUFENTANIL

C22H30N2O2S (386.2028)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AH - Opioid anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Karakoline

(1S,2R,3R,4S,5S,6S,8S,9S,10S,13R,16S,17R)-11-ethyl-6-methoxy-13-methyl-11-azahexacyclo[7.7.2.12,5.01,10.03,8.013,17]nonadecane-4,8,16-triol

C22H35NO4 (377.2566)


An organonitrogen heterocyclic compound that is aconitane bearing hydroxy groups at the 1alpha, 8, and 14alpha positions and substituted at on the nitrogen and at positions 4 and 16beta by ethyl, methyl, and methoxy groups, respectively. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.396 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.391

   

Dofetilide

Dofetilide (Tikosyn)

C19H27N3O5S2 (441.1392)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BD - Antiarrhythmics, class iii C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Ginsenoside Rf

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-17-[(2S)-2-hydroxy-6-methyl-hept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-

C42H72O14 (800.4922)


Constituent of Panax ginseng (ginseng). The first pure ginseng constituent to show nearly all the activities of the plant extract. Ginsenoside Rf is found in tea. Annotation level-1 Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel.

   

carbofuran

Pesticide3_Carbofuran_C12H15NO3_Furadan

C12H15NO3 (221.1052)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

maprotiline

maprotiline

C20H23N (277.183)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AA - Non-selective monoamine reuptake inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent > C94727 - Tricyclic Antidepressant D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 2221

   

nefazodone

nefazodone

C25H32ClN5O2 (469.2244)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D000068760 - Serotonin and Noradrenaline Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants D049990 - Membrane Transport Modulators Nefazodone is an orally active phenylpiperazine antidepressant. Nefazodone can potently and selectively block postsynaptic 5-HT2A receptors, and moderately inhibit 5-HT and noradrenaline reuptake. Nefazodone can also relieve the adverse effects of stress on the the immune system of mice. Nefazodone has a high affinity for CYP3A4 isoenzyme, which indicates that it has certain risk of agent-agent interaction[1][2][3].

   

Tolterodine

Tolterodine-L-tartrate

C22H31NO (325.2406)


G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents Tolterodine(PNU-200583) is a potent muscarinic receptor antagonists that show selectivity for the urinary bladder over salivary glands in vivo. IC50 Value: Target: mAChR in vitro: Carbachol-induced contractions of isolated guinea pig bladder were effectively inhibited by tolterodine (IC50 14 nM) and 5-HM (IC50 5.7 nM). The IC50 values were in the microM range and the antimuscarinic potency of tolterodine was 27, 200 and 370-485 times higher, respectively, than its potency in blocking histamine receptors, alpha-adrenoceptors and calcium channels. The active metabolite, 5-HM, was >900 times less potent at these sites than at bladder muscarinic receptors [1]. in vivo: Tolterodine was extensively metabolized in vivo [2]. In the passive-avoidance test, tolterodine at 1 or 3 mg/kg had no effect on memory; the latency to cross and percentage of animals crossing were comparable to controls. In contrast, scopolamine induced a memory deficit; the latency to cross was decreased, and the number of animals crossing was increased [3].

   

propafenone

propafenone

C21H27NO3 (341.1991)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Propafenone (SA-79), a sodium-channel blocker, acts an antiarrhythmic agent. Propafenone also has high affinity for the β receptor (IC50=32 nM)[1]. Propafenone blocks the transient outward current (Ito) and the sustained delayed rectifier K current (Isus) with IC50 values of 4.9?μm and 8.6?μm, respectively[2]. Propafenone suppresses esophageal cancer proliferation through inducing mitochondrial dysfunction and induce apoptosis[3].

   

flecainide

flecainide

C17H20F6N2O3 (414.1378)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BC - Antiarrhythmics, class ic D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

cyclothiazide

cyclothiazide

C14H16ClN3O4S2 (389.0271)


C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics Same as: D01256 Cyclothiazide, a positive allosteric modulator of AMPA receptors, is used frequently to block the desensitization of both native and heterologously expressed AMPA receptors. Cyclothiazide is known to produce a fast inhibition of AMPA receptor desensitization and a much slower potentiation of the AMPA current[1].

   

4-Aminosalicylic acid

4-Aminosalicylic acid

C7H7NO3 (153.0426)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AA - Aminosalicylic acid and derivatives D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WUBBRNOQWQTFEX-UHFFFAOYSA-N_STSL_0188_4-Aminosalicylic Acid_0125fmol_180831_S2_L02M02_81; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

L-Sorbose

L-Sorbose

C6H12O6 (180.0634)


The L enantiomer of sorbose, a ketone-containing hexose (a six-carbon monosaccharide). (3S,4R,5S)-1,3,4,5,6-Pentahydroxyhexan-2-one is an endogenous metabolite. (3S,4R,5S)-1,3,4,5,6-Pentahydroxyhexan-2-one is an endogenous metabolite.

   

Acetylcholine

(2-acetoxyethyl)trimethylammonium

C7H16NO2+ (146.1181)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists Actylcholine is an ester of acetic acid and choline, which acts as a neurotransmitter. C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Urocortisol

3alpha,11beta,17,21-tetrahydroxy-5beta-pregnan-20-one

C21H34O5 (366.2406)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].

   

Rimonabant

Rimonabant

C22H21Cl3N4O (462.0781)


A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063387 - Cannabinoid Receptor Antagonists C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent D019440 - Anti-Obesity Agents Same as: D05731

   

(R)-(−)-Propylene glycerol

(R)-(−)-Propylene glycerol

C3H8O2 (76.0524)


(R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

Acetylcholine

Bournonville brand OF acetylcholine chloride

C7H16NO2+ (146.1181)


Acetylcholine (ACh) is a neurotransmitter. Acetylcholine in vertebrates is the major transmitter at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. Its physiological and pharmacological effects, metabolism, release, and receptors have been well documented in several species. ACh has been considered an important excitatory neurotransmitter in the carotid body (CB). Various nicotinic and muscarinic ACh receptors are present in both afferent nerve endings and glomus cells. Therefore, ACh can depolarize or hyperpolarize the cell membrane depending on the available receptor type in the vicinity. Binding of ACh to its receptor can create a wide variety of cellular responses including opening cation channels (nicotinic ACh receptor activation), releasing Ca2+ from intracellular storage sites (via muscarinic ACh receptors), and modulating activities of K+ and Ca2+ channels. Interactions between ACh and other neurotransmitters (dopamine, adenosine, nitric oxide) have been known, and they may induce complicated responses. Cholinergic biology in the CB differs among species and even within the same species due to different genetic composition. Development and environment influence cholinergic biology. Pharmacological data clearly indicate that both muscarinic and nicotinic acetylcholine receptors have a role in the encoding of new memories. Localized lesions and antagonist infusions demonstrate the anatomical locus of these cholinergic effects, and computational modeling links the function of cholinergic modulation to specific cellular effects within these regions. Acetylcholine has been shown to increase the strength of afferent input relative to feedback, to contribute to theta rhythm oscillations, activate intrinsic mechanisms for persistent spiking, and increase the modification of synapses. These effects might enhance different types of encoding in different cortical structures. In particular, the effects in entorhinal and perirhinal cortex and hippocampus might be important for encoding new episodic memories. The role of ACh in attention has been repeatedly demonstrated in several tasks. Acetylcholine is linked to response accuracy in voluntary and reflexive attention and also to response speed in reflexive attention. It is well known that those with Attention-deficit/hyperactivity disorders tend to be inaccurate and slow to respond. (PMID:17284361, 17011181, 15556286). Acetylcholine has been found to be a microbial product, urinary acetylcholine is produced by Lactobacillus (PMID:24621061). S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Occurs in Capsella bursa-pastoris (shepherds purse) COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

phorate

6Z-8-Hydroxygeraniol 8-O-glucoside

C7H17O2PS3 (260.0128)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals Constituent of fresh ginger (Zingiber officinale). 6Z-8-Hydroxygeraniol 8-O-glucoside is found in herbs and spices.

   

Tetrahydrocortisol

Pregnan-20-one,3,11,17,21-tetrahydroxy-, (3a,5b,11b)-

C21H34O5 (366.2406)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Tetrahydrocortisol is the most powerful natural angiostatic steroid. It is involved in C21-Steroid hormone metabolism pathway (KEGG). [HMDB] Tetrahydrocortisol is cortisol metabolite. The urinary Tetrahydrocortisol/Tetrahydrocortisone ratio decreases with increasing 11β-hydroxysteroid dehydrogenase (11β-HSD) activity[1][2].

   

astemizole

astemizole

C28H31FN4O (458.2482)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents Astemizole (R 43512), a second-generation antihistamine agent to diminish allergic symptoms with a long duration of action, is a histamine H1-receptor antagonist, with an IC50 of 4 nM. Astemizole also shows potent hERG K+ channel blocking activity with an IC50 of 0.9 nM. Astemizole has antipruritic effects[1][2].

   

diclofenamide

dichlorphenamide

C6H6Cl2N2O4S2 (303.9146)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EC - Carbonic anhydrase inhibitors C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C471 - Enzyme Inhibitor > C29577 - Carbonic Anhydrase Inhibitor

   

glycolaldehyde

glycolaldehyde

C2H4O2 (60.0211)


The glycolaldehyde derived from ethylene glycol. The parent of the class of glycolaldehydes.

   

Aldosterone

(+)-aldosterone

C21H28O5 (360.1937)


A pregnane-based steroidal hormone produced by the outer-section (zona glomerulosa) of the adrenal cortex in the adrenal gland, and acts on the distal tubules and collecting ducts of the kidney to cause the conservation of sodium, secretion of potassium, increased water retention, and increased blood pressure. The overall effect of aldosterone is to increase reabsorption of ions and water in the kidney. H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AA - Mineralocorticoids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

R-1,2-PROPANEDIOL

(R)-(-)-1,2-Propanediol

C3H8O2 (76.0524)


(R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1]. (R)-(-)-1,2-Propanediol is a (R)-enantiomer of 1,2-Propanediol that produced from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes[1].

   

pirenzepine

pirenzepine

C19H21N5O2 (351.1695)


A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents

   

Oxotremorine

Oxotremorine

C12H18N2O (206.1419)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists

   

Potassium cation

Potassium cation

K+ (38.9637)


   

5-Guanosine-diphosphate-monothiophosphate

5-Guanosine-diphosphate-monothiophosphate

C10H16N5O13P3S (538.9678)


   

Morphine-6-glucuronide

M-6-G TRIFLUOROACETATE-HYDRATE

C23H27NO9 (461.1686)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate

   

Normorphine

Normorphine

C16H17NO3 (271.1208)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist

   

m-3-g hydrate

Morphine-3-glucuronide

C23H27NO9 (461.1686)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants

   

HMR1556

N-(6-Cyano-3-hydroxy-2,2-dimethyl-3,4-dihydrochromen-4-yl)-N-methylethanesulfonamide

C15H20N2O4S (324.1144)


D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D049990 - Membrane Transport Modulators