Subcellular Location: interleukin-23 complex

Found 118 associated metabolites.

2 associated genes. IL12B, IL23A

Abietic_acid

InChI=1/C20H30O2/c1-13(2)14-6-8-16-15(12-14)7-9-17-19(16,3)10-5-11-20(17,4)18(21)22/h7,12-13,16-17H,5-6,8-11H2,1-4H3,(H,21,22)/t16-,17+,19+,20+/m0/s1

C20H30O2 (302.2246)


Yellowish resinous powder. (NTP, 1992) Abietic acid is an abietane diterpenoid that is abieta-7,13-diene substituted by a carboxy group at position 18. It has a role as a plant metabolite. It is an abietane diterpenoid and a monocarboxylic acid. It is a conjugate acid of an abietate. Abietic acid is a natural product found in Ceroplastes pseudoceriferus, Pinus brutia var. eldarica, and other organisms with data available. An abietane diterpenoid that is abieta-7,13-diene substituted by a carboxy group at position 18. D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents CONFIDENCE standard compound; INTERNAL_ID 8337 Abietic acid, a diterpene isolated from Colophony, possesses antiproliferative, antibacterial, and anti-obesity properties. Abietic acid inhibits lipoxygenase activity for allergy treatment[1][2]. Abietic acid, a diterpene isolated from Colophony, possesses antiproliferative, antibacterial, and anti-obesity properties. Abietic acid inhibits lipoxygenase activity for allergy treatment[1][2].

   

Gentiopicrin

(5R,6S)-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-5-vinyl-5,6-dihydropyrano[3,4-c]pyran-1(3H)-one

C16H20O9 (356.1107)


Gentiopicrin is a glycoside. Gentiopicroside is a natural product found in Aster auriculatus, Exacum affine, and other organisms with data available. See also: Centaurium erythraea whole (part of). Gentiopicroside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=20831-76-9 (retrieved 2024-07-01) (CAS RN: 20831-76-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gentiopicroside, a naturally occurring iridoid glycoside, inhibits P450 activity, with an IC50 and a Ki of 61 μM and 22.8 μM for CYP2A6; Gentiopicroside has anti-inflammatoryand antioxidative effects. Gentiopicroside, a naturally occurring iridoid glycoside, inhibits P450 activity, with an IC50 and a Ki of 61 μM and 22.8 μM for CYP2A6; Gentiopicroside has anti-inflammatoryand antioxidative effects.

   

Loganic_acid

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid

C16H24O10 (376.1369)


Loganic acid is a cyclopentapyran that is 1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid substituted at positions 1, 6 and 7 by beta-D-glucosyloxy, hydroxy and methyl groups respectively It has a role as a plant metabolite. It is a cyclopentapyran, an alpha,beta-unsaturated monocarboxylic acid and a glucoside. It is a conjugate acid of a loganate. Loganic acid is a natural product found in Strychnos axillaris, Strychnos cocculoides, and other organisms with data available. A cyclopentapyran that is 1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid substituted at positions 1, 6 and 7 by beta-D-glucosyloxy, hydroxy and methyl groups respectively KEIO_ID L043 Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].

   

Paeoniflorin

((2S,2aR,2a1S,3aR,4R,5aR)-4-Hydroxy-2-methyl-2a-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexahydro-2H-1,5-dioxa-2,4-methanocyclobuta[cd]pentalen-2a1-yl)methyl benzoate

C23H28O11 (480.1632)


Paeoniflorin is a terpene glycoside. Peoniflorin is under investigation in clinical trial NCT02878863 (Paeoniflorin Combination of Hepatoprotective Drugs Versus Hepatoprotective Drugs Only for Auto-immune Hepatitis). Paeoniflorin is a natural product found in Paeonia, Paeonia tenuifolia, and other organisms with data available. See also: Paeonia lactiflora root (part of); Paeonia veitchii root (part of); Paeonia X suffruticosa root bark (part of). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3]. Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3].

   

Amygdaloside

(R)-2-phenyl-2-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)acetonitrile

C20H27NO11 (457.1584)


Amygdalin is found in almond. Bitter glycoside of the Rosaceae, found especially in kernels of cherries, peaches and apricots. Amygdalin is present in cold pressed bitter almond oil from the above sources prior to enzymic hydolysis and steam distillation for food use Amygdalin , C20H27NO11, is a glycoside initially isolated from the seeds of the tree Prunus dulcis, also known as bitter almonds, by Pierre-Jean Robiquet and A. F. Boutron-Charlard in 1803, and subsequently investigated by Liebig and Wohler in 1830, and others. Several other related species in the genus of Prunus, including apricot (Prunus armeniaca) and black cherry (Prunus serotina), also contain amygdalin. It was promoted as a cancer cure by Ernst T. Krebs under the name "Vitamin B17", but studies have found it to be ineffective. Amygdalin is sometimes confounded with laevomandelonitrile, also called laetrile for short; however, amygdalin and laetrile are different chemical compounds (R)-amygdalin is an amygdalin in which the stereocentre on the cyanohydrin function has R-configuration. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is functionally related to a (R)-mandelonitrile. D-Amygdalin is a natural product found in Prunus spinosa, Gerbera jamesonii, and other organisms with data available. Amygdalin is a cyanogenic glucoside isolated from almonds and seeds of other plants of the family Rosaceae. Amygdalin is converted by plant emulsin (a combination of a glucosidase and a nitrilase) or hydrochloric acid into benzaldehyde, D-glucose, and hydrocyanic acid. (NCI04) A cyanogenic glycoside found in the seeds of Rosaceae. Amygdalin is a bitter glycoside of the Rosaceae, found in sources such as kernels of cherries, peaches and apricots. Present in cold pressed bitter almond oil from the these sources prior to enzymic hydolysis and steam distillation for food use. Amygdalin can also be found in passion fruit. C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C29724 - Cyanoglycoside Agent D000970 - Antineoplastic Agents C1907 - Drug, Natural Product Amygdalin is a plant glucoside isolated from the stones of rosaceous fruits, such as apricots, peaches, almond, cherries, and plums. Amygdalin is a plant glucoside isolated from the stones of rosaceous fruits, such as apricots, peaches, almond, cherries, and plums.

   

Daphnetol

7,8-dihydroxychromen-2-one

C9H6O4 (178.0266)


7,8-dihydroxycoumarin is a hydroxycoumarin. Daphnetin is a natural product found in Euphorbia dracunculoides, Rhododendron lepidotum, and other organisms with data available. Acquisition and generation of the data is financially supported in part by CREST/JST. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research Daphnetin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=486-35-1 (retrieved 2024-09-04) (CAS RN: 486-35-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Dauricine

Phenol, 4-((1,2,3,4-tetrahydro-6,7-dimethoxy-2-methyl-1-isoquinolinyl)methyl)-2-(4-((1,2,3,4-tetrahydro-6,7-dimethoxy-2-methyl-1-isoquinolinyl)methyl)phenoxy)-, (R-(R*,R*))-

C38H44N2O6 (624.3199)


Dauricine is a bisbenzylisoquinoline alkaloid resulting from the formal oxidative dimerisation of 4-{[(1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}phenol by attachment of the phenolic oxygen of one molecule to the benzene ring of the second (ortho to the phenolic hydroxy group of the latter). It has a role as a plant metabolite. It is a tertiary amino compound, a member of phenols, an aromatic ether, a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Dauricine is a natural product found in Nelumbo nucifera, Menispermum canadense, and Menispermum dauricum with data available. A bisbenzylisoquinoline alkaloid resulting from the formal oxidative dimerisation of 4-{[(1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}phenol by attachment of the phenolic oxygen of one molecule to the benzene ring of the second (ortho to the phenolic hydroxy group of the latter). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Dauricine, a bisbenzylisoquinoline alkaloid in Menispermum dauricum, possesses anti-inflammatory activity. Dauricine inhibits cell proliferation and invasion, and induces apoptosis by suppressing NF-κB activation in a dose- and time-dependent manner in colon cancer[1]. Dauricine, a bisbenzylisoquinoline alkaloid in Menispermum dauricum, possesses anti-inflammatory activity. Dauricine inhibits cell proliferation and invasion, and induces apoptosis by suppressing NF-κB activation in a dose- and time-dependent manner in colon cancer[1].

   

Kurarinone

(2S)-2-(2,4-dihydroxyphenyl)-7-hydroxy-5-methoxy-8-[(2R)-5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl]-2,3-dihydro-4H-chromen-4-one

C26H30O6 (438.2042)


(2S)-(-)-kurarinone is a trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2 and 4, a lavandulyl group at position 8 and a methoxy group at position 5. Isolated from the roots of Sophora flavescens, it exhibits cytotoxicity against human myeloid leukemia HL-60 cells. It has a role as a metabolite and an antineoplastic agent. It is a trihydroxyflavanone, a monomethoxyflavanone and a member of 4-hydroxyflavanones. It is functionally related to a (2S)-flavanone. 7,2,4-Trihydroxy-8-lavandulyl-5-methoxyflavanone is a natural product found in Albizia julibrissin, Cunila, and other organisms with data available. A trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2 and 4, a lavandulyl group at position 8 and a methoxy group at position 5. Isolated from the roots of Sophora flavescens, it exhibits cytotoxicity against human myeloid leukemia HL-60 cells. Kurarinone, a flavanoid derived from shrub Sophora flavescens, inhibits the process of experimental autoimmune encephalomyelitis via blocking Th1 and Th17 cell differentiation[1]. Kurarinone, a flavanoid derived from shrub Sophora flavescens, inhibits the process of experimental autoimmune encephalomyelitis via blocking Th1 and Th17 cell differentiation[1].

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.3861)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Punicic_acid

cis-9, trans-11, cis-13-octadecatrienoic acid

C18H30O2 (278.2246)


(9Z,11E,13Z)-octadecatrienoic acid is a 9,11,13-octadecatrienoic acid having its double bonds in cis, trans and cis configurations, respectively. It has been isolated from pomegranate (Punica granatum). It has a role as an antineoplastic agent and a plant metabolite. Punicic acid is a natural product found in Trichosanthes nervifolia, Punica granatum, and other organisms with data available. Punicic Acid is a polyunsaturated long-chain fatty acid with an 18-carbon backbone and exactly three double bonds, originating from the 5th, 7th and 9th positions from the methyl end, with these three bonds in the cis-, trans- and cis- configurations, respectively. See also: Pomegranate Seed Oil (has part). A 9,11,13-octadecatrienoic acid having its double bonds in cis, trans and cis configurations, respectively. It has been isolated from pomegranate (Punica granatum).

   

Falcarindiol

(Z)-(3S,8S)-Heptadeca-1,9-diene-4,6-diyne-3,8-diol

C17H24O2 (260.1776)


Constituent of roots of several plants including the common carrot (Daucus carota) and Angelica acutiloba (Dong Dang Gui). Falcarindiol is found in many foods, some of which are wild carrot, carrot, garden tomato (variety), and caraway. Falcarindiol is found in caraway. Falcarindiol is a constituent of roots of several plants including the common carrot (Daucus carota) and Angelica acutiloba (Dong Dang Gui). Falcarindiol is a natural product found in Anthriscus nitida, Chaerophyllum aureum, and other organisms with data available. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Panaxynol

(CIS)-(-)-3-HYDROXY-1,9-HEPTADECADIEN-4,6-DIYNE

C17H24O (244.1827)


Panaxynol is a long-chain fatty alcohol. It has a role as a metabolite. Falcarinol is a natural product found in Chaerophyllum aureum, Cussonia arborea, and other organisms with data available.

   

Prunasin

(R)-2-Phenyl-2-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)acetonitrile

C14H17NO6 (295.1056)


(R)-prunasin is a prunasin. Prunasin is a natural product found in Polypodium californicum, Chaenorhinum minus, and other organisms with data available. Prunasin is found in almond. Prunasin is isolated from kernels of Prunus species, immature fruits of Passiflora species and leaves of perilla (Perilla frutescens var. acuta) Prunasin belongs to the family of O-glycosyl Compounds. These are glycosides in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Isolated from kernels of Prunus subspecies, immature fruits of Passiflora subspecies and leaves of perilla (Perilla frutescens variety acuta). Prunasin is found in many foods, some of which are almond, sour cherry, black elderberry, and herbs and spices. Prunasin is found in almond. Prunasin is isolated from kernels of Prunus species, immature fruits of Passiflora species and leaves of perilla (Perilla frutescens var. acuta D004791 - Enzyme Inhibitors

   

Glycyrol

5,14-dihydroxy-3-methoxy-4-(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-1(10),2(7),3,5,11(16),12,14-heptaen-9-one

C21H18O6 (366.1103)


Glycyrol is a member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 1 and 9, a methoxy group at position 3 and a prenyl group at position 2 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a member of coumestans, a polyphenol, a delta-lactone and an aromatic ether. It is functionally related to a coumestan. Glycyrol is a natural product found in Glycyrrhiza, Glycyrrhiza glabra, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of). A member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 1 and 9, a methoxy group at position 3 and a prenyl group at position 2 respectively. Glycyrol is found in root vegetables. Glycyrol is isolated from Glycyrrhiza sp. root (licorice Isolated from Glycyrrhiza species root (licorice). Glycyrol is found in root vegetables. Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2]. Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2].

   

Cycloartenol

(3R,6S,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol

C30H50O (426.3861)


Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane. Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)

   

(E)-methyl ester 3-phenyl-2-propenoic acid

methyl cinnamate, propenoic-3-(14)C-labeled, (E)-isomer

C10H10O2 (162.0681)


Flavouring compound [Flavornet] Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Adenosine monophosphate

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C10H14N5O7P (347.0631)


Adenosine monophosphate, also known as adenylic acid or amp, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Adenosine monophosphate can be found in a number of food items such as kiwi, taro, alaska wild rhubarb, and skunk currant, which makes adenosine monophosphate a potential biomarker for the consumption of these food products. Adenosine monophosphate can be found primarily in most biofluids, including blood, feces, cerebrospinal fluid (CSF), and urine, as well as throughout all human tissues. Adenosine monophosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine monophosphate is involved in several metabolic pathways, some of which include josamycin action pathway, methacycline action pathway, nevirapine action pathway, and aspartate metabolism. Adenosine monophosphate is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], molybdenum cofactor deficiency, xanthinuria type I, and mitochondrial DNA depletion syndrome. Adenosine monophosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine monophosphate, also known as 5-adenylic acid and abbreviated AMP, is a nucleotide that is found in RNA. It is an ester of phosphoric acid with the nucleoside adenosine. AMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase adenine. AMP can be produced during ATP synthesis by the enzyme adenylate kinase. AMP has recently been approved as a Bitter Blocker additive to foodstuffs. When AMP is added to bitter foods or foods with a bitter aftertaste it makes them seem sweeter. This potentially makes lower calorie food products more palatable. [Spectral] AMP (exact mass = 347.06308) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Adenosine monophosphate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67583-85-1 (retrieved 2024-07-01) (CAS RN: 61-19-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction.

   

Betamethasone

(1R,2S,10S,11S,13S,14R,15S,17S)-1-fluoro-14,17-dihydroxy-14-(2-hydroxyacetyl)-2,13,15-trimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-3,6-dien-5-one

C22H29FO5 (392.1999)


A glucocorticoid given orally, parenterally, by local injection, by inhalation, or applied topically in the management of various disorders in which corticosteroids are indicated. Its lack of mineralocorticoid properties makes betamethasone particularly suitable for treating cerebral edema and congenital adrenal hyperplasia. (From Martindale, The Extra Pharmacopoeia, 30th ed, p724) CONFIDENCE standard compound; INTERNAL_ID 552; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8694; ORIGINAL_PRECURSOR_SCAN_NO 8691 CONFIDENCE standard compound; INTERNAL_ID 552; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8605; ORIGINAL_PRECURSOR_SCAN_NO 8603 CONFIDENCE standard compound; INTERNAL_ID 552; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8664; ORIGINAL_PRECURSOR_SCAN_NO 8662 CONFIDENCE standard compound; INTERNAL_ID 552; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8652; ORIGINAL_PRECURSOR_SCAN_NO 8651 CONFIDENCE standard compound; INTERNAL_ID 552; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8702; ORIGINAL_PRECURSOR_SCAN_NO 8699 CONFIDENCE standard compound; INTERNAL_ID 552; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8704; ORIGINAL_PRECURSOR_SCAN_NO 8702 A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EA - Corticosteroids acting locally H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01C - Antiinflammatory agents and antiinfectives in combination > S01CB - Corticosteroids/antiinfectives/mydriatics in combination D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07X - Corticosteroids, other combinations > D07XC - Corticosteroids, potent, other combinations R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03B - Other drugs for obstructive airway diseases, inhalants > R03BA - Glucocorticoids C - Cardiovascular system > C05 - Vasoprotectives > C05A - Agents for treatment of hemorrhoids and anal fissures for topical use > C05AA - Corticosteroids D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AC - Corticosteroids, potent (group iii) R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AD - Corticosteroids S - Sensory organs > S03 - Ophthalmological and otological preparations > S03B - Corticosteroids > S03BA - Corticosteroids D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids S - Sensory organs > S01 - Ophthalmologicals > S01B - Antiinflammatory agents > S01BA - Corticosteroids, plain C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid S - Sensory organs > S02 - Otologicals > S02B - Corticosteroids > S02BA - Corticosteroids D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3242 D000893 - Anti-Inflammatory Agents

   

all-trans-Retinoic acid

(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenoic acid

C20H28O2 (300.2089)


all-trans-Retinoic acid is an isomer of retinoic acid, the oxidized form of vitamin A. Retinoic acid functions in determining position along embryonic anterior/posterior axis in chordates. It acts through Hox genes, which ultimately controls anterior/posterior patterning in early developmental stages (PMID:17495912). It is an important regulator of gene expression during growth and development, and in neoplasms. As a drug, all-trans-retinoic acid is known as tretinoin. Tretinoin is derived from maternal vitamin A and is essential for normal growth and embryonic development. An excess of tretinoin can be teratogenic. Tretinoin is used in the treatment of psoriasis, acne vulgaris, and several other skin diseases. It has also been approved for use in promyelocytic leukemia (leukemia, promyelocytic, acute). Retinoic acid is the oxidized form of Vitamin A. It functions in determining position along embryonic anterior/posterior axis in chordates. It acts through Hox genes, which ultimately controls anterior/posterior patterning in early developmental stages (PMID: 17495912). It is an important regulator of gene expression during growth and development, and in neoplasms. Tretinoin, also known as retinoic acid and derived from maternal vitamin A, is essential for normal growth and embryonic development. An excess of tretinoin can be teratogenic. It is used in the treatment of psoriasis; acne vulgaris; and several other skin diseases. It has also been approved for use in promyelocytic leukemia (leukemia, promyelocytic, acute). [HMDB] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XF - Retinoids for cancer treatment D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AD - Retinoids for topical use in acne C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent Acquisition and generation of the data is financially supported in part by CREST/JST. C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D000970 - Antineoplastic Agents Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha.

   

Mesalazine

Procter and gamble brand OF mesalamine

C7H7NO3 (153.0426)


Mesalazine is only found in individuals that have used or taken this drug. It is an anti-inflammatory agent, structurally related to the salicylates, which is active in inflammatory bowel disease. It is considered to be the active moiety of sulphasalazine. (From Martindale, The Extra Pharmacopoeia, 30th ed)Although the mechanism of action of mesalazine is not fully understood, it appears to be topical rather than systemic. Mucosal production of arachidonic acid metabolites, both through the cyclooxygenase pathways, i.e., prostanoids, and through the lipoxygenase pathways, i.e., leukotrienes and hydroxyeicosatetraenoic acids, is increased in patients with chronic inflammatory bowel disease, and it is possible that mesalazine diminishes inflammation by blocking cyclooxygenase and inhibiting prostaglandin production in the colon. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents

   

Itaconic acid

2-Hydroxy-3-naphthoyl-2-naphthylamine

C5H6O4 (130.0266)


Itaconic acid is a dicarboxylic acid that is methacrylic acid in which one of the methyl hydrogens is substituted by a carboxylic acid group. It has a role as a fungal metabolite and a human metabolite. It is a dicarboxylic acid and an olefinic compound. It derives from a succinic acid. It is a conjugate acid of an itaconate(2-). This dicarboxylic acid is a white solid that is soluble in water, ethanol, and acetone. Historically, itaconic acid was obtained by the distillation of citric acid, but currently it is produced by fermentation. The name itaconic acid was devised as an anagram of aconitic acid, another derivative of citric acid. Itaconic acid, also known as itaconate, belongs to the class of organic compounds known as branched fatty acids. These are fatty acids containing a branched chain. Itaconic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Since the 1960s, it is produced industrially by the fermentation of carbohydrates such as glucose or molasses using fungi such as Aspergillus itaconicus or Aspergillus terreus. For A. terreus the itaconate pathway is mostly elucidated. The generally accepted route for itaconate is via glycolysis, tricarboxylic acid cycle, and a decarboxylation of cis-aconitate to itaconate via cis-aconitate-decarboxylase. The smut fungus Ustilago maydis uses an alternative route. Cis-aconitate is converted to the thermodynamically favoured trans-aconitate via aconitate-Δ-isomerase (Adi1). trans-Aconitate is further decarboxylated to itaconate by trans-aconitate-decarboxylase (Tad1). Itaconic acid is also produced in cells of macrophage lineage. It was shown that itaconate is a covalent inhibitor of the enzyme isocitrate lyase in vitro. As such, itaconate may possess antibacterial activities against bacteria expressing isocitrate lyase (such as Salmonella enterica and Mycobacterium tuberculosis). It is also sythesized in the laboratory, where dry distillation of citric acid affords itaconic anhydride, which undergoes hydrolysis to itaconic acid. Itaconic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=97-65-4 (retrieved 2024-07-01) (CAS RN: 97-65-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Itaconic acid, a precursor of polymers, chemicals, and fuels, can be synthesized by many fungi. Itaconic acid also is a macrophage-specific metabolite. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors[1][2].

   

albendazole S-oxide

N-[6-(propane-1-sulfinyl)-1H-1,3-benzodiazol-2-yl]methoxycarboximidic acid

C12H15N3O3S (281.0834)


Albendazole s-oxide is part of the Steroid hormone biosynthesis, Linoleic acid metabolism, Retinol metabolism, and Bile secretion pathways. It is a substrate for: Cytochrome P450 3A4. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent

   

Allidochlor

2-chloro-N,N-bis(prop-2-en-1-yl)acetamide

C8H12ClNO (173.0607)


   

Azathioprine

6-[(1-methyl-4-nitro-1H-imidazol-5-yl)sulfanyl]-7H-purine

C9H7N7O2S (277.0382)


Azathioprine is only found in individuals that have used or taken this drug. It is an immunosuppressive pro-drug. It is converted into 6-mercaptopurine in the body where it blocks purine metabolism and DNA synthesis.Azathioprine antagonizes purine metabolism and may inhibit synthesis of DNA, RNA, and proteins. It may also interfere with cellular metabolism and inhibit mitosis. Its mechanism of action is likely due to incorporation of thiopurine analogues into the DNA structure, causing chain termination and cytotoxicity. L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Azathioprine (BW 57-322) is an orally active immunosuppressive agent. Azathioprine can be converted in vivo to the active metabolite 6-mercaptopurine (6-MP). Azathioprine has myelosuppressive effects and induces apoptosis[1][3].

   

Methotrexate

(2S)-2-[(4-{[(2,4-diaminopteridin-6-yl)methyl](methyl)amino}phenyl)formamido]pentanedioic acid

C20H22N8O5 (454.1713)


Methotrexate is only found in individuals that have used or taken this drug. It is an antineoplastic antimetabolite with immunosuppressant properties. It is an inhibitor of tetrahydrofolate dehydrogenase and prevents the formation of tetrahydrofolate, necessary for synthesis of thymidylate, an essential component of DNA. [PubChem]Methotrexate anti-tumor activity is a result of the inhibition of folic acid reductase, leading to inhibition of DNA synthesis and inhibition of cellular replication. The mechanism involved in its activity against rheumatoid arthritis is not known. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BA - Folic acid analogues L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists CONFIDENCE standard compound; INTERNAL_ID 2730 D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents D003879 - Dermatologic Agents Corona-virus KEIO_ID M048 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Apigenin 7-O-beta-D-rutinoside

7-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C27H30O14 (578.1635)


Apigenin 7-o-beta-d-rutinoside, also known as rhoifolin or apigenin-7-O-rhamnoglucoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apigenin 7-o-beta-d-rutinoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 7-o-beta-d-rutinoside can be found in carrot, orange mint, and wild carrot, which makes apigenin 7-o-beta-d-rutinoside a potential biomarker for the consumption of these food products. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB080_Rhoifolin_pos_30eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_10eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_20eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_50eV_CB000032.txt [Raw Data] CB080_Rhoifolin_pos_40eV_CB000032.txt [Raw Data] CB080_Rhoifolin_neg_50eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_10eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_20eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_40eV_000023.txt [Raw Data] CB080_Rhoifolin_neg_30eV_000023.txt Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].

   

Cyclosporine

Cyclosporine (Neoral)

C62H111N11O12 (1201.8413)


D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents > D003524 - Cyclosporins D004791 - Enzyme Inhibitors > D065095 - Calcineurin Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D018501 - Antirheumatic Agents D003879 - Dermatologic Agents Cyclosporin A (Cyclosporine A) is an immunosuppressant which binds to the cyclophilin and inhibits phosphatase activity of protein phosphatase 2B (PP2B/calcineurin) with an IC50 of 5 nM[3]. Cyclosporin A also inhibits CD11a/CD18 adhesion[8].

   

penicillic acid

(2E)-3-methoxy-5-methyl-4-oxohexa-2,5-dienoic acid

C8H10O4 (170.0579)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE isolated standard

   

Hypotaurine

2-aminoethane-1-sulfinic acid

C2H7NO2S (109.0197)


Hypotaurine belongs to the class of organic compounds known as sulfinic acids. Sulfinic acids are compounds containing a sulfinic acid functional group, with the general structure RS(=O)OH (R = organyl, not H). Hypotaurine exists in all living species, ranging from bacteria to humans. Within humans, hypotaurine participates in a number of enzymatic reactions. In particular, hypotaurine can be biosynthesized from cysteamine; which is catalyzed by the enzyme 2-aminoethanethiol dioxygenase. In addition, hypotaurine can be biosynthesized from 3-sulfinoalanine through its interaction with the enzyme cysteine sulfinic acid decarboxylase. In humans, hypotaurine is involved in taurine and hypotaurine metabolism. [Spectral] Hypotaurine (exact mass = 109.01975) and Cytosine (exact mass = 111.04326) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Hypotaurine is a product of enzyme cysteamine dioxygenase [EC 1.13.11.19] in taurine and hypotaurine metabolism pathway (KEGG). It may function as an antioxidant and a protective agent under physiological conditions (PMID 14992269). [HMDB] Hypotaurine (2-aminoethanesulfinic acid), an intermediate in taurine biosynthesis from cysteine in astrocytes, is an endogenous inhibitory amino acid of the glycine receptor. Antioxidant[1].

   

Acetylcarnitine

O-Acety-L-carnitine hydrochloride

[C9H18NO4]+ (204.1236)


Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A143; [MS2] KO009087 KEIO_ID A143

   

Oxypurinol

1H,2H,4H,5H,6H-pyrazolo[3,4-d]pyrimidine-4,6-dione

C5H4N4O2 (152.0334)


Oxipurinol is a xanthine oxidase inhibitor. Oxipurinol is potentially used for treatment of congestive heart failure. PMID: 15139781. Oxipurinol is a xanthine oxidase inhibitor. Oxipurinol is potentially used for treatment of congestive heart failure. C471 - Enzyme Inhibitor > C1637 - Xanthine Oxidase Inhibitor D004791 - Enzyme Inhibitors CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 855; ORIGINAL_PRECURSOR_SCAN_NO 853 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 883; ORIGINAL_PRECURSOR_SCAN_NO 881 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 893; ORIGINAL_PRECURSOR_SCAN_NO 892 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 861; ORIGINAL_PRECURSOR_SCAN_NO 860 CONFIDENCE standard compound; INTERNAL_ID 864; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 894; ORIGINAL_PRECURSOR_SCAN_NO 892 Acquisition and generation of the data is financially supported in part by CREST/JST. Oxipurinol (Oxipurinol), the major active metabolite of Allopurinol, is an inhibitor of xanthine oxidase. Oxipurinol can be used to regulate blood urate levels and treat gout[1].

   

AdoMet

(2S)-2-amino-4-[[(2S,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl-methylsulfonio]butanoate

C15H22N6O5S (398.1372)


[Spectral] S-Adenosyl-L-methionine (exact mass = 398.13724) and L-Histidine (exact mass = 155.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C275 - Antioxidant COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Diphenoxylate

Ethyl 1-(3-cyano-3,3-diphenylpropyl)-4-phenyl-4-piperidinecarboxylic acid

C30H32N2O2 (452.2464)


A meperidine congener used as an antidiarrheal, usually in combination with atropine. At high doses, it acts like morphine. Its unesterified metabolite difenoxin has similar properties and is used similarly. It has little or no analgesic activity. This medication is classified as a Schedule V under the Controlled Substances Act by the Food and Drug Administration (FDA) and the DEA in the United States when used in preparations. When diphenoxylate is used alone, it is classified as a Schedule II. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals

   

Stavudine

1-[(2R,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-yl]-5-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione

C10H12N2O4 (224.0797)


Stavudine is only found in individuals that have used or taken this drug. It is a dideoxynucleoside analog that inhibits reverse transcriptase and has in vitro activity against HIV. [PubChem]Stavudine inhibits the activity of HIV-1 reverse transcriptase (RT) both by competing with the natural substrate dGTP and by its incorporation into viral DNA. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent Stavudine (d4T) is an orally active nucleoside reverse transcriptase inhibitor (NRTI). Stavudine has activity against HIV-1 and HIV-2. Stavudine also inhibits the replication of mitochondrial DNA (mtDNA). Stavudine reduces NLRP3 inflammasome activation and modulates Amyloid-β autophagy. Stavudine induces apoptosis[1][2][3][4].

   

Lipoxin A4

(7E,9E,11Z,13E)-(5S,6R,15S)-5,6,15-Trihydroxyicosa-7,9,11,13-tetraenoic acid

C20H32O5 (352.225)


Lipoxin A4 (LXA4) was first identified in 1984 by Serhan and colleagues as 5-lipoxygenase interaction product of activated leukocytes. Endogenous transcellular biosynthesis of LXA4 occurs via interaction of leukocytes with epithelium, endothelium or platelets. Lipoxins (LXs) or the lipoxygenase interaction products are generated from arachidonic acid via sequential actions of lipoxygenases and subsequent reactions to give specific trihydroxytetraene-containing eicosanoids. These unique structures are formed during cell-cell interactions and appear to act at both temporal and spatially distinct sites from other eicosanoids produced during the course of inflammatory responses and to stimulate natural resolution. Lipoxin A4 (LXA4) and lipoxin B4 (LXB4) are positional isomers that each possesses potent cellular and in vivo actions. These LX structures are conserved across species. The results of numerous studies reviewed in this work now confirm that they are the first recognized eicosanoid chemical mediators that display both potent anti-inflammatory and pro-resolving actions in vivo in disease models that include rabbit, rat, and mouse systems. LXs act at specific GPCRs as agonists to regulate cellular responses of interest in inflammation and resolution. Aspirin has a direct impact in the LX circuit by triggering the biosynthesis of endogenous epimers of LX, termed the aspirin-triggered 15-epi-LX, that share the potent anti-inflammatory actions of LX. (PMID: 16005201, 16613568). Lipoxin A4 (LXA4) was first identified in 1984 by Serhan and colleagues as 5-lipoxygenase interaction product of activated leukocytes. Endogenous transcellular biosynthesis of LXA4 occurs via interaction of leukocytes with epithelium, endothelium or platelets. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents

   

Piplartine

2(1H)-Pyridinone, 5,6-dihydro-1-[(2E)-1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propen-1-yl]-

C17H19NO5 (317.1263)


Piplartine is a member of cinnamamides and a dicarboximide. Piperlongumine is a natural product found in Zanthoxylum gilletii, Macropiper, and other organisms with data available. See also: Long Pepper (part of). Piplartine is found in herbs and spices. Piplartine is an alkaloid from the roots of Piper longum (long pepper Piperlongumine is a alkaloid[1], possesses ant-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities[2]. Piperlongumine induces ROS, and induces apoptosis in cancer cell lines[1]. Piperlongumine shows anti-cardiac fibrosis activity, suppresses myofibroblast transformation via suppression of the ERK1/2 signaling pathway. Piperlongumin could be used in the study of migrasome[2][3]. Piperlongumine is a alkaloid[1], possesses ant-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities[2]. Piperlongumine induces ROS, and induces apoptosis in cancer cell lines[1]. Piperlongumine shows anti-cardiac fibrosis activity, suppresses myofibroblast transformation via suppression of the ERK1/2 signaling pathway. Piperlongumin could be used in the study of migrasome[2][3]. Piperlongumine is a alkaloid[1], possesses ant-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities[2]. Piperlongumine induces ROS, and induces apoptosis in cancer cell lines[1]. Piperlongumine shows anti-cardiac fibrosis activity, suppresses myofibroblast transformation via suppression of the ERK1/2 signaling pathway. Piperlongumin could be used in the study of migrasome[2][3].

   

Matrine

1H,5H,10H-DIPYRIDO(2,1-F:3,2,1-IJ)(1,6)NAPHTHYRIDIN-10-ONE, DODECAHYDRO-, (7AR-(7A.ALPHA.,13A.ALPHA.,13B.BETA.,13C.BETA.))-

C15H24N2O (248.1889)


Matrine is an alkaloid. Matrine is a natural product found in Daphniphyllum oldhamii, Sophora viciifolia, and other organisms with data available. Matrine is an alkaloid found in plants from the Sophora genus. It has a variety of pharmacological effects, including anti-cancer effects, and action as a kappa opioid receptor and μ-receptor agonist. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. See also: Matrine; salicylic acid (component of). Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.230 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.224 Sophoridine is a natural product found in Sophora viciifolia, Leontice leontopetalum, and other organisms with data available. Tetracyclic bis-quinolizidine alkaloids found in the family LEGUMINOSAE, mainly in the genus SOPHORA. INTERNAL_ID 2268; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2268 Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Matrine (Matridin-15-one) is an alkaloid found in plants from the Sophora genus that can act as a kappa opioid receptor and u-receptor agonist. Matrine has a variety of pharmacological effects, including anti-cancer, anti-oxidative stress, anti-inflammation and anti-apoptosis effects. Matrine is potential in the research of disease like human non-small cell lung cancer, hepatoma, papillary thyroid cancer and acute kidney injury (AKI)[1][2][3][4][5]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1]. Sophoridine is a quinolizidine alkaloid isolated from Leguminous plant Sophora flavescens. Sophoridine induces apoptosis. Sophoridine has the potential to be a novel, potent and selective antitumor agent candidate for pancreatic cancer with well-tolerated toxicity[1].

   

7,8-Dihydropteroic acid

4-[[(2-Amino-1,4,7,8-tetrahydro-4-oxo-6-pteridinyl)methyl]amino]-benzoic acid

C14H14N6O3 (314.1127)


In the mammalian host, dihydrofolate biosynthesis occurs via the reduction of folic acid, whereas in plasmodia (e.g. Plasmodium berghei, a malaria parasite) the biosynthesis of 7,8-dihydropteroate, an intermediate product in dihydrofolate synthesis, occurs via the enzymic catalysis of the reaction of 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine pyrophosphate with p-aminobenzoate. Malaria parasites synthesize their folate cofactors de novo and the antimalarial action of sulfonamides is due to their inhibiting the plasmodial dihydropteroate synthesis. The enzymes 6-hydroxymethylpterin pyrophosphokinase (EC 2.7.6.3, HPPK) and dihydropteroate synthase (EC 2.5.1.15, DHPS) catalyze sequential steps in folate biosynthesis. They are present in microorganisms but absent in mammals and therefore are especially suitable targets for antimicrobials. Sulfa drugs (sulfonamides and sulfones) currently are used as antimicrobials targeting DHPS, although resistance to these drugs is increasing. An NADPH-coupled microplate photometric assay could be used for rapid screening of chemical libraries for novel inhibitors of folate biosynthesis as the first step in developing new antimicrobial drugs targeting the folate biosynthetic pathway; in the microplate, the product of the DHPS reaction, 7,8-dihydropteroic acid, is reduced to tetrahydropteroate by excess dihydrofolate reductase (DHFR) using the cofactor NADPH (PMID: 17134675, 4354403, 3546688). 7,8-dihydropteroic acid, also known as dihydropteroinsaeure or h2pte, belongs to pterins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a pterin moiety, which consist of a pteridine ring bearing a ketone and an amine group to form 2-aminopteridin-4(3H)-one. 7,8-dihydropteroic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 7,8-dihydropteroic acid can be synthesized from pteroic acid. 7,8-dihydropteroic acid can also be synthesized into 2-hydroxy-7,8-dihydropteroic acid. 7,8-dihydropteroic acid can be found in a number of food items such as rice, towel gourd, cauliflower, and silver linden, which makes 7,8-dihydropteroic acid a potential biomarker for the consumption of these food products. 7,8-dihydropteroic acid exists in all living species, ranging from bacteria to humans. In humans, 7,8-dihydropteroic acid is involved in the pterine biosynthesis.

   

Calcidiol

(1S,3Z)-3-{2-[(1R,3aS,4E,7aR)-1-[(2R)-6-hydroxy-6-methylheptan-2-yl]-7a-methyl-octahydro-1H-inden-4-ylidene]ethylidene}-4-methylidenecyclohexan-1-ol

C27H44O2 (400.3341)


Calfcifediol is a prehormone that is produced in the liver by hydroxylation of vitamin D3 (cholecalciferol) by the enzyme cholecalciferol 25-hydroxylase. Calcifediol is then converted in the kidneys into calcitriol (1,25-(OH)2D3), a secosteroid hormone that is the active form of vitamin D. It can also be converted into 24-hydroxycalcidiol in the kidneys via 24-hydroxylation. [Wikipedia]. 25-Hydroxycholecalciferol is found in many foods, some of which are green zucchini, green bell pepper, red bell pepper, and other animal fat. The major circulating metabolite of vitamin D3 (calciferon). It is produced in the liver and is the best indicator of the bodys vitamin D stores. It is effective in the treatment of rickets and osteomalacia, both in azotemic and non-azotemic patients. Calcifediol also has mineralizing properties. A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CC - Vitamin d and analogues H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D050071 - Bone Density Conservation Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

SAICAR

(2S)-2-({5-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-1H-imidazol-4-yl}formamido)butanedioic acid

C13H19N4O12P (454.0737)


SAICAR, also known as succinylaminoimidazolecarboxamide ribotide or phosphoribosylaminoimidazolesuccinocarboxamide, is a substrate for the multifunctional protein ADE2. SAICAR is an intermediate in purine metabolism. SAICAR is converted from 5-aminoimidazole-4-carboxyribonucleotide (CAIR) via phosphoribosylaminoimidazolesuccinocarboxamide synthetase (EC: 6.3.2.6) or SAICAR synthase. This enzyme catalyzes the eighth step in the biosynthesis of purine nucleotides. SAICAR (a ribotide) can lose its phosphate group leading to the appearance of a riboside known as succinylaminoimidazolecarboxamide riboside (SAICAriboside) in cerebrospinal fluid, in urine, and, to a lesser extent, in plasma. This particular riboside (called SAICAr) is characteristic of a heritable deficiency known as adenylosuccinate lyase deficiency (ADSL). On the other hand, the ribotide (SAICAR) is generally harmless and is an essential intermediate in purine metabolism. When present in sufficiently high levels, SAICAR can act as an oncometabolite. An oncometabolite is a compound that promotes tumour growth and survival. As an oncometabolite, high levels of SAICAR stimulate pyruvate kinase isoform M2 and promote cancer cell survival in glucose-limited conditions such as aerobic glycolysis (PMID: 23086999). SAICAR (or (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate) is a substrate for the multifunctional protein ADE2. SAICAR is an intermediate in purine metabolism. (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido]succinate is converted from 5-Amino-1-(5-phospho-D-ribosyl) imidazole-4-carboxylate via phosphoribosylaminoimidazole-succinocarboxamide synthase [EC: 6.3.2.6] or SAICAR synthase. This enzyme catalyses the seventh step out of ten in the biosynthesis of purine nucleotides. The appearance of succinylaminoimidazolecarboxamide riboside (SAICAriboside) and succinyladenosine (S-Ado) in cerebrospinal fluid, urine, and to a lesser extent in plasma is characteristic of a heritable deficiency Adenylosuccinate lyase deficiency. [HMDB]. SAICAR is found in many foods, some of which are sweet potato, black chokeberry, common wheat, and globe artichoke. SAICAR. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3031-95-6 (retrieved 2024-08-20) (CAS RN: 3031-95-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

9-Hydroxyfluorene

Diphenylene carbinol

C13H10O (182.0732)


This compound belongs to the family of Fluorenes. These are compounds containing a fluorene moiety, which consists of two benzene rings connected through either a cyclopentane, cyclopentene, or cyclopenta-1,3-diene. 9-Fluorenol (9-Hydroxyfluorene; compound 3) is a dopamine (DAT) inhibitor with IC50 value of 9 μM. 9-Fluorenol is a major metabolite of compound developed as a wake promoting agent. 9-Fluorenol shows wake promotion activity in vivo[1].

   

Leflunomide

alpha,alpha,alpha-Trifluoro-5-methyl-4-isoxazolecarboxy-p-toluidide

C12H9F3N2O2 (270.0616)


Leflunomide is only found in individuals that have used or taken this drug. It is a pyrimidine synthesis inhibitor belonging to the DMARD (disease-modifying antirheumatic drug) class of drugs, which are chemically and pharmacologically very heterogeneous. Leflunomide was approved by FDA and in many other countries (e.g., Canada, Europe) in 1999. Leflunomide is a prodrug that is rapidly and almost completely metabolized following oral administration to its pharmacologically active metabolite, A77 1726. This metabolite is responsible for essentially all of the drugs activity in-vivo. The mechanism of action of leflunomide has not been fully determined, but appears to primarily involve regulation of autoimmune lymphocytes. It has been suggested that leflunomide exerts its immunomodulating effects by preventing the expansion of activated autoimmune lymphocytes via interferences with cell cycle progression. In-vitro data indicates that leflunomide interferes with cell cycle progression by inhibiting dihydroorotate dehydrogenase (a mitochondrial enzyme involved in de novo pyrimidine ribonucleotide uridine monophosphate (rUMP) synthesis) and has antiproliferative activity. Human dihydroorotate dehydrogenase consists of 2 domains: an α/β-barrel domain containing the active site and an α-helical domain that forms a tunnel leading to the active site. A77 1726 binds to the hydrophobic tunnel at a site near the flavin mononucleotide. Inhibition of dihydroorotate dehydrogenase by A77 1726 prevents production of rUMP by the de novo pathway; such inhibition leads to decreased rUMP levels, decreased DNA and RNA synthesis, inhibition of cell proliferation, and G1 cell cycle arrest. It is through this action that leflunomide inhibits autoimmune T-cell proliferation and production of autoantibodies by B cells. Since salvage pathways are expected to sustain cells arrested in the G1 phase, the activity of leflunomide is cytostatic rather than cytotoxic. Other effects that result from reduced rUMP levels include interference with adhesion of activated lymphocytes to the synovial vascular endothelial cells, and increased synthesis of immunosuppressive cytokines such as transforming growth factor-β (TGF-β). Leflunomide is also a tyrosine kinase inhibitor. Tyrosine kinases activate signalling pathways leading to DNA repair, apoptosis and cell proliferation. Inhibition of tyrosine kinases can help to treating cancer by preventing repair of tumor cells. CONFIDENCE standard compound; INTERNAL_ID 1366; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4503; ORIGINAL_PRECURSOR_SCAN_NO 4501 CONFIDENCE standard compound; INTERNAL_ID 1366; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4522; ORIGINAL_PRECURSOR_SCAN_NO 4520 CONFIDENCE standard compound; INTERNAL_ID 1366; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4423; ORIGINAL_PRECURSOR_SCAN_NO 4422 CONFIDENCE standard compound; INTERNAL_ID 1366; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4521; ORIGINAL_PRECURSOR_SCAN_NO 4518 CONFIDENCE standard compound; INTERNAL_ID 1366; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4497; ORIGINAL_PRECURSOR_SCAN_NO 4495 CONFIDENCE standard compound; INTERNAL_ID 1366; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4517; ORIGINAL_PRECURSOR_SCAN_NO 4514 L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C2169 - Dihydroorotate Dehydrogenase Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cefmetazole

(6R,7S)-7-{2-[(cyanomethyl)sulfanyl]acetamido}-7-methoxy-3-{[(1-methyl-1H-1,2,3,4-tetrazol-5-yl)sulfanyl]methyl}-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid

C15H17N7O5S3 (471.0453)


Cefmetazole is only found in individuals that have used or taken this drug. It is a semisynthetic cephamycin antibiotic with a broad spectrum of activity against both gram-positive and gram-negative microorganisms. It has a high rate of efficacy in many types of infection and to date no severe side effects have been noted. [PubChem]The bactericidal activity of cefmetazole results from the inhibition of cell wall synthesis via affinity for penicillin-binding proteins (PBPs). J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Bacampicillin

1-[(Ethoxycarbonyl)oxy]ethyl (2S,5R,6R)-6-{[(2R)-2-amino-2-phenylacetyl]amino}-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid

C21H27N3O7S (465.157)


Bacampicillin is a prodrug of ampicillin and is microbiologically inactive. It is absorbed following oral administration. During absorption from the gastrointestinal tract, bacampicillin is hydrolyzed by esterases present in the intestinal wall. It is microbiologically active as ampicillin, and exerts a bactericidal action through the inhibition of the biosynthesis of cell wall mucopeptides. It is used to cure infection of upper and lower respiratory tract; skin and soft tissue; urinary tract and acute uncomplicated gonococcal urethritis etc. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

Cryptolepine

5-methyl-5H-indolo[3,2-b]quinoline

C16H12N2 (232.1)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents

   

Dunnione

2,3,3-trimethyl-2H,3H,4H,5H-naphtho[1,2-b]furan-4,5-dione

C15H14O3 (242.0943)


   

Embelin

2,5-dihydroxy-3-undecylcyclohexa-2,5-diene-1,4-dione

C17H26O4 (294.1831)


Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3]. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3].

   

Ethyl trans-p-methoxycinnamate

Ethyl (2E)-3-(4-methoxyphenyl)-2-propenoate

C12H14O3 (206.0943)


Ethyl trans-p-methoxycinnamate is found in fats and oils. Ethyl trans-p-methoxycinnamate is a major constituent of oil of Kaempferia galanga (galangal (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1]. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1].

   

Thiadiazolidinone

5-(4-Bromophenylimino)-3,4-tetramethylene-1,3,4-thiadiazolidin-2-one

C12H12BrN3OS (324.9884)


   

Temik

aldicarb

C7H14N2O2S (190.0776)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Sulfobromophthalein

Sulfobromophthalein

C20H10Br4O10S2 (789.6449)


V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CE - Tests for liver functional capacity D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D010635 - Phenolphthaleins D004396 - Coloring Agents Same as: D08548

   

1-Hydroxy-2-methyl-2-butenyl 4-diphosphate

(2E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate;(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate

C5H12O8P2 (262.0007)


   

Manumycin A

(2E,4E,6R)-N-[(1S,5S,6R)-5-hydroxy-5-[(1E,3E,5E)-7-[(2-hydroxy-5-oxo-cyclopenten-1-yl)amino]-7-oxo-hepta-1,3,5-trienyl]-2-oxo-7-oxabicyclo[4.1.0]hept-3-en-3-yl]-2,4,6-trimethyl-deca-2,4-dienamide

C31H38N2O7 (550.2679)


A polyketide with formula C31H38N2O7 initially isolated from Streptomyces parvulus as a result of a random screening program for farnesyl transferase (FTase) inhibitors. It is a natural product that exhibits anticancer and antibiotic properties. Manumycin A is a polyketide with formula C31H38N2O7 initially isolated from Streptomyces parvulus as a result of a random screening program for farnesyl transferase (FTase) inhibitors. It is a natural product that exhibits anticancer and antibiotic properties. It has a role as an EC 1.8.1.9 (thioredoxin reductase) inhibitor, an EC 2.5.1.58 (protein farnesyltransferase) inhibitor, an antineoplastic agent, an apoptosis inducer, an antimicrobial agent, a bacterial metabolite, an antiatherosclerotic agent and a marine metabolite. It is a polyketide, an enamide, an epoxide, an organic heterobicyclic compound, a secondary carboxamide and a tertiary alcohol. Manumycin A is a natural product found in Streptomyces, Streptomyces griseoaurantiacus, and Streptomyces parvulus D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D004791 - Enzyme Inhibitors

   

2-Aminoacridone

2-amino-9,10-dihydroacridin-9-one

C13H10N2O (210.0793)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes

   

Tazarotene

ethyl 6-[2-(4,4-dimethyl-3,4-dihydro-2H-1-benzothiopyran-6-yl)ethynyl]pyridine-3-carboxylate

C21H21NO2S (351.1293)


Tazarotene is only found in individuals that have used or taken this drug. It is a prescription topical retinoid sold as a cream or gel. This medication is approved for treatment of psoriasis, acne, and sun damaged skin (photodamage). [Wikipedia]Although the exact mechanism of tazarotene action is not known, studies have shown that the active form of the drug (tazarotenic acid) binds to all three members of the retinoic acid receptor (RAR) family: RARa, RARb, and RARg, but shows relative selectivity for RARb, and RARg and may modify gene expression. It also has affinity for RXR receptors. C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D009676 - Noxae > D013723 - Teratogens Same as: D01132

   

Proxigermanium

Bis (2-Carboxyethylgermanium)sesquioxide

C6H10Ge2O7 (337.8868)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C308 - Immunotherapeutic Agent > C63817 - Chemokine Receptor Antagonist D007155 - Immunologic Factors > D007369 - Interferon Inducers D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Sodium sulfate

Sodium sulphuric acid, anhydrous

Na2SO4 (141.9313)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D005765 - Gastrointestinal Agents > D002400 - Cathartics Acidity regulator Same as: D01732

   

BzATP

3-O-(4-Benzoyl)benzoyl ATP

C24H24N5O15P3 (715.0482)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors

   

Ethyl-4,4-dichlorobenzilate

Ethyl 2-hydroxy-2,2-bis(4-chlorophenyl)acetate

C16H14Cl2O3 (324.032)


   

Bromodichloromethane

Bromodichloromethane, 14C-labeled

CHBrCl2 (161.8639)


Bromodichloromethane, also known as dichlorobromomethane or monobromodichloromethane, is classified as a member of the trihalomethanes. Trihalomethanes are organic compounds in which exactly three of the four hydrogen atoms of methane (CH4) are replaced by halogen atoms. Bromodichloromethane is a colorless, nonflammable liquid. Small amounts are formed naturally by algae in the oceans. Some of it will dissolve in water, but it readily evaporates into air. Only small quantities of bromodichloromethane are produced in the United States. The small quantities that are produced are used in laboratories or to make other chemicals. However, most bromodichloromethane is formed as a by-product when chlorine is added to drinking water to kill bacteria. Bromodichloromethane has been formerly used as a flame retardant, and a solvent for fats and waxes and because of its high density for mineral separation. Now it is only used as a reagent or intermediate in organic chemistry. Bromodichloromethane can also occur in municipally-treated drinking water as a by-product of the chlorine disinfection process. D009676 - Noxae > D002273 - Carcinogens

   

4-Methylhistamine

2-(5-methyl-1H-imidazol-4-yl)ethan-1-amine

C6H11N3 (125.0953)


   

Rhoifolin

7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chromen-4-one

C27H30O14 (578.1635)


Apigenin 7-O-neohesperidoside is an apigenin derivative having an alpha-(1->2)-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as a metabolite. It is a neohesperidoside, a dihydroxyflavone and a glycosyloxyflavone. It is functionally related to an apigenin. Rhoifolin is a natural product found in Ligustrum robustum, Lonicera japonica, and other organisms with data available. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].

   

Methyl_cinnamate

InChI=1/C10H10O2/c1-12-10(11)8-7-9-5-3-2-4-6-9/h2-8H,1H3/b8-7

C10H10O2 (162.0681)


Methyl cinnamate is a methyl ester resulting from the formal condensation of methyl cinnamic acid with methanol. It is found naturally in the essential oils of Alpinia and Basil leaf oil, and widely used in the flavor and perfume industries. It has a role as a flavouring agent, a fragrance, an insect attractant, a volatile oil component and an anti-inflammatory agent. It is a methyl ester and an alkyl cinnamate. Methyl cinnamate is a natural product found in Melaleuca viridiflora, Alpinia formosana, and other organisms with data available. Methyl cinnamate is a metabolite found in or produced by Saccharomyces cerevisiae. The E (trans) isomer of methyl cinnamate. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Methyl cinnamate

3-Phenyl-methyl ester(2E)-2-propenoic acid

C10H10O2 (162.0681)


Methyl cinnamate is found in ceylan cinnamon. Methyl cinnamate occurs in essential oils e.g. from Ocimum and Alpinia species Also present in various fruits, e.g. guava, feijoa, strawberry. Methyl cinnamate is a flavouring agent.Methyl cinnamate is the methyl ester of cinnamic acid and is a white or transparent solid with a strong, aromatic odor. It is found naturally in a variety of plants, including in fruits, like strawberry, and some culinary spices, such as Sichuan pepper and some varieties of basil. Eucalyptus olida has the highest known concentrations of methyl cinnamate (98\\\\\%) with a 2-6\\\\\% fresh weight yield in the leaf and twigs. Occurs in essential oils e.g. from Ocimum and Alpinia subspecies Also present in various fruits, e.g. guava, feijoa, strawberry. Flavouring agent Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

9,13-cis-Retinoic acid

(2Z,4E,6Z,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenoic acid

C20H28O2 (300.2089)


9,13-cis-Retinoic acid belongs to the class of organic compounds known as retinoids. These are oxygenated derivatives of 3,7-dimethyl-1-(2,6,6-trimethylcyclohex-1-enyl)nona-1,3,5,7-tetraene and derivatives thereof. Retinoids (vitamin A and its analogs) are essential dietary substances that are needed by mammals for reproduction, normal embryogenesis, growth, vision, and maintaining normal cellular differentiation and the integrity of the immune system. Within cells, retinoids regulate gene transcription acting through ligand-dependent transcription factors, the retinoic acid receptors (RARs), and the retinoid X receptors (RXRs). Tretinoin, also known as all-trans-retinoic acid (ATRA), is a naturally occurring derivative of vitamin A (retinol). Retinoids such as tretinoin are important regulators of cell reproduction, proliferation, and differentiation and are used to treat acne and photodamaged skin and to manage keratinization disorders such as ichthyosis and keratosis follicularis. Tretinoin also represents the class of anticancer drugs called differentiating agents and is used in the treatment of acute promyelocytic leukemia (APL). [HMDB] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XF - Retinoids for cancer treatment D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AD - Retinoids for topical use in acne C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D000970 - Antineoplastic Agents Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha.

   

1,9-Heptadecadiene-4,6-diyn-3-ol, (3R,9Z)-

1,9-Heptadecadiene-4,6-diyn-3-ol, (3R,9Z)-

C17H24O (244.1827)


   

1,9-Heptadecadiene-4,6-diyne-3,8-diol, (3S,8S,9Z)-

1,9-Heptadecadiene-4,6-diyne-3,8-diol, (3S,8S,9Z)-

C17H24O2 (260.1776)


   

Celestone

1-fluoro-14,17-dihydroxy-14-(2-hydroxyacetyl)-2,13,15-trimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-3,6-dien-5-one

C22H29FO5 (392.1999)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents

   

Paeoniflorin

(6-Hydroxy-8-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-9,10-dioxatetracyclo[4.3.1.0²,⁵.0³,⁸]decan-2-yl)methyl benzoic acid

C23H28O11 (480.1632)


   

Ethyl trans-p-methoxycinnamate

2-Propenoic acid, 3-(4-methoxyphenyl)-, ethyl ester, (2E)-

C12H14O3 (206.0943)


Ethyl trans-p-methoxycinnamate is found in fats and oils. Ethyl trans-p-methoxycinnamate is a major constituent of oil of Kaempferia galanga (galangal Ethyl p-methoxycinnamate is a natural product found in Hedychium spicatum and Kaempferia galanga with data available. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1]. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1].

   

Embelin

2,5-Cyclohexadiene-1,4-dione, 2,5-dihydroxy-3-undecyl- (9CI)

C17H26O4 (294.1831)


Embelin is a member of the class of dihydroxy-1,4-benzoquinones that is 2,5-dihydroxy-1,4-benzoquinone which is substituted by an undecyl group at position 3. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antimicrobial, antineoplastic and inhibitory activity towards hepatitis C protease. It has a role as a hepatitis C protease inhibitor, an antimicrobial agent, an antineoplastic agent and a plant metabolite. Embelin is a natural product found in Ardisia paniculata, Embelia tsjeriam-cottam, and other organisms with data available. A member of the class of dihydroxy-1,4-benzoquinones that is 2,5-dihydroxy-1,4-benzoquinone which is substituted by an undecyl group at position 3. Isolated from Lysimachia punctata and Embelia ribes, it exhibits antimicrobial, antineoplastic and inhibitory activity towards hepatitis C protease. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3]. Embelin (Embelic acid), a potent, nonpeptidic XIAP inhibitor (IC50=4.1 μM), inhibits cell growth, induces apoptosis, and activates caspase-9 in prostate cancer cells with high levels of XIAP. Embelin blocks NF-kappaB signaling pathway leading to suppression of NF-kappaB-regulated antiapoptotic and metastatic gene products. Embelin also induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells[1][2][3].

   

Ethyl trans-p-methoxycinnamate

2-Propenoic acid, 3-(4-methoxyphenyl)-, ethyl ester, (2E)-

C12H14O3 (206.0943)


Ethyl trans-p-methoxycinnamate is found in fats and oils. Ethyl trans-p-methoxycinnamate is a major constituent of oil of Kaempferia galanga (galangal Ethyl p-methoxycinnamate is a natural product found in Hedychium spicatum and Kaempferia galanga with data available. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1]. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1].

   

Punicic acid

cis-9, trans-11, cis-13-octadecatrienoic acid

C18H30O2 (278.2246)


   

Glycyrol

3,9-Dihydroxy-1-methoxy-2- (3-methyl-2-buten-1-yl) -6H-benzofuro [3,2-c] [1] benzopyran-6-one

C21H18O6 (366.1103)


Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2]. Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2].

   

Amygdalin

(R)-2-phenyl-2-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)acetonitrile

C20H27NO11 (457.1584)


D000970 - Antineoplastic Agents (R)-amygdalin is an amygdalin in which the stereocentre on the cyanohydrin function has R-configuration. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is functionally related to a (R)-mandelonitrile. D-Amygdalin is a natural product found in Prunus spinosa, Gerbera jamesonii, and other organisms with data available. Amygdalin is a cyanogenic glucoside isolated from almonds and seeds of other plants of the family Rosaceae. Amygdalin is converted by plant emulsin (a combination of a glucosidase and a nitrilase) or hydrochloric acid into benzaldehyde, D-glucose, and hydrocyanic acid. (NCI04) A cyanogenic glycoside found in the seeds of Rosaceae. C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C29724 - Cyanoglycoside Agent An amygdalin in which the stereocentre on the cyanohydrin function has R-configuration. C1907 - Drug, Natural Product Origin: Plant; Formula(Parent): C20H27NO11; Bottle Name:Amygdalin; PRIME Parent Name:Amygdalin; PRIME in-house No.:V0293, Glycosides, Nitriles Annotation level-1 Neoamygdalin is a natural product found in Prunus virginiana, Prunus serotina, and other organisms with data available. Amygdalin is a cyanogenic glucoside isolated from almonds and seeds of other plants of the family Rosaceae. Amygdalin is converted by plant emulsin (a combination of a glucosidase and a nitrilase) or hydrochloric acid into benzaldehyde, D-glucose, and hydrocyanic acid. (NCI04) A cyanogenic glycoside found in the seeds of Rosaceae. Amygdalin is a plant glucoside isolated from the stones of rosaceous fruits, such as apricots, peaches, almond, cherries, and plums. Amygdalin is a plant glucoside isolated from the stones of rosaceous fruits, such as apricots, peaches, almond, cherries, and plums. Neoamygdalin is a compound identified in the different processed bitter almonds. Neoamygdalin has the potential for the research of cough and asthma[1].

   

Loganic acid

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid

C16H24O10 (376.1369)


8-Epiloganic acid is a natural product found in Plantago atrata, Lonicera japonica, and other organisms with data available. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].

   

Albendazole oxide

Albendazole sulfoxide

C12H15N3O3S (281.0834)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent CONFIDENCE standard compound; INTERNAL_ID 1060

   

Lipoxin A4

5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid

C20H32O5 (352.225)


A C20 hydroxy fatty acid having (5S)-, (6R)- and (15S)-hydroxy groups as well as (7E)- (9E)-, (11Z)- and (13E)-double bonds. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Chemical was purchased from CAY90410 (Lot D433602-40); Diagnostic ions: 351.2, 251.1, 235,1, 145.6, 114.9

   

S-Adenosylmethionine

S-Adenosylmethionine

[C15H23N6O5S]+ (399.1451)


KEIO_ID A020; [MS2] KO008827 KEIO_ID A020

   

Diphenoxylate

Diphenoxylate(to be removed)

C30H32N2O2 (452.2464)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07D - Antipropulsives > A07DA - Antipropulsives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics C78276 - Agent Affecting Digestive System or Metabolism > C266 - Antidiarrheal Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D005765 - Gastrointestinal Agents > D000930 - Antidiarrheals

   

Methotrexate

L(+)-Amethopterin hydrate

C20H22N8O5 (454.1713)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BA - Folic acid analogues L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D012102 - Reproductive Control Agents > D000019 - Abortifacient Agents C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors > D005493 - Folic Acid Antagonists D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Rhoifolin

7-[[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-5-hydroxy-2-(4-hydroxyphenyl)-4-chromenone

C27H30O14 (578.1635)


Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3]. Rhoifolin is a flavone glycoside can be isolated from Rhus succedanea. Rhoifolin has anti-diabetic effect acting through enhanced adiponectin secretion, tyrosine phosphorylation of insulin receptor-β and glucose transporter 4 (GLUT 4) translocation. Rhoifolin has an anti-inflammatory action via multi-level regulation of inflammatory mediators. Rhoifolin ameliorates titanium particle-stimulated osteolysis and attenuates osteoclastogenesis via RANKL-induced NF-κB and MAPK pathways. Rhoifolin also has cytotoxic activity against different cancer cell lines[1][2][3].

   

Peoniflorin

Paeoniflorin

C23H28O11 (480.1632)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Annotation level-1 Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3]. Paeoniflorin is a heat shock protein-inducing compound and commonly exists in the plants of Paeoniaceae family, with various biological activities, including anticancer activity, anti-inflammatory activity, enhancing cognition and attenuating learning impairment, anti-oxidative stress, antiplatelet aggregation, expansion of blood vessels, and reducing blood viscosity[1][2][3].

   

Rosin

Abietic acid

C20H30O2 (302.2246)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.566 D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.569 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.570 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.573 Abietic acid, a diterpene isolated from Colophony, possesses antiproliferative, antibacterial, and anti-obesity properties. Abietic acid inhibits lipoxygenase activity for allergy treatment[1][2]. Abietic acid, a diterpene isolated from Colophony, possesses antiproliferative, antibacterial, and anti-obesity properties. Abietic acid inhibits lipoxygenase activity for allergy treatment[1][2].

   

Tretinoin

(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenoic acid

C20H28O2 (300.2089)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XF - Retinoids for cancer treatment D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AD - Retinoids for topical use in acne C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D000970 - Antineoplastic Agents CONFIDENCE standard compound; INTERNAL_ID 135 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.574 Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Retinoic acid is a metabolite of vitamin A that plays important roles in cell growth, differentiation, and organogenesis. Retinoic acid is a natural agonist of RAR nuclear receptors, with IC50s of 14 nM for RARα/β/γ. Retinoic acid bind to PPARβ/δ with Kd of 17 nM. Retinoic acid acts as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha.

   

leflunomide

leflunomide

C12H9F3N2O2 (270.0616)


L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants > L04AA - Selective immunosuppressants C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C2169 - Dihydroorotate Dehydrogenase Inhibitor D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Tazarotene

Tazarotene (Avage)

C21H21NO2S (351.1293)


C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent D - Dermatologicals > D05 - Antipsoriatics > D05A - Antipsoriatics for topical use C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D003879 - Dermatologic Agents > D007641 - Keratolytic Agents D009676 - Noxae > D013723 - Teratogens Same as: D01132

   

azathioprine

"Azathioprine (Azasan, Imuran)"

C9H7N7O2S (277.0382)


L - Antineoplastic and immunomodulating agents > L04 - Immunosuppressants > L04A - Immunosuppressants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents C308 - Immunotherapeutic Agent > C574 - Immunosuppressant D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents CONFIDENCE standard compound; INTERNAL_ID 1262; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2581; ORIGINAL_PRECURSOR_SCAN_NO 2579 CONFIDENCE standard compound; INTERNAL_ID 1262; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2599; ORIGINAL_PRECURSOR_SCAN_NO 2597 CONFIDENCE standard compound; INTERNAL_ID 1262; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2587; ORIGINAL_PRECURSOR_SCAN_NO 2585 CONFIDENCE standard compound; INTERNAL_ID 1262; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2583; ORIGINAL_PRECURSOR_SCAN_NO 2581 CONFIDENCE standard compound; INTERNAL_ID 1262; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2606; ORIGINAL_PRECURSOR_SCAN_NO 2603 CONFIDENCE standard compound; INTERNAL_ID 1262; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2606; ORIGINAL_PRECURSOR_SCAN_NO 2604 CONFIDENCE standard compound; INTERNAL_ID 1262; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5597; ORIGINAL_PRECURSOR_SCAN_NO 5595 CONFIDENCE standard compound; INTERNAL_ID 1262; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5599; ORIGINAL_PRECURSOR_SCAN_NO 5597 CONFIDENCE standard compound; INTERNAL_ID 1262; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5624; ORIGINAL_PRECURSOR_SCAN_NO 5622 CONFIDENCE standard compound; INTERNAL_ID 1262; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5605; ORIGINAL_PRECURSOR_SCAN_NO 5603 CONFIDENCE standard compound; INTERNAL_ID 1262; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5625; ORIGINAL_PRECURSOR_SCAN_NO 5623 CONFIDENCE standard compound; INTERNAL_ID 1262; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5634; ORIGINAL_PRECURSOR_SCAN_NO 5633 CONFIDENCE standard compound; INTERNAL_ID 8328 Azathioprine (BW 57-322) is an orally active immunosuppressive agent. Azathioprine can be converted in vivo to the active metabolite 6-mercaptopurine (6-MP). Azathioprine has myelosuppressive effects and induces apoptosis[1][3].

   

2-Aminoethanesulfinic acid

2-Aminoethanesulfinic acid

C2H7NO2S (109.0197)


An aminosulfinic acid comprising ethylamine having the sulfo group at the 2-position. Hypotaurine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=300-84-5 (retrieved 2024-07-15) (CAS RN: 300-84-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Hypotaurine (2-aminoethanesulfinic acid), an intermediate in taurine biosynthesis from cysteine in astrocytes, is an endogenous inhibitory amino acid of the glycine receptor. Antioxidant[1].

   

Oxipurinol

1H-Pyrazolo[3,4-d]pyrimidine-4,6(2H,5H)-dione

C5H4N4O2 (152.0334)


C471 - Enzyme Inhibitor > C1637 - Xanthine Oxidase Inhibitor D004791 - Enzyme Inhibitors Oxipurinol (Oxipurinol), the major active metabolite of Allopurinol, is an inhibitor of xanthine oxidase. Oxipurinol can be used to regulate blood urate levels and treat gout[1].

   

Daphnetin

Daphnetin

C9H6O4 (178.0266)


7,8-dihydroxy-2h-chromen-2-one, also known as daphnetin or 7,8-dihydroxycoumarin, is a member of the class of compounds known as 7,8-dihydroxycoumarins. 7,8-dihydroxycoumarins are coumarins bearing two hydroxyl groups at the C7- and C8-positions of the coumarin skeleton, respectively. 7,8-dihydroxy-2h-chromen-2-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 7,8-dihydroxy-2h-chromen-2-one can be found in chickpea and watermelon, which makes 7,8-dihydroxy-2h-chromen-2-one a potential biomarker for the consumption of these food products. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 15 INTERNAL_ID 15; CONFIDENCE Reference Standard (Level 1) Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4].

   

Itaconic acid

2-methylidenebutanedioic acid;2-methylenesuccinic acid

C5H6O4 (130.0266)


A dicarboxylic acid that is methacrylic acid in which one of the methyl hydrogens is substituted by a carboxylic acid group. Itaconic acid, a precursor of polymers, chemicals, and fuels, can be synthesized by many fungi. Itaconic acid also is a macrophage-specific metabolite. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors[1][2].

   

Mesalamine

5-Aminosalicylic acid

C7H7NO3 (153.0426)


A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07E - Intestinal antiinflammatory agents > A07EC - Aminosalicylic acid and similar agents D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018501 - Antirheumatic Agents CONFIDENCE standard compound; INTERNAL_ID 8621

   

Stavudine

Stavudine

C10H12N2O4 (224.0797)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2238; ORIGINAL_PRECURSOR_SCAN_NO 2235 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2232; ORIGINAL_PRECURSOR_SCAN_NO 2230 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2236; ORIGINAL_PRECURSOR_SCAN_NO 2234 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2225; ORIGINAL_PRECURSOR_SCAN_NO 2224 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2291; ORIGINAL_PRECURSOR_SCAN_NO 2290 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2235; ORIGINAL_PRECURSOR_SCAN_NO 2233 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9439; ORIGINAL_PRECURSOR_SCAN_NO 9434 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9398; ORIGINAL_PRECURSOR_SCAN_NO 9395 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9567; ORIGINAL_PRECURSOR_SCAN_NO 9562 CONFIDENCE standard compound; INTERNAL_ID 1066; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9454; ORIGINAL_PRECURSOR_SCAN_NO 9450 Stavudine (d4T) is an orally active nucleoside reverse transcriptase inhibitor (NRTI). Stavudine has activity against HIV-1 and HIV-2. Stavudine also inhibits the replication of mitochondrial DNA (mtDNA). Stavudine reduces NLRP3 inflammasome activation and modulates Amyloid-β autophagy. Stavudine induces apoptosis[1][2][3][4].

   

falcarindiol

1,9-Heptadecadiene-4,6-diyne-3,8-diol, (3R,8S,9Z)-

C17H24O2 (260.1776)


(+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.

   

Calcifediol

9,10-Secocholesta-5,7,10(19)-triene-3beta,25-diol

C27H44O2 (400.3341)


A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CC - Vitamin d and analogues H - Systemic hormonal preparations, excl. sex hormones and insulins > H05 - Calcium homeostasis > H05B - Anti-parathyroid agents D018977 - Micronutrients > D014815 - Vitamins > D006887 - Hydroxycholecalciferols D050071 - Bone Density Conservation Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Falcarinol

(CIS)-(-)-3-HYDROXY-1,9-HEPTADECADIEN-4,6-DIYNE

C17H24O (244.1827)


Panaxynol is a long-chain fatty alcohol. It has a role as a metabolite. Falcarinol is a natural product found in Chaerophyllum aureum, Cussonia arborea, and other organisms with data available. A natural product found in Panax ginseng and Angelica japonica.

   

panaxynol

(3R,9Z)-heptadeca-1,9-dien-4,6-diyn-3-ol

C17H24O (244.1827)


   

Propagermanium

Bis (2-Carboxyethylgermanium)sesquioxide

C6H10Ge2O7 (337.8868)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C308 - Immunotherapeutic Agent > C63817 - Chemokine Receptor Antagonist D007155 - Immunologic Factors > D007369 - Interferon Inducers D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Sodium sulfate

Sodium sulfate

Na2O4S (141.9313)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D005765 - Gastrointestinal Agents > D002400 - Cathartics

   

AI3-00579

InChI=1\C10H10O2\c1-12-10(11)8-7-9-5-3-2-4-6-9\h2-8H,1H3\b8-7

C10H10O2 (162.0681)


Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Gentiopicrin

(5R,6S)-6-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-5-vinyl-5,6-dihydro-3H-pyrano[5,4-c]pyran-1-one

C16H20O9 (356.1107)


Gentiopicroside, a naturally occurring iridoid glycoside, inhibits P450 activity, with an IC50 and a Ki of 61 μM and 22.8 μM for CYP2A6; Gentiopicroside has anti-inflammatoryand antioxidative effects. Gentiopicroside, a naturally occurring iridoid glycoside, inhibits P450 activity, with an IC50 and a Ki of 61 μM and 22.8 μM for CYP2A6; Gentiopicroside has anti-inflammatoryand antioxidative effects.

   

6Z-0282

(E)-3-(4-methoxyphenyl)prop-2-enoic acid ethyl ester

C12H14O3 (206.0943)


(E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1]. (E)-Ethyl p-methoxycinnamate is a natural product found in Kaempferia galangal with anti-inflammatory, anti-neoplastic and anti-microbial effects. (E)-Ethyl p-methoxycinnamate inhibits COX-1 and COX-2 in vitro with IC50s of 1.12 and 0.83 μM, respectively[1].

   

Daphnetol

InChI=1/C9H6O4/c10-6-3-1-5-2-4-7(11)13-9(5)8(6)12/h1-4,10,12

C9H6O4 (178.0266)


7,8-dihydroxycoumarin is a hydroxycoumarin. Daphnetin is a natural product found in Euphorbia dracunculoides, Rhododendron lepidotum, and other organisms with data available. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4].

   

9-fluorenol

9H-Fluoren-9-ol

C13H10O (182.0732)


A member of the class of hydroxyfluorenes that is 9H-fluorene substituted by a hydroxy group at position 9 (the non-aromatic carbon). 9-Fluorenol (9-Hydroxyfluorene; compound 3) is a dopamine (DAT) inhibitor with IC50 value of 9 μM. 9-Fluorenol is a major metabolite of compound developed as a wake promoting agent. 9-Fluorenol shows wake promotion activity in vivo[1].

   
   

Cefmetazole

Cefmetazole

C15H17N7O5S3 (471.0453)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01D - Other beta-lactam antibacterials > J01DC - Second-generation cephalosporins A cephalosporin antibiotic containg an N(1)-methyltetrazol-5-ylthiomethyl side-chain at C-3 of the parent cephem bicyclic structure. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002511 - Cephalosporins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D002513 - Cephamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

O-Acetylcarnitine

O-acetylcarnitinium

C9H18NO4+ (204.1236)


   

Bacampicillin

Bacampicillin

C21H27N3O7S (465.157)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01C - Beta-lactam antibacterials, penicillins > J01CA - Penicillins with extended spectrum A penicillanic acid ester that is the 1-ethoxycarbonyloxyethyl ester of ampicillin. It is a semi-synthetic, microbiologically inactive prodrug of ampicillin. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D010406 - Penicillins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams C254 - Anti-Infective Agent > C258 - Antibiotic > C260 - Beta-Lactam Antibiotic

   

SAICAR

SAICAR

C13H19N4O12P (454.0737)


A 1-(phosphoribosyl)imidazolecarboxamide resulting from the formal condesation of the darboxy group of 5-amino-1-(5-O-phosphono-beta-D-ribofuranosyl)-1H-imidazole-4-carboxylic acid with the amino group of L-aspartic acid. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cryptolepine

Cryptolepine

C16H12N2 (232.1)


An organic heterotetracyclic compound that is 5H-indolo[3,2-b]quinoline in which the hydrogen at position N-5 is replaced by a methyl group. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents

   

dihydropteroate

7,8-Dihydropteroic acid

C14H14N6O3 (314.1127)


A pteroic acid derivative arising from formal hydrogenation of the 7,8-double bond of pteroic acid.

   

4-Methylhistamine

4-Methylhistamine

C6H11N3 (125.0953)


An aralkylamino compound that is histamine bearing a methyl substituent at the 5 position on the ring.

   

Sodium sulfate

Sodium sulfate

Na2SO4 (141.9313)


A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AD - Osmotically acting laxatives A - Alimentary tract and metabolism > A12 - Mineral supplements > A12C - Other mineral supplements > A12CA - Sodium C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent D005765 - Gastrointestinal Agents > D002400 - Cathartics Same as: D01732

   

BROMODICHLOROMETHANE

BROMODICHLOROMETHANE

CHBrCl2 (161.8639)


D009676 - Noxae > D002273 - Carcinogens

   

Celestone

Celestone

C22H29FO5 (392.1999)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D000893 - Anti-Inflammatory Agents

   

2-aminoacridone

2-aminoacridone

C13H10N2O (210.0793)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes