Gene Association: OGG1
UniProt Search:
OGG1 (PROTEIN_CODING)
Function Description: 8-oxoguanine DNA glycosylase
found 169 associated metabolites with current gene based on the text mining result from the pubmed database.
Epicatechin
Epicatechin is an antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechin is a tannin peculiar to green and white tea because the black tea oxidation process reduces catechins in black tea. Catechin is a powerful, water soluble polyphenol and antioxidant that is easily oxidized. Several thousand types are available in the plant world. As many as two thousand are known to have a flavon structure and are called flavonoids. Catechin is one of them. Green tea is manufactured from fresh, unfermented tea leaves; the oxidation of catechins is minimal, and hence they are able to serve as antioxidants. Researchers believe that catechin is effective because it easily sticks to proteins, blocking bacteria from adhering to cell walls and disrupting their ability to destroy them. Viruses have hooks on their surfaces and can attach to cell walls. The catechin in green tea prevents viruses from adhering and causing harm. Catechin reacts with toxins created by harmful bacteria (many of which belong to the protein family) and harmful metals such as lead, mercury, chrome, and cadmium. From its NMR espectra, there is a doubt on 2 and 3 atoms configuration. It seems to be that they are in trans position. Epicatechin, also known as (+)-cyanidanol-3 or 2,3-cis-epicatechin, is a member of the class of compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Thus, epicatechin is considered to be a flavonoid lipid molecule. Epicatechin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Epicatechin can be found in cashew nut, which makes epicatechin a potential biomarker for the consumption of this food product. Epicatechin can be found primarily in blood, feces, and urine, as well as throughout most human tissues. Epicatechin is a flavan-3-ol, a type of natural phenol and antioxidant. It is a plant secondary metabolite. It belongs to the group of flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids . (-)-epicatechin is a catechin with (2R,3R)-configuration. It has a role as an antioxidant. It is a polyphenol and a catechin. It is an enantiomer of a (+)-epicatechin. Epicatechin has been used in trials studying the treatment of Pre-diabetes. (-)-Epicatechin is a natural product found in Visnea mocanera, Litsea rotundifolia, and other organisms with data available. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Crofelemer (monomer of); Bilberry (part of); Cats Claw (part of) ... View More ... A catechin with (2R,3R)-configuration. [Raw Data] CB030_(-)-Epicatechin_pos_20eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_50eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_40eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_10eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_pos_30eV_CB000016.txt [Raw Data] CB030_(-)-Epicatechin_neg_50eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_30eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_10eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_40eV_000009.txt [Raw Data] CB030_(-)-Epicatechin_neg_20eV_000009.txt Epicatechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-46-0 (retrieved 2024-07-09) (CAS RN: 490-46-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB. (-)-Epicatechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 3.2 μM. (-)-Epicatechin inhibits the IL-1β-induced expression of iNOS by blocking the nuclear localization of the p65 subunit of NF-κB.
Adenine
Adenine is the parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. It has a role as a human metabolite, a Daphnia magna metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purine nucleobase and a member of 6-aminopurines. It derives from a hydride of a 9H-purine. A purine base and a fundamental unit of adenine nucleotides. Adenine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenine is a natural product found in Fritillaria cirrhosa, Annona purpurea, and other organisms with data available. Adenine is a purine nucleobase with an amine group attached to the carbon at position 6. Adenine is the precursor for adenosine and deoxyadenosine nucleosides. Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (A3372, A3373). Adenine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine base and a fundamental unit of ADENINE NUCLEOTIDES. See also: adenine; dextrose, unspecified form (component of) ... View More ... Adenine is a purine base. Adenine is found in both DNA and RNA. Adenine is a fundamental component of adenine nucleotides. Adenine forms adenosine, a nucleoside, when attached to ribose, and deoxyadenosine when attached to deoxyribose; it forms adenosine triphosphate (ATP), a nucleotide, when three phosphate groups are added to adenosine. Adenosine triphosphate is used in cellular metabolism as one of the basic methods of transferring chemical energy between chemical reactions. Purine inborn errors of metabolism (IEM) are serious hereditary disorders, which should be suspected in any case of neonatal fitting, failure to thrive, recurrent infections, neurological deficit, renal disease, self-mutilation and other manifestations. Investigation usually starts with uric acid (UA) determination in urine and plasma. (OMIM 300322, 229600, 603027, 232400, 232600, 232800, 201450, 220150, 232200, 162000, 164050, 278300). (PMID: 17052198, 17520339). Widespread throughout animal and plant tissue, purine components of DNA, RNA, and coenzymes. Vitamin The parent compound of the 6-aminopurines, composed of a purine having an amino group at C-6. Adenine (/ˈædɪnɪn/) (symbol A or Ade) is a purine nucleobase. It is one of the four nucleobases in the nucleic acids of DNA, the other three being guanine (G), cytosine (C), and thymine (T). Adenine derivatives have various roles in biochemistry including cellular respiration, in the form of both the energy-rich adenosine triphosphate (ATP) and the cofactors nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) and Coenzyme A. It also has functions in protein synthesis and as a chemical component of DNA and RNA.[2] The shape of adenine is complementary to either thymine in DNA or uracil in RNA. The adjacent image shows pure adenine, as an independent molecule. When connected into DNA, a covalent bond is formed between deoxyribose sugar and the bottom left nitrogen (thereby removing the existing hydrogen atom). The remaining structure is called an adenine residue, as part of a larger molecule. Adenosine is adenine reacted with ribose, as used in RNA and ATP; Deoxyadenosine is adenine attached to deoxyribose, as used to form DNA. Adenine forms several tautomers, compounds that can be rapidly interconverted and are often considered equivalent. However, in isolated conditions, i.e. in an inert gas matrix and in the gas phase, mainly the 9H-adenine tautomer is found.[3][4] Purine metabolism involves the formation of adenine and guanine. Both adenine and guanine are derived from the nucleotide inosine monophosphate (IMP), which in turn is synthesized from a pre-existing ribose phosphate through a complex pathway using atoms from the amino acids glycine, glutamine, and aspartic acid, as well as the coenzyme tetrahydrofolate. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].
Guanine
Guanine is one of the five main nucleobases found in the nucleic acids DNA and RNA. Guanine is a derivative of purine, consisting of a fused pyrimidine-imidazole ring system with conjugated double bonds. Being unsaturated, the bicyclic molecule is planar. The guanine nucleoside is called guanosine. The first isolation of guanine was reported in 1844 from the excreta of sea birds, known as guano, which was used as a source of fertilizer. High affinity binding of guanine nucleotides and the ability to hydrolyze bound GTP to GDP are characteristics of an extended family of intracellular proteins. Guanine nucleotide-binding regulatory proteins may be involved in the activation of phospholipases C and A2 by hormones and other ligands. The binding of hormones to receptors that activate phospholipase C is decreased by guanine nucleotides and these hormones also stimulate a high-affinity GTPase activity in cell membranes. Effects of hormones on phospholipase C activity in cell-free preparations are dependent on the presence of guanine nucleotides. Hypoxanthine-guanine phosphoribosyltransferase (HPRT, EC 2.4.2.8) is a purine salvage enzyme that catalyses the conversion of hypoxanthine and guanine to their respective mononucleotides. Partial deficiency of this enzyme can result in the overproduction of uric acid leading to a severe form of gout, whilst a virtual absence of HPRT activity causes the Lesch-Nyhan syndrome, an inborn error of metabolism, which is characterised by hyperuricaemia, mental retardation, choreoathetosis and compulsive self-mutilation. Peroxynitrite induces DNA base damage predominantly at guanine (G) and 8-oxoguanine (8-oxoG) nucleobases via oxidation reactions. G and 8-oxoG are the most reactive bases toward Peroxynitrite and possibly the major contributors to peroxynitrite-derived genotoxic and mutagenic lesions. The neutral G radical, reacts with NO2 to yield 8-nitroguanine and 5-nitro-4-guanidinohydantoin (PMID: 16352449, 2435586, 2838362, 1487231). Guanine is a 2-aminopurine carrying a 6-oxo substituent. It has a role as a human metabolite, an algal metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purine nucleobase, an oxopurine and a member of 2-aminopurines. It derives from a hydride of a 9H-purine. Guanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Guanine is a natural product found in Fritillaria thunbergii, Isatis tinctoria, and other organisms with data available. Guanine is a purine base that is a constituent of nucleotides occurring in nucleic acids. Guanine is a mineral with formula of C5H3(NH2)N4O. The corresponding IMA (International Mineralogical Association) number is IMA1973-056. The IMA symbol is Gni. Guanine is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs widely in animals and plants. Component of nucleic acids (CCD) A 2-aminopurine carrying a 6-oxo substituent. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanine (exact mass = 151.04941) and D-Gluconic acid (exact mass = 196.0583) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanine (exact mass = 151.04941) and L-Valine (exact mass = 117.07898) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 54 CONFIDENCE standard compound; ML_ID 43
Cytosine
Cytosine, also known as C, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Cytosine is also classified as a pyrimidine derivative, with a heterocyclic aromatic ring and two substituents attached (an amine group at position 4 and a keto group at position 2). Cytosine is one of the four main bases found in DNA and RNA, along with adenine, guanine, and thymine (uracil in RNA). The nucleoside of cytosine is cytidine. In Watson-Crick base pairing, cytosine forms three hydrogen bonds with guanine. Cytosine was discovered and named by Albrecht Kossel and Albert Neumann in 1894 when it was hydrolyzed from calf thymus tissues. Cytosine exists in all living species, ranging from bacteria to plants to humans. Within cells, cytosine can undergo several enzymatic reactions. It can be methylated into 5-methylcytosine by an enzyme called DNA methyltransferase (DNMT) or be methylated and hydroxylated to make 5-hydroxymethylcytosine. The DNA methyltransferase (DNMT) family of enzymes transfer a methyl group from S-adenosyl-l-methionine (SAM) to the 5’ carbon of cytosine in a molecule of DNA. High levels of cytosine can be found in the urine of individuals with severe combined immunodeficiency syndrome (SCID). Cytosine concentrations as high as (23-160 mmol/mol creatinine) were detected in SCID patients compared to normal levels of <2 mmol/mol creatinine (PMID: 262183). Cytosine is an aminopyrimidine that is pyrimidin-2-one having the amino group located at position 4. It has a role as a human metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. It is a pyrimidine nucleobase, a pyrimidone and an aminopyrimidine. Cytosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cytosine is a natural product found in Streptomyces antibioticus, Salmonella enterica, and other organisms with data available. Cytosine is a pyrimidine base found in DNA and RNA that pairs with guanine. Cytosine is a metabolite found in or produced by Saccharomyces cerevisiae. A pyrimidine base that is a fundamental unit of nucleic acids. See also: Pyrimidine (related). A pyrimidine base that is a fundamental unit of nucleic acids. The deamination of cytosine alone is apparent and the nucleotide of cytosine is the prime mutagenic nucleotide in leukaemia and cancer. [HMDB]. Cytosine is found in many foods, some of which are beech nut, turmeric, grass pea, and cucurbita (gourd). An aminopyrimidine that is pyrimidin-2-one having the amino group located at position 4. Cytosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=71-30-7 (retrieved 2024-07-01) (CAS RN: 71-30-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2].
Benzo[a]pyrene
Benzo[a]pyrene appears as a liquid. Presents a threat to the environment. Immediate steps should be taken to limits its spread to the environment. Easily penetrates the soil and contaminates groundwater or nearby waterways. Benzo[a]pyrene is an ortho- and peri-fused polycyclic arene consisting of five fused benzene rings. It has a role as a carcinogenic agent and a mouse metabolite. Benzo[a]pyrene is a natural product found in Angelica sinensis and Homo sapiens with data available. 3,4-Benzpyrene is a crystalline, aromatic hydrocarbon consisting of five fused benzene rings and formed during the incomplete combustion of organic matter. 3,4-Benzpyrene is primarily found in gasoline and diesel exhaust, cigarette smoke, coal tar and coal tar pitch, charcoal-broiled foods and certain other foods, amino acids, fatty acids and carbohydrate pyrolysis products, soot smoke, creosote oil, petroleum asphalt and shale oils. This substance is used only for research purposes. 3,4-Benzpyrene is reasonably anticipated to be a human carcinogen. (NCI05) Benzo[a]pyrene is one of over 100 different polycyclic aromatic hydrocarbons (PAHs). PAHs are chemicals that are formed during the incomplete burning organic substances, such as fossil fuels. They are usually found as a mixture containing two or more of these compounds. It is one ingredient of cigarette. (L10) A potent mutagen and carcinogen. It is a public health concern because of its possible effects on industrial workers, as an environmental pollutant, an as a component of tobacco smoke. See also: Tobacco Leaf (part of) ... View More ... Benzo[a]pyrene, also known as 3,4-Benzopyrene or 3,4-BP, is classified as a member of the Benzopyrenes. Benzopyrenes are organic compounds containing a benzene fused to a pyrene(benzo[def]phenanthrene) ring system. Benzo[a]pyrene is formally rated as a carcinogenic (IARC 1) potentially toxic compound. Benzo[a]pyrene is a crystalline, aromatic hydrocarbon consisting of five fused benzene rings and formed during the incomplete combustion of organic matter. Benzo[a]pyrene is primarily found in gasoline and diesel exhaust, cigarette smoke, coal tar and coal tar pitch, charcoal-broiled foods and certain other foods, amino acids, fatty acids and carbohydrate pyrolysis products, soot smoke, creosote oil, petroleum asphalt and shale oils. This substance is used only for research purposes. Benzo[a]pyrene is reasonably anticipated to be a human carcinogen (NCI05). Its diol epoxide metabolites (more commonly known as BPDE) react and bind to DNA, resulting in mutations and eventually cancer. It is listed as a Group 1 carcinogen by the IARC. In the 18th century a scrotal cancer of chimney sweepers, the chimney sweeps carcinoma, was already connected to soot. [Wikipedia] An ortho- and peri-fused polycyclic arene consisting of five fused benzene rings. Benzo[a]pyrene shows lung carcinogenicity in animal models, and it is frequently used in chemoprevention studies. Benzo[a]pyrene shows lung carcinogenicity in animal models, and it is frequently used in chemoprevention studies.
beta-Cryptoxanthin
beta-Cryptoxanthin has been isolated from abalone, fish eggs, and many higher plants. beta-Cryptoxanthin is a major source of vitamin A, often second only to beta-carotene, and is present in fruits such as oranges, tangerines, and papayas (PMID: 8554331). Frequent intake of tropical fruits that are rich in beta-cryptoxanthin is associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents. Papaya intake was the best food predictor of plasma beta-cryptoxanthin concentrations. Subjects that frequently consumed (i.e. greater or equal to 3 times/day) tropical fruits with at least 50 micro g/100 g beta-cryptoxanthin (e.g. papaya, tangerine, orange, watermelon) had twofold the plasma beta-cryptoxanthin concentrations of those with intakes of less than 4 times/week (PMID: 12368412). A modest increase in beta-cryptoxanthin intake, equivalent to one glass of freshly squeezed orange juice per day, is associated with a reduced risk of developing inflammatory disorders such as rheumatoid arthritis (PMID: 16087992). Higher prediagnostic serum levels of total carotenoids and beta-cryptoxanthin were associated with lower smoking-related lung cancer risk in middle-aged and older men in Shanghai, China (PMID: 11440962). Consistent with inhibition of the lung cancer cell growth, beta-cryptoxanthin induced the mRNA levels of retinoic acid receptor beta (RAR-beta) in BEAS-2B cells, although this effect was less pronounced in A549 cells. Furthermore, beta-cryptoxanthin transactivated the RAR-mediated transcription activity of the retinoic acid response element. These findings suggest a mechanism of anti-proliferative action of beta-cryptoxanthin and indicate that beta-cryptoxanthin may be a promising chemopreventive agent against lung cancer (PMID: 16841329). Cryptoxanthin is a natural carotenoid pigment. It has been isolated from a variety of sources including the petals and flowers of plants in the genus Physalis, orange rind, papaya, egg yolk, butter, apples, and bovine blood serum. In a pure form, cryptoxanthin is a red crystalline solid with a metallic lustre. It is freely soluble in chloroform, benzene, pyridine, and carbon disulfide. In the human body, cryptoxanthin is converted into vitamin A (retinol) and is therefore considered a provitamin A. As with other carotenoids, cryptoxanthin is an antioxidant and may help prevent free radical damage to cells and DNA, as well as stimulate the repair of oxidative damage to DNA. Structurally, cryptoxanthin is closely related to beta-carotene, with only the addition of a hydroxyl group. It is a member of the class of carotenoids known as xanthophylls. Beta-cryptoxanthin is a carotenol that exhibits antioxidant activity. It has been isolated from fruits such as papaya and oranges. It has a role as a provitamin A, an antioxidant, a biomarker and a plant metabolite. It derives from a hydride of a beta-carotene. beta-Cryptoxanthin is a natural product found in Hibiscus syriacus, Cladonia gracilis, and other organisms with data available. A mono-hydroxylated xanthophyll that is a provitamin A precursor. See also: Corn (part of). A carotenol that exhibits antioxidant activity. It has been isolated from fruits such as papaya and oranges. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Cryptoxanthin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=472-70-8 (retrieved 2024-10-31) (CAS RN: 472-70-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
alpha-Carotene
alpha-Carotene belongs to the class of organic compounds known as carotenes. These are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. alpha-Carotene is considered to be an isoprenoid lipid molecule. alpha-Carotene is one of the primary isomers of carotene. Plasma levels of alpha-carotene are positively associated with the detection rate of AFB1-DNA adducts in a dose-dependent manner, whereas plasma lycopene level was inversely related to the presence of the adducts in urine (PMID: 9214602). (6R)-beta,epsilon-carotene is an alpha-carotene. It is an enantiomer of a (6S)-beta,epsilon-carotene. alpha-Carotene is a natural product found in Hibiscus syriacus, Scandix stellata, and other organisms with data available. Widespread carotenoid, e.g. in carrots and palm oil. Has vitamin A activity but less than that of b-Carotene A cyclic carotene with a beta- and an epsilon-ring at opposite ends respectively. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
2-Hydroxyadenine
2-Hydroxyadenine (2-OH-Ade) is formed by hydroxyl radical attack on DNA bases and shows a genotoxicity in human, being the source of the mutations induced by reactive oxygen species. 2-OH-Ade in DNA is miscoding and elicits various mutations, and is a mutagenic in bacterial and mammalian cells. (Recent Research Developments in Biochemistry (2000)2:41-50) [HMDB] 2-Hydroxyadenine (2-OH-Ade) is formed by hydroxyl radical attack on DNA bases and shows a genotoxicity in human, being the source of the mutations induced by reactive oxygen species. 2-OH-Ade in DNA is miscoding and elicits various mutations, and is a mutagenic in bacterial and mammalian cells. (Recent Research Developments in Biochemistry (2000)2:41-50). Isoguanine is an oxopurine that is 3,7-dihydro-purin-2-one in which the hydrogen at position 6 is substituted by an amino group.
Isochamaejasmin
Chamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and other organisms with data available. Isochamaejasmin is a biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3. It has a role as a plant metabolite. It is a biflavonoid and a hydroxyflavone. Isochamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and Ormocarpum kirkii with data available.
Butin_(molecule)
Butin is a trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 4 and 7. It is found in Acacia mearnsii, Vernonia anthelmintica and Dalbergia odorifera and has a protective affect against oxidative stress-induced mitochondrial dysfunction. It has a role as an antioxidant, a protective agent and a metabolite. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. Butin is a natural product found in Dipteryx lacunifera, Acacia vestita, and other organisms with data available. A trihydroxyflavanone in which the three hydroxy substituents are located at positions 3, 4 and 7. It is found in Acacia mearnsii, Vernonia anthelmintica and Dalbergia odorifera and has a protective affect against oxidative stress-induced mitochondrial dysfunction. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. (-)-Butin is the S enantiomer of Butin. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities[1][2]. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities. Butin significantly alleviates myocardial infarction and improves heart function, together with prevents diabetes-induced cardiac oxidative damage in rat[1][2]. Butin is a major biologically active flavonoid isolated from the heartwood of Dalbergia odorifera, with strong antioxidant, antiplatelet and anti-inflammatory activities. Butin significantly alleviates myocardial infarction and improves heart function, together with prevents diabetes-induced cardiac oxidative damage in rat[1][2].
4-Vinylphenol
4-hydroxystyrene is a member of the class of phenols that is styrene carrying a hydroxy substituent at position 4. It has a role as a human urinary metabolite and a human xenobiotic metabolite. It derives from a hydride of a styrene. 4-Vinylphenol is a natural product found in Streptomyces, Cedronella canariensis, and other organisms with data available. 4-Vinylphenol is a metabolite found in or produced by Saccharomyces cerevisiae. 4-hydroxystyrene occurs frequently in different ciders, wines, foods and berries, e.g. cloudberry. Styrene is a prohapten metabolized in the skin by aryl hydrocarbon hydroxylase (AHH, EC 1.14.14.1) to styrene epoxide acting as the true hapten. Styrene occurs in nature and as a synthetic product.(PMID: 6713846). Flavour component of tea; flavouring ingredient
Acetochlor
CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9499; ORIGINAL_PRECURSOR_SCAN_NO 9495 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9451; ORIGINAL_PRECURSOR_SCAN_NO 9447 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9445; ORIGINAL_PRECURSOR_SCAN_NO 9442 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9479; ORIGINAL_PRECURSOR_SCAN_NO 9474 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9585; ORIGINAL_PRECURSOR_SCAN_NO 9582 CONFIDENCE standard compound; INTERNAL_ID 1174; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9473; ORIGINAL_PRECURSOR_SCAN_NO 9469 CONFIDENCE standard compound; EAWAG_UCHEM_ID 104 CONFIDENCE standard compound; INTERNAL_ID 8482 CONFIDENCE standard compound; INTERNAL_ID 3221 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Terbuthylazine
CONFIDENCE standard compound; INTERNAL_ID 991; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9075; ORIGINAL_PRECURSOR_SCAN_NO 9073 CONFIDENCE standard compound; INTERNAL_ID 991; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9016; ORIGINAL_PRECURSOR_SCAN_NO 9014 CONFIDENCE standard compound; INTERNAL_ID 991; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9020; ORIGINAL_PRECURSOR_SCAN_NO 9018 CONFIDENCE standard compound; INTERNAL_ID 991; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9092; ORIGINAL_PRECURSOR_SCAN_NO 9087 CONFIDENCE standard compound; INTERNAL_ID 991; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9043; ORIGINAL_PRECURSOR_SCAN_NO 9041 CONFIDENCE standard compound; INTERNAL_ID 991; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9038; ORIGINAL_PRECURSOR_SCAN_NO 9037 CONFIDENCE standard compound; INTERNAL_ID 3676 CONFIDENCE standard compound; INTERNAL_ID 8413 CONFIDENCE standard compound; INTERNAL_ID 4032 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
2'-Deoxycytidine-5'-monophosphoric acid
Deoxycytidine monophosphate (dCMP), also known as deoxycytidylic acid or deoxycytidylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide, and one of the four monomers that make up DNA. In a DNA double helix, it will base pair with deoxyguanosine monophosphate. dCMP belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. Deficiency of the enzyme deoxycytidine kinase (EC2.7.1.74) is associated with resistance to antiviral and anticancer chemotherapeutic agents, whereas increased enzyme activity is associated with increased activation of these compounds to cytotoxic nucleoside triphosphate derivatives. dCMP exists in all living species, ranging from bacteria to humans. Within humans, dCMP participates in a number of enzymatic reactions. In particular, dCMP can be converted to dCDP by the enzyme UMP-CMP kinase 2. In addition, dCMP can be converted into deoxycytidine, which is catalyzed by the enzyme cytosolic purine 5-nucleotidase. In humans, dCMP is involved in the metabolic disorder called ump synthase deficiency (orotic aciduria). Outside of the human body, dCMP has been detected, but not quantified in several different foods, such as turnips, garlics, agaves, garden onions, and italian sweet red peppers. dCMP is a deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2-,3- or 5- positions. Deoxycytidine (dihydrogen phosphate). A deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2-,3- or 5- positions. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite.
5-Methylcytosine
5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties.; 5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. In bacteria, 5-methylcytosine can be found at a variety of sites, and is often used as a marker to protect DNA from being cut by native methylation-sensitive restriction enzymes. In plants, 5-methylcytosine occurs at both CpG and CpNpG sequences. In fungi and animals, 5-methylcytosine predominately occurs at CpG dinucleotides. Although most eukaryotes methylate only a small percentage of these sites, in vertebrates 70-80\\\% of CpG cytosines are methylated. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. Its function varies significantly among species:; A methylated nucleotide base found in eukaryotic DNA. In animals, the DNA methylation of cytosine to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In plants, the methylated sequence is CpNpGp, where N can be any base. -- Pubchem. 5-Methylcytosine is a methylated nucleotide base found in eukaryotic DNA. In animals, the DNA methylation of cytosine to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In plants, the methylated sequence is CpNpGp, where N can be any base. -- Pubchem; 5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. In bacteria, 5-methylcytosine can be found at a variety of sites, and is often used as a marker to protect DNA from being cut by native methylation-sensitive restriction enzymes. In plants, 5-methylcytosine occurs at both CpG and CpNpG sequences. In fungi and animals, 5-methylcytosine predominately occurs at CpG dinucleotides. Although most eukaryotes methylate only a small percentage of these sites, in vertebrates 70-80\\\% of CpG cytosines are methylated. -- Wikipedia. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M029 5-Methylcytosine is a well-characterized DNA modification, and is also predominantly in abundant non-coding RNAs in both prokaryotes and eukaryotes. 5-Methylcytosine in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development[1].
Deoxyadenosine triphosphate
Deoxyadenosine triphosphate (dATP) is a purine nucleoside triphosphate used in cells for DNA synthesis. A nucleoside triphosphate is a molecule type that contains a nucleoside with three phosphates bound to it. dATP contains the sugar deoxyribose, a precursor to DNA synthesis whereby the two existing phosphate groups are cleaved with the remaining deoxyadenosine monophosphate being incorporated into DNA during replication. Due to its enzymatic incorporation into DNA, photoreactive dATP analogs such as N6-[4-azidobenzoyl–(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (AB-dATP) and N6-[4-[3-(trifluoromethyl)-diazirin-3-yl]benzoyl-(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (DB-dATP) have been used for DNA photoaffinity labeling. When present in sufficiently high levels, dATP can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxyadenosine triphosphate are associated with adenosine deaminase (ADA) deficiency, an inborn error of metabolism. ADA deficiency damages the immune system and causes severe combined immunodeficiency (SCID). People with SCID lack virtually all immune protection from bacteria, viruses, and fungi. They are prone to repeated and persistent infections that can be very serious or life-threatening. These infections are often caused by "opportunistic" organisms that ordinarily do not cause illness in people with a normal immune system. The main symptoms of ADA deficiency are pneumonia, chronic diarrhea, and widespread skin rashes. The mechanism by which dATP functions as an immunotoxin is as follows: a buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. Animals obtain their energy by oxidation of foods, plants do so by trapping the sunlight using chlorophyll. However, before the energy can be used, it is first transformed into a form which the organism can handle easily. This special carrier of energy is the molecule adenosine triphosphate, or ATP. The ATP molecule is composed of three components. At the centre is a sugar molecule, [[ribose] (the same sugar that forms the basis of DNA). Attached to one side of this is a base (a group consisting of linked rings of carbon and nitrogen atoms); in this case the base is adenine. The other side of the sugar is attached to a string of phosphate groups. These phosphates are the key to the activity of ATP. ATP consists of a base, in this case adenine (red), a ribose (magenta) and a phosphate chain (blue). ATP works by losing the endmost phosphate group when instructed to do so by an enzyme. This reaction releases a lot of energy, which the organism can then use to build proteins, contact muscles, etc. [HMDB]. dATP is found in many foods, some of which are pepper (c. chinense), squashberry, safflower, and brussel sprouts. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
5,6-Dihydrothymine
Dihydrothymine (CAS: 696-04-8) is an intermediate breakdown product of thymine. Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine into 5,6-dihydrothymine; then dihydropyrimidinase hydrolyzes 5,6-dihydrothymine into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. When present at abnormally high levels, dihydrothymine can be toxic, although the mechanism of toxicity is not clear. In particular, patients with dihydropyrimidinase deficiency exhibit highly increased concentrations of 5,6-dihydrouracil and 5,6-dihydrothymine; and moderately increased concentrations of uracil and thymine can be detected in urine. Dihydropyrimidinase deficiency is a disorder that can cause neurological and gastrointestinal problems in some affected individuals. The most common neurological abnormalities that occur are intellectual disability, seizures, weak muscle tone (hypotonia), abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include the backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].
Thymine
Thymine, also known as 5-methyluracil, belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Thymine was first isolated in 1893 by Albrecht Kossel and Albert Neumann from calves thymus glands, hence its name. Thymine is one of the 4 nuelcoebases found in DNA and is essential to all life. Thymine exists in all living species, ranging from bacteria to plants to humans. Thymine combined with deoxyribose creates the nucleoside deoxythymidine (also called thymidine) which when phosphorylated to dTDP can be incorporated into DNA via DNA polymerases. Thymidine can be phosphorylated with up to three phosphoric acid groups, producing dTMP (deoxythymidine monophosphate) dTDP and/or dTTP. In RNA thymine is replaced with uracil in most cases. In DNA, thymine binds to adenine via two hydrogen bonds to assist in stabilizing the nucleic acid structures. Within humans, thymine participates in a number of enzymatic reactions. In particular, thymine and deoxyribose 1-phosphate can be biosynthesized from thymidine through its interaction with the enzyme thymidine phosphorylase. In addition, thymine can be converted into dihydrothymine; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. One of the pyrimidine bases of living matter. Derivation: Hydrolysis of deoxyribonucleic acid, from methylcyanoacetylurea by catalytic reduction. Use: Biochemical research. (Hawleys Condensed Chemical Dictionary) Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus KEIO_ID T015 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.
Deoxyinosine
Deoxyinosine is a nucleoside that is formed when hypoxanthine is attached to a deoxyribose ring (also known as a ribofuranose) via a beta-N9-glycosidic bond. Deoxyinosine is found in DNA while inosine is found in RNA. Inosine is a nucleic acid important for RNA editing. Adenosine deaminase (ADA) catalyzes the conversion of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. ADA-deficient individuals suffer from severe combined immunodeficiency (SCID) and are unable to produce significant numbers of mature T or B lymphocytes. This occurs as a consequence of the accumulation of ADA substrates or their metabolites. Inosine is also an intermediate in a chain of purine nucleotides reactions required for muscle movements. Moreover, deoxyinosine is found to be associated with purine nucleoside phosphorylase (PNP) deficiency, which is an inborn error of metabolism. Isolated from Phaseolus vulgaris (kidney bean). 2-Deoxyinosine is found in pulses, yellow wax bean, and green bean. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.
6-Methylmercaptopurine
6-Methylmercaptopurine is a metabolite of mercaptopurine. Mercaptopurine (also called 6-mercaptopurine, 6-MP or its brand name Purinethol) is an immunosuppressive drug. It is a thiopurine. (Wikipedia) KEIO_ID M104
2'-Deoxyadenosine 5'-phosphate
Deoxyadenosine monophosphate (dAMP), also known as deoxyadenylic acid or deoxyadenylate in its conjugate acid and conjugate base forms, respectively, is a derivative of the common nucleic acid AMP, or adenosine monophosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been reduced to just a hydrogen atom (hence the "deoxy-" part of the name). Additionally, the monophosphate of the name indicates that two of the phosphoryl groups of GTP have been removed, most likely by hydrolysis. It is a monomer used in DNA. Adenosine is a nucleoside comprised of adenine attached to a ribose (ribofuranose) moiety via a -N9-glycosidic bond. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2′-Deoxyadenosine 5′-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2′-Deoxyadenosine 5′-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage[1]. 2′-Deoxyadenosine 5′-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2′-Deoxyadenosine 5′-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage[1].
4-Nitroquinoline N-oxide
CONFIDENCE standard compound; INTERNAL_ID 2518 CONFIDENCE standard compound; INTERNAL_ID 8294 CONFIDENCE standard compound; INTERNAL_ID 37 D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
L-Cysteine
Cysteine (Cys), also known as L-cysteine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-alanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Cysteine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar, sulfur-containing amino acid. Cysteine is an important source of sulfur in human metabolism, and although it is classified as a non-essential amino acid, cysteine may be essential for infants, the elderly, and individuals with certain metabolic disease or who suffer from malabsorption syndromes. Cysteine can occasionally be considered as an essential or conditionally essential amino acid. Cysteine is unique amongst the twenty natural amino acids as it contains a thiol group. Thiol groups can undergo oxidation/reduction (redox) reactions; when cysteine is oxidized it can form cystine, which is two cysteine residues joined by a disulfide bond. This reaction is reversible since the reduction of this disulphide bond regenerates two cysteine molecules. The disulphide bonds of cystine are crucial to defining the structures of many proteins. Cysteine is often involved in electron-transfer reactions, and help the enzyme catalyze its reaction. Cysteine is also part of the antioxidant glutathione. N-Acetyl-L-cysteine (NAC) is a form of cysteine where an acetyl group is attached to cysteines nitrogen atom and is sold as a dietary supplement. Cysteine is named after cystine, which comes from the Greek word kustis meaning bladder (cystine was first isolated from kidney stones). Oxidation of cysteine can produce a disulfide bond with another thiol and further oxidation can produce sulphfinic or sulfonic acids. The cysteine thiol group is also a nucleophile and can undergo addition and substitution reactions. Thiol groups become much more reactive when they are ionized, and cysteine residues in proteins have pKa values close to neutrality, so they are often in their reactive thiolate form in the cell. The thiol group also has a high affinity for heavy metals and proteins containing cysteine will bind metals such as mercury, lead, and cadmium tightly. Due to this ability to undergo redox reactions, cysteine has antioxidant properties. Cysteine is important in energy metabolism. As cystine, it is a structural component of many tissues and hormones. Cysteine has clinical uses ranging from treating baldness to psoriasis to preventing smokers hack. In some cases, oral cysteine therapy has proved excellent for treatment of asthmatics, enabling them to stop theophylline and other medications. Cysteine also enhances the effect of topically applied silver, tin, and zinc salts in preventing dental cavities. In the future, cysteine may play a role in the treatment of cobalt toxicity, diabetes, psychosis, cancer, and seizures (http://www.dcnutrition.com/AminoAcids/). Cysteine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). [Spectral] L-Cysteine (exact mass = 121.01975) and D-2-Aminobutyrate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Cysteine (exact mass = 121.01975) and Creatine (exact mass = 131.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Detoxicant, dietary supplement, dough strengthener, yeast nutrient for leavened bakery products. Flavouring agent. Enzymic browning inhibitor. L-Cysteine is found in many foods, some of which are bilberry, mugwort, cowpea, and sweet bay. L-(+)-Cysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52-90-4 (retrieved 2024-07-01) (CAS RN: 52-90-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].
Phenylglyoxylic acid
Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394). For the biological monitoring of workers exposure to solvent used in industry, its concentration is measured in human urine samples. (PMID 2739101). Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394) D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids KEIO_ID B041 Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].
Deoxyguanosine
Deoxyguanosine, also known as dG, belongs to the class of organic compounds known as purine 2-deoxyribonucleosides. Purine 2-deoxyribonucleosides are compounds consisting of a purine linked to a ribose which lacks a hydroxyl group at position 2‚Äô. Deoxyguanosine is a nucleoside consisting of the base guanine and the sugar deoxyribose. Deoxyguanosine is one of the four deoxyribonucleosides that make up DNA. Deoxyguanosine exists in all living species, ranging from bacteria to plants to humans. Deoxyguanosine participates in a number of enzymatic reactions. In particular, deoxyguanosine can be biosynthesized from 2-deoxyguanosine 5-monophosphate through the enzyme known as cytosolic purine 5-nucleotidase. In addition, deoxyguanosine can be converted into 2-deoxyguanosine 5-monophosphate (dGMP); which is mediated by the enzyme deoxyguanosine kinase. Deoxyguanosine is involved in the rare, inherited metabolic disorder called the purine nucleoside phosphorylase deficiency (PNP deficiency). In particular PNP deficiency is characterized by elevated levels of dGTP (deoxyguanosine triphosphate). PNP accounts for approximately 4\\\\% of patients with severe combined immunodeficiency (PMID: 1931007). PNP-deficient patients suffer from recurrent infections, usually beginning in the first year of life. Two thirds of patients have evidence of neurologic disorders with spasticity, developmental delay and mental retardation. Deoxyguanosine can be converted to 8-hydroxy-deoxyguanosine (8-OHdG) due to hydroxyl radical attack at the C8 of guanine. 8-hydroxy-deoxyguanosine is a sensitive marker of the DNA damage This damage, if left unrepaired, has been proposed to contribute to mutagenicity and cancer promotion. Isolated from plants, e.g. Phaseolus vulgaris (kidney bean) COVID info from COVID-19 Disease Map KEIO_ID D057; [MS2] KO008942 KEIO_ID D057 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-Deoxyguanosine (Deoxyguanosine) is a purine nucleoside with a variety of biological activities. 2’-Deoxyguanosine can induce DNA division in mouse thymus cells. 2’-Deoxyguanosine is a potent cell division inhibitor in plant cells[1][2][3]. 2'-Deoxyguanosine (Deoxyguanosine) is deoxyguanosine.
Bisphenol F
4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1]. 4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1].
1-Hydroxypyrene
1-Hydroxypyrene is a metabolite of the noncarcinogen pyrene found in urine that is always a component of PAH mixtures. 1-hydroxypyrene is an accepted biomarker of carcinogenic Polycyclic aromatic hydrocarbons (PAH) dose(PMID: 15159317). PAH are a diverse group of environmental carcinogens formed during the incomplete combustion of organic matter. PAHs are believed to play an important role as causes of human cancer, particularly in certain occupational settings and in cigarette smokers. (PMID: 15247141) [HMDB] 1-Hydroxypyrene is a metabolite of the noncarcinogen pyrene found in urine that is always a component of PAH mixtures. 1-Hydroxypyrene is an accepted biomarker of carcinogenic polycyclic aromatic hydrocarbons (PAHs) dose (PMID: 15159317). PAHs are a diverse group of environmental carcinogens formed during the incomplete combustion of organic matter. PAHs are believed to play an important role as causes of human cancer, particularly in certain occupational settings and in cigarette smokers (PMID: 15247141). CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5366; ORIGINAL_PRECURSOR_SCAN_NO 5365 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5365; ORIGINAL_PRECURSOR_SCAN_NO 5363 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5373; ORIGINAL_PRECURSOR_SCAN_NO 5371 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5353; ORIGINAL_PRECURSOR_SCAN_NO 5351 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5367; ORIGINAL_PRECURSOR_SCAN_NO 5365 CONFIDENCE standard compound; INTERNAL_ID 500; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5334; ORIGINAL_PRECURSOR_SCAN_NO 5333 CONFIDENCE standard compound; INTERNAL_ID 44 D009676 - Noxae > D009153 - Mutagens 1-Hydroxypyrene, a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs), is analyzed in urine samples. 1-Hydroxypyrene is the major biomarker of exposure to pyrenes[1].
Deoxyribose 5-phosphate
Deoxyribose 5-phosphate is a a metabolite in the pentose phosphate pathway. It can be generated from D-glyceraldehdye-3 phosphate via the enzyme 2-Deoxyribose 5-phosphate aldolase (DERA). Alternately Deoxyribose 5-phosphate can be converted to D-glyceraldehyde-3 phosphate that can then feed into the pentose phosphate pathway. Deoxyribose 5-phosphate can also be generated from 2-Deoxy-D-ribose via the enzyme Ribokinase (EC 2.7.1.15). It has been shown in a number of organisms that deoxynucleosides or deoxyriboses cause the induction of aldolases (such as DERA) involved in their catabolism, leading to the utilisation of the pentose moiety as carbon and energy source. [HMDB] Deoxyribose 5-phosphate is a a metabolite in the pentose phosphate pathway. It can be generated from D-glyceraldehdye-3 phosphate via the enzyme 2-Deoxyribose 5-phosphate aldolase (DERA). Alternately Deoxyribose 5-phosphate can be converted to D-glyceraldehyde-3 phosphate that can then feed into the pentose phosphate pathway. Deoxyribose 5-phosphate can also be generated from 2-Deoxy-D-ribose via the enzyme Ribokinase (EC 2.7.1.15). It has been shown in a number of organisms that deoxynucleosides or deoxyriboses cause the induction of aldolases (such as DERA) involved in their catabolism, leading to the utilisation of the pentose moiety as carbon and energy source. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID D026
Citrinin
Citrinin is a mycotoxin originally isolated from Penicillium citrinum. It has since been found to be produced by a variety of other fungi which are found or used in the production of human foods, such as grain, cheese, sake and red pigments. Citrinin has also been found in commercial red yeast rice supplements, and also in Aspergillus niveus and Aspergillus terreus (Hugo Vanden Bossche, D.W.R. Mackenzie and G. Cauwenbergh. Aspergillus and Aspergillosis, 1987). D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Citrinin is a mycotoxin which causes contamination in the food and is associated with different toxic effects. Citrinin is usually found together with another nephrotoxic mycotoxin, Ochratoxin A. Citrinin is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro[1][2].
4-Aminobiphenyl
4-Aminobiphenyl is an amine derivative of biphenyl. It is used to manufacture azo dyes. It is a known human carcinogen and so it has been largely replaced by less toxic compounds. It is similar to benzidine. [HMDB] 4-Aminobiphenyl is an amine derivative of biphenyl. It is used to manufacture azo dyes. It is a known human carcinogen and so it has been largely replaced by less toxic compounds. It is similar to benzidine. D009676 - Noxae > D002273 - Carcinogens
Uracil
Uracil, also known as U, belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Uracil is a common naturally occurring pyrimidine found in RNA. It base pairs with adenine and is replaced by thymine in DNA. Uracil is one of the four nucleobases in RNA that are represented by the letters A, G, C and U. Methylation of uracil produces thymine. The name "uracil" was coined in 1885 by the German chemist Robert Behrend, who was attempting to synthesize derivatives of uric acid. Originally discovered in 1900, uracil was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. Uracil exists in all living species, ranging from bacteria to plants to humans. Uracils use in the body is to help carry out the synthesis of many enzymes necessary for cell function through bonding with riboses and phosphates. Uracil serves as an allosteric regulator and a coenzyme for many important biochemical reactions. Uracil (via the nucleoside uridine) can be phosphorylated by various kinases to produce UMP, UDP and UTP. UDP and UTP regulate carbamoyl phosphate synthetase II (CPSase II) activity in animals. Uracil is also involved in the biosynthesis of polysaccharides and in the transport of sugars containing aldehydes. Within humans, uracil participates in a number of enzymatic reactions. In particular, uracil and ribose 1-phosphate can be biosynthesized from uridine; which is mediated by the enzyme uridine phosphorylase 2. In addition, uracil can be converted into dihydrouracil through the action of the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. Uracil is rarely found in DNA, and this may have been an evolutionary change to increase genetic stability. This is because cytosine can deaminate spontaneously to produce uracil through hydrolytic deamination. Therefore, if there were an organism that used uracil in its DNA, the deamination of cytosine (which undergoes base pairing with guanine) would lead to formation of uracil (which would base pair with adenine) during DNA synthesis. Uracil can be used for drug delivery and as a pharmaceutical. When elemental fluorine reacts with uracil, it produces 5-fluorouracil. 5-Fluorouracil is an anticancer drug (antimetabolite) that mimics uracil during the nucleic acid (i.e. RNA) synthesis and transcription process. Because 5-fluorouracil is similar in shape to, but does not undergo the same chemistry as, uracil, the drug inhibits RNA replication enzymes, thereby blocking RNA synthesis and stopping the growth of cancerous cells. Uracil is a common and naturally occurring pyrimidine derivative. Originally discovered in 1900, it was isolated by hydrolysis of yeast nuclein that was found in bovine thymus and spleen, herring sperm, and wheat germ. It is a planar, unsaturated compound that has the ability to absorb light. Uracil. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=66-22-8 (retrieved 2024-07-01) (CAS RN: 66-22-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.
Bisphenol AF
CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4798; ORIGINAL_PRECURSOR_SCAN_NO 4796 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4887; ORIGINAL_PRECURSOR_SCAN_NO 4885 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4799; ORIGINAL_PRECURSOR_SCAN_NO 4798 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4824; ORIGINAL_PRECURSOR_SCAN_NO 4819 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4817; ORIGINAL_PRECURSOR_SCAN_NO 4812 CONFIDENCE standard compound; INTERNAL_ID 380; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4468; ORIGINAL_PRECURSOR_SCAN_NO 4466 D052244 - Endocrine Disruptors
7-Methylguanine
7-Methylguanine is a metabolite of DNA methylation and depurination observed in normal human biofluids; however, it has been found significantly higher in the urine of smokers than in nonsmokers. (PMID 16059882). 7-Methylguanine has been identified in the human placenta (PMID: 32033212). 7-Methylguanine is a metabolite of DNA methylation and depurination observed in normal human biofluids; however, it has been found significantly higher in the urine of smokers than in nonsmokers. (PMID 16059882) [HMDB] KEIO_ID M043
9-Hydroxyphenanthrene
This compound belongs to the family of Phenanthrenes and Derivatives. These are polycyclic compounds containing a phenanthrene moiety, which is a tricyclic aromatic compound with three non-linearly fused benzene. D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors
Menadione
Menadione is a synthetic naphthoquinone without the isoprenoid side chain and biological activity, but can be converted to active vitamin K2, menaquinone, after alkylation in vivo. -- Pubchem; Despite the fact that it can serve as a precursor to various types of vitamin K, menadione is generally not used as a nutritional supplement. Large doses of menadione have been reported to cause adverse outcomes including hemolytic anemia due to G6PD deficiency, neonatal brain or liver damage, or neonatal death in some cases. Moreover, menadione supplements have been banned by the FDA because of their high toxicity. It is sometimes called vitamin K3, although derivatives of naphthoquinone without the sidechain in the 3-position cannot exert all the functions of the K vitamins. Menadione is a vitamin precursor of K2 which utilizes alkylation in the liver to yield menaquinones (MK-n, n=1-13; K2 vitamers), and hence, is better classified as a provitamin. -- Wikipedia. B - Blood and blood forming organs > B02 - Antihemorrhagics > B02B - Vitamin k and other hemostatics > B02BA - Vitamin k D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D050299 - Fibrin Modulating Agents > D000933 - Antifibrinolytic Agents D018977 - Micronutrients > D014815 - Vitamins Prothrombogenic vitamin (synthetic) Menadione is a naphthoquinone that is converted into active vitamin K2 in the body. Menadione is a naphthoquinone that is converted into active vitamin K2 in the body.
Sterigmatocystin
Sterigmatocystin is a mycotoxin of Aspergillus versicolor and Chaetomium species Sterigmatocystin is a poison of the type dermatoxin, from the fungi genus Aspergillus. It appears on crusts of cheese with mold. Sterigmatocystin is a toxic metabolite structurally closely related to the aflatoxins (compare general fact sheet number 2), and consists of a xanthone nucleus attached to a bifuran structure. Sterigmatocystin is mainly produced by the fungi Aspergillus nidulans and A. versicolor. It has been reported in mouldy grain, green coffee beans and cheese although information on its occurrence in foods is limited. It appears to occur much less frequently than the aflatoxins, although analytical methods for its determination have not been as sensitive until recently, and so it is possible that small concentrations in food commodities may not always have been detected. Although it is a potent liver carcinogen similar to aflatoxin B1, current knowledge suggests that it is nowhere near as widespread in its occurrence. If this is the true situation it would be justified to consider sterigmatocystin as no more than a risk to consumers in special or unusual circumstances. Sterigmatocystin is a number of closely related compounds such o-methyl sterigmatocystin are known and some may also occur naturally. The IARC-classification of sterigmatocystin is group 2B, which means it is possibly carcinogenic to humans. In practice, the risk is quite low however, because this substance only appears on cheese crusts with mold, and because of that the chance of daily exposure is very low. Sterigmatocystin is a molded crust is best not to be consumed in whole, but after removing the crust, the cheese can still be consumed. Sterigmatocystin is a different kind of mold than that which appears on cheese itself, which can simply be removed before further consumption D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2320
Diacetoxyscirpenol
Diacetoxyscirpenol is a constituent of Fusarium species Mycotoxin D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Constituent of Fusarium subspecies Mycotoxin C784 - Protein Synthesis Inhibitor D000970 - Antineoplastic Agents
2-Naphthol
2-Naphthol is a colorless crystalline solid and an isomer of 1-naphthol, differing by the location of the hydroxyl group on naphthalene. The naphthols are naphthalene homologues of phenol, with the hydroxyl group being more reactive than in the phenols. 2-Naphthol has several different uses including dyes, pigments, fats, oils, insecticides, pharmaceuticals, perfumes, antiseptics, synthesis of fungicides, and antioxidants for rubber. Detection of 2-Naphthol in urine usually results from long-term persistent exposure to pesticides such as chlorpyrifos, but also due to exposure to naphthalene in older types of mothballs, fires that produce polyaromatic hydrocarbons (PAHs), and tobacco smoke. CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4804; ORIGINAL_PRECURSOR_SCAN_NO 4799 CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8253; ORIGINAL_PRECURSOR_SCAN_NO 8251 CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4807; ORIGINAL_PRECURSOR_SCAN_NO 4806 CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4717; ORIGINAL_PRECURSOR_SCAN_NO 4715 CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8227; ORIGINAL_PRECURSOR_SCAN_NO 8225 CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8267; ORIGINAL_PRECURSOR_SCAN_NO 8265 CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4779; ORIGINAL_PRECURSOR_SCAN_NO 4777 ORIGINAL_ACQUISITION_NO 8267; CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 8265 CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8261; ORIGINAL_PRECURSOR_SCAN_NO 8259 ORIGINAL_PRECURSOR_SCAN_NO 4731; CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4732 CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4732; ORIGINAL_PRECURSOR_SCAN_NO 4731 CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8211; ORIGINAL_PRECURSOR_SCAN_NO 8209 CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8287; ORIGINAL_PRECURSOR_SCAN_NO 8285 CONFIDENCE standard compound; INTERNAL_ID 877; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4771; ORIGINAL_PRECURSOR_SCAN_NO 4767 C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Trace constituent of essential oils 2-Naphthol is a metabolite of naphthalene, catalyzed by cytochrome P450 (CYP) isozymes (CYP 1A1, CYP 1A2, CYP 2A1, CYP 2E1 and CYP 2F2).
Dimethylarsinic acid
Dimethylarsinic acid, also known as cacodylic acid, is formally rated as possibly a carcinogenic (IARC 2B), potentially toxic compound. Derivatives of cacodylic acid, cacodylates, were frequently used as herbicides. For example, Agent Blue, one of the chemicals used during the Vietnam War, is a mixture of cacodylic acid and sodium cacodylate. Sodium cacodylate is frequently used as a buffering agent in the preparation and fixation of biological samples for transmission electron microscopy. Dimethylarsinic acid is highly toxic by ingestion, inhalation, or skin contact. Once thought to be a byproduct of inorganic arsenic detoxification, it is now believed to have serious health consequences of its own. It has been shown to be teratogenic in rodents, most often causing cleft palate but also fetal fatality at high doses. It has been shown to be genotoxic in human cells, causing apoptosis and also decreased DNA production and shorter DNA strands. While not itself a strong carcinogen, dimethylarsinic acid does promote tumours in the presence of carcinogens in organs such as the kidneys and liver (Wikipedia). Cacodylic acid is the chemical compound with the formula (CH3)2AsO2H. Derivatives of cacodylic acid, cacodylates, were frequently used as herbicides. For example, "Agent Blue," one of the chemicals used during the Vietnam War, is a mixture of cacodylic acid and sodium cacodylate. Sodium cacodylate is frequently used as a buffering agent in the preparation and fixation of biological samples for transmission electron microscopy. D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
5,6-dihydrouracil
Dihydrouracil belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Dihydrouracil is an intermediate breakdown product of uracil. Dihydrouracil exists in all living organisms, ranging from bacteria to plants to humans. Within humans, dihydrouracil participates in a number of enzymatic reactions. In particular, dihydrouracil can be biosynthesized from uracil; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. The breakdown of uracil is a multistep reaction that leads to the production of beta-alanine. The reaction process begins with the enzyme known as dihydropyrimidine dehydrogenase (DHP), which catalyzes the reduction of uracil into dihydrouracil. Then the enzyme known as dihydropyrimidinase hydrolyzes dihydrouracil into N-carbamyl-beta-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-beta-alanine into beta-alanine. There is at least one metabolic disorder that is associated with altered levels of dihydrouracil. In particular, dihydropyrimidinase deficiency is an inborn metabolic disorder that leads to highly increased concentrations of dihydrouracil and 5,6-dihydrothymine, and moderately increased concentrations of uracil and thymine in urine. Dihydropyrimidinase deficiency can cause neurological and gastrointestinal problems in some affected individuals (OMIM: 222748). In particular, patients with dihydropyrimidinase deficiency exhibit a number of neurological abnormalities including intellectual disability, seizures, weak muscle tone (hypotonia), an abnormally small head size (microcephaly), and autistic behaviours that affect communication and social interaction. Gastrointestinal problems that occur in dihydropyrimidinase deficiency include backflow of acidic stomach contents into the esophagus (gastroesophageal reflux) and recurrent episodes of vomiting. 3,4-dihydrouracil, also known as 2,4-dioxotetrahydropyrimidine or 5,6-dihydro-2,4-dihydroxypyrimidine, is a member of the class of compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 3,4-dihydrouracil is soluble (in water) and a very weakly acidic compound (based on its pKa). 3,4-dihydrouracil can be found in a number of food items such as colorado pinyon, rocket salad (sspecies), wax gourd, and boysenberry, which makes 3,4-dihydrouracil a potential biomarker for the consumption of these food products. 3,4-dihydrouracil can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as throughout most human tissues. 3,4-dihydrouracil exists in all living organisms, ranging from bacteria to humans. In humans, 3,4-dihydrouracil is involved in a couple of metabolic pathways, which include beta-alanine metabolism and pyrimidine metabolism. 3,4-dihydrouracil is also involved in several metabolic disorders, some of which include UMP synthase deficiency (orotic aciduria), dihydropyrimidinase deficiency, ureidopropionase deficiency, and carnosinuria, carnosinemia. Moreover, 3,4-dihydrouracil is found to be associated with dihydropyrimidine dehydrogenase deficiency and hypertension. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
Rufloxacin
Rufloxacin belongs to the family of Phenylpiperazines. These are compounds containing a phenylpiperazine skeleton, which consists of a piperazine bound to a phenyl group. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors Same as: D02474
Styrene
Styrene, also known as vinylbenzene or phenylethylene, belongs to the class of organic compounds known as styrenes. These are organic compounds containing an ethenylbenzene moiety. The metabolites of styrene are excreted mainly in the urine. Styrene is possibly neutral. Styrene is a sweet, balsamic, and floral tasting compound. Styrene has been detected, but not quantified, in several different foods, such as coffee and coffee products, fruits, cocoa and cocoa products, alcoholic beverages, and chinese cinnamons. This could make styrene a potential biomarker for the consumption of these foods. A minor pathway of styrene metabolism involves the formation of phenylacetaldehyde from styrene 7,8-oxide or cytochrome P450 conversion of styrene to pheylethanol and subsequent metabolism to phenylacetic acid. Styrene is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Styrene oxide is predominantly metabolized by epoxide hydrolase to form styrene glycol; the styrene glycol is subsequently converted to mandelic acid, phenylglyoxylic acid, and hippuric acid. Styrene, with regard to humans, has been found to be associated with several diseases such as nonalcoholic fatty liver disease and ulcerative colitis; styrene has also been linked to the inborn metabolic disorder celiac disease. Styrene may be absorbed following ingestion, inhalation, or dermal exposure. Breathing high levels of styrene may cause nervous system effects such as changes in color vision, tiredness, feeling drunk, slowed reaction time, concentration problems, or balance problems. Chest burning, wheezing, and dyspnea may also occur. Styrene causes nervous system depression and may be carcinogenic. Present in cranberry, bilberry, currants, grapes, vinegar, parsley, milk and dairy products, whisky, cocoa, coffee, tea, roasted filberts and peanuts. Flavouring ingredient. Polymers are used in ion-exchange resins in food processing. Indirect food additive arising from adhesives, oatings and packaging materials
Benzo[b]fluoranthene
2-Amino-3-methylimidazo[4,5-f]quinoline
2-Amino-3-methylimidazo[4,5-f]quinoline is found in animal foods. 2-Amino-3-methylimidazo[4,5-f]quinoline is isolated from cooked foods, e.g. sardines, beef extrac Isolated from cooked foods, e.g. sardines, beef extract. 2-Amino-3-methylimidazo[4,5-f]quinoline is found in fishes and animal foods. CONFIDENCE standard compound; INTERNAL_ID 5
1-Nitropyrene
CONFIDENCE standard compound; INTERNAL_ID 34 D009676 - Noxae > D009153 - Mutagens
Geniposidic acid
Geniposidic acid is found in beverages. Geniposidic acid is a constituent of Genipa americana (genipap) Constituent of Genipa americana (genipap). Geniposidic acid is found in beverages and fruits. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
Patulin
Patulin is found in pomes. Mycotoxin, found as a contaminant of foods, e.g. apple juice. Sometimes detd. in apple juice Patulin is a mycotoxin produced by a variety of molds, particularly Aspergillus and Penicillium. It is commonly found in rotting apples, and the amount of patulin in apple products is generally viewed as a measure of the quality of the apples used in production. It is not a particularly potent toxin, but a number of studies have shown that it is genotoxic, which has led to some theories that it may be a carcinogen, though animal studies have remained inconclusive. Patulin is also an antibiotic. Several countries have instituted patulin restrictions in apple products. The World Health Organization recommends a maximum concentration of 50 µg/L in apple juice Mycotoxin, found as a contaminant of foods, e.g. apple juice. Sometimes detd. in apple juice D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D009153 - Mutagens Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].
2-Heptanone
2-Heptanone, also known as butylacetone or heptan-2-one, belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, 2-heptanone is considered to be an oxygenated hydrocarbon lipid molecule. 2-Heptanone is a ketone with the molecular formula C7H14O. 2-Heptanone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 2-Heptanone exists in all living species, ranging from bacteria to humans. 2-Heptanone is a sweet, cinnamon, and coconut tasting compound. 2-Heptanone is found, on average, in the highest concentration within a few different foods, such as corns, cow milk, and peppermints. 2-Heptanone has also been detected, but not quantified in several different foods, such as tarragons, blackberries, tortilla chips, ceylon cinnamons, and evergreen blackberries. 2-Heptanone is one of the metabolites of n-heptane found in the urine of employees exposed to heptane in shoe and tire factories. 2-Heptanone, with regard to humans, has been found to be associated with several diseases such as ulcerative colitis, nonalcoholic fatty liver disease, crohns disease, and hepatic encephalopathy; 2-heptanone has also been linked to the inborn metabolic disorder celiac disease. It is a colorless to white liquid with a banana-like, fruity odor. Present in apple, morello cherry, feijoa fruit, grapes, quince, clove bud, cheeses, wines, black tea, raw shrimp, Ceylon cinnamon, rancid coconut oil and other foodstuffsand is also a minor constituent of plant oils. Flavour ingredient
dGTP
Deoxyguanosine triphosphate (dGTP) is a nucleoside triphosphate, and a nucleotide precursor used in cells for DNA synthesis. dGTP is used in the polymerase chain reaction technique, in sequencing, and in cloning. It is also the competitor of inhibition onset by acyclovir in the treatment of HSV virus. Under normal physiologic conditions, deoxyguanosine (dGuo) undergoes phosphorolysis by purine nucleoside phosphorylase (PNP, EC 2.4.2.1, an enzyme involved in the recycling of nucleosides and deoxynucleosides in cellular remodeling). However, when PNP is inhibited, deoxycytidine kinase (dCK, EC 2.7.1.74) shunts unmetabolized dGuo into deoxyguanosine triphosphate (dGTP), which accumulates and blocks DNA synthesis. Deficiency of purine nucleoside phosphorylase results in defective T-cell immunity. A correlation between the degree of T cell inhibition and the level of dCK activity has been observed. (PMID:11287638, 402573). Under normal physiologic conditions, deoxyguanosine (dGuo) undergoes phosphorolysis by purine nucleoside phosphorylase (PNP, EC 2.4.2.1, an enzyme involved in the recycling of nucleosides and deoxynucleosides in cellular remodeling). However, when PNP is inhibited, deoxycytidine kinase (dCK, EC 2.7.1.74) shunts unmetabolized dGuo into deoxyguanosine triphosphate (dGTP), which accumulates and blocks DNA synthesis. Deficiency of purine nucleoside phosphorylase results in defective T-cell immunity. A correlation between the degree of T cell inhibition and the level of dCK activity is observed. (PMID: 11287638, 402573) [HMDB]. dGTP is found in many foods, some of which are jews ear, evergreen huckleberry, cumin, and red algae. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Oxaluric acid
Oxalureate, also known as monooxalylurea or oxaluric acid, is a member of the class of compounds known as N-carbamoyl-alpha amino acids. N-carbamoyl-alpha amino acids are compounds containing an alpha amino acid which bears an carbamoyl group at its terminal nitrogen atom. Oxalureate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Oxalureate can be found in cocoa bean, which makes oxalureate a potential biomarker for the consumption of this food product. Oxalureate may be a unique E.coli metabolite.
L-Glutamic gamma-semialdehyde
L-glutamic-gamma-semialdehyde, also known as 5-oxo-L-norvaline or glutamic acid gamma-semialdehyde, (L)-isomer, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-glutamic-gamma-semialdehyde is soluble (in water) and a moderately acidic compound (based on its pKa). L-glutamic-gamma-semialdehyde can be found in a number of food items such as rubus (blackberry, raspberry), jackfruit, loganberry, and plains prickly pear, which makes L-glutamic-gamma-semialdehyde a potential biomarker for the consumption of these food products. L-glutamic-gamma-semialdehyde exists in all living species, ranging from bacteria to humans. In humans, L-glutamic-gamma-semialdehyde is involved in the arginine and proline metabolism. L-glutamic-gamma-semialdehyde is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], prolidase deficiency (PD), arginine: glycine amidinotransferase deficiency (AGAT deficiency), and ornithine aminotransferase deficiency (OAT deficiency). Glutamic gamma-semialdehyde is the metabolic precursor for proline biosynthesis. The conversion from L-Glutamate, an ATP- and NADPH-dependent reaction, is catalyzed by the enzyme Delta-1-pyrroline-5-carboxylate synthetase (P5CS) (OMIM 138250). L-Glutamic-gamma-semialdehyde can also be converted to or be formed from the amino acids L-ornithine (EC 2.6.1.13) and L-proline (EC 1.5.99.8 and EC 1.5.1.2). It is also one of the few metabolites that can be a precursor to other metabolites of both the urea cycle and the citric acid cycle (BioCyc).
Acrolein
Acrolein (systematic name: propenal) is the simplest unsaturated aldehyde. It is a colourless liquid with a piercing, disagreeable, acrid smell. The smell of burnt fat (i.e. when cooking oil is heated to its smoke point) is caused by glycerol in the burning fat breaking down into acrolein. It is produced industrially from propylene and mainly used as a biocide and a building block to other chemical compounds, such as the amino acid methionine. Acrolein is used as an etherification agent in the preparation of modified food starches. Acrolein is an herbicide and algicide used in water treatment. It is produced by microorganisms, e.g. Clostridium perfringens. Acrolein is a relatively electrophilic compound and a reactive one, hence its high toxicity. It is a good Michael acceptor, hence its useful reaction with thiols. It forms acetals readily, a prominent one being the spirocycle derived from pentaerythritol, diallylidene pentaerythritol. Acrolein participates in many Diels-Alder reactions, even with itself. Via Diels-Alder reactions, it is a precursor to some commercial fragrances, including lyral, norbornene-2-carboxaldehyde, and myrac aldehyde. Acrolein is toxic and is a strong irritant for the skin, eyes, and nasal passages. The main metabolic pathway for acrolein is the alkylation of glutathione. The WHO suggests a tolerable oral acrolein intake of 7.5 µg/day per kilogram of body weight. Although acrolein occurs in French fries, the levels are only a few micrograms per kilogram. Acrolein has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Present in fruit aromas, black tea, carrot, cooked potato, cheeses, white wine, hydrolyzed soy protein, turkey, pork, beef fat and other foods. It is used as an etherification agent in the preparation of modified food starches. Herbicide and algicide used in water treatment. Production by microorganisms, e.g. Clostridium perfringens. 2-Propenal is found in many foods, some of which are napa cabbage, sacred lotus, devilfish, and garlic.
Cyclopentanol
Cyclopentanol, also known as cyclopentyl alcohol or hydroxycyclopentane, is a member of the class of compounds known as cyclopentanols. Cyclopentanols are compounds containing a cyclopentane ring that carries an alcohol group. Cyclopentanol is soluble (in water) and an extremely weak acidic compound (based on its pKa). Cyclopentanol can be found in a number of food items such as walnut, cashew nut, cauliflower, and linden, which makes cyclopentanol a potential biomarker for the consumption of these food products.
1,2-Benzoquinone
1,2-Benzoquinone is a reactive electrophile that is an intermediate in benzene metabolism. It is substrate for the enzyme Catechol oxidase (EC 1.10.3.1) and can be generated from the oxidation of catechol. 1,2-Benzoquinone is capable of reacting with blood proteins to produce adducts. 1,2-Benzoquinone, also called ortho-benzoquinone or cyclohexa-3,5-diene-1,2-dione, is a ketone, with formula C6H4O2. It is one of the two isomers of quinone, the other being 1,4-benzoquinone. O-Quinone is found in tea.
2,6-Diamino-4-hydroxy-5-N-methylformamidopyrimidine
2,6-Diamino-4-hydroxy-5-N-methylformamidopyrimidine is a methylated derivative of 2,6-Diamino-4-hydroxy-5-N-formamidopyrimidine or FapyGua. It is produced by DNA-formamidopyrimidine glycosylase (EC 3.2.2.23). This enzyme catalyzes the hydrolysis of DNA containing ring-opened 7-methylguanine residues, releasing 2,6-diamino-4-hydroxy-5-(N-methyl)formamidopyrimidine. More specifically, this enzyme catalyzes the removal of oxidized purine bases by cleaving the N-C1 glycosidic bond between the oxidized purine and the deoxyribose sugar. The reaction involves the formation of a covalent enzyme substrate intermediate. Release of the enzyme and free base by a beta-elimination or a beta, gamma-elimination mechanism results in the cleavage of the DNA backbone 3 of the apurinic (AP) site. The presence of this compound in urine is indicative of oxidative damage to DNA (oxidized purine base lesions) [HMDB] 2,6-Diamino-4-hydroxy-5-N-methylformamidopyrimidine is a methylated derivative of 2,6-Diamino-4-hydroxy-5-N-formamidopyrimidine or FapyGua. It is produced by DNA-formamidopyrimidine glycosylase (EC 3.2.2.23). This enzyme catalyzes the hydrolysis of DNA containing ring-opened 7-methylguanine residues, releasing 2,6-diamino-4-hydroxy-5-(N-methyl)formamidopyrimidine. More specifically, this enzyme catalyzes the removal of oxidized purine bases by cleaving the N-C1 glycosidic bond between the oxidized purine and the deoxyribose sugar. The reaction involves the formation of a covalent enzyme substrate intermediate. Release of the enzyme and free base by a beta-elimination or a beta, gamma-elimination mechanism results in the cleavage of the DNA backbone 3 of the apurinic (AP) site. The presence of this compound in urine is indicative of oxidative damage to DNA (oxidized purine base lesions).
NSC100044
O6-Methyldeoxy guanosine; DNA adduct is a purine nucleoside analog. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1].
Hydantoin
Hydantoin, also known as glycolylurea or 2,4-imidazolidinedione, is a member of the class of compounds known as imidazoles. Imidazoles are compounds containing an imidazole ring, which is an aromatic five-member ring with two nitrogen atoms at positions 1 and 3, and three carbon atoms. Hydantoin is soluble (in water) and a very weakly acidic compound (based on its pKa). Hydantoin can be found in a number of food items such as cabbage, common verbena, black radish, and brazil nut, which makes hydantoin a potential biomarker for the consumption of these food products. Hydantoin, or glycolylurea, is a heterocyclic organic compound with the formula CH2C(O)NHC(O)NH. It is a colorless solid that arises from the reaction of glycolic acid and urea. It is an oxidized derivative of imidazolidine. In a more general sense, hydantoins can refer to a groups and a class of compounds with the same ring structure as the parent. For example, phenytoin (mentioned below) has two phenyl groups substituted onto the number 5 carbon in a hydantoin molecule . COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Arsenic
Arsenic(As) is a ubiquitous metalloid found in several forms in food and the environment, such as the soil, air and water. Physiologically, it exists as an ion in the body. The predominant form is inorganic arsenic in drinking water, which is both highly toxic and carcinogenic and rapidly bioavailable. Arsenic is currently one of the most important environmental global contaminants and toxicants, particularly in the developing countries. For decades, very large populations have been and are currently still exposed to inorganic Arsenic through geogenically contaminated drinking water. An increased incidence of disease mediated by this toxicant is the consequence of long-term exposure. In humans chronic ingestion of inorganic arsenic (> 500 mg/L As) has been associated with cardiovascular, nervous, hepatic and renal diseases and diabetes mellitus as well as cancer of the skin, bladder, lung, liver and prostate. Contrary to the earlier view that methylated compounds are innocuous, the methylated metabolites are now recognized to be both toxic and carcinogenic, possibly due to genotoxicity, inhibition of antioxidative enzyme functions, or other mechanisms. Arsenic inhibits indirectly sulfhydryl containing enzymes and interferes with cellular metabolism. Effects involve such phenomena as cytotoxicity, genotoxicity and inhibition of enzymes with antioxidant function. These are all related to nutritional factors directly or indirectly. Nutritional studies both in experimental and epidemiological studies provide convincing evidence that nutritional intervention, including chemoprevention, offers a pragmatic approach to mitigate the health effects of arsenic exposure, particularly cancer, in the relatively resource-poor developing countries. Nutritional intervention, especially with micronutrients, many of which are antioxidants and share the same pathway with Arsenic , appears a host defence against the health effects of arsenic contamination in developing countries and should be embraced as it is pragmatic and inexpensive. (PMID: 17477765, 17179408). Arsenic(As) is a ubiquitous metalloid found in several forms in food and the environment, such as the soil, air and water. Physiologically, it exists as an ion in the body. The predominant form is inorganic arsenic in drinking water, which is both highly toxic and carcinogenic and rapidly bioavailable. Arsenic is currently one of the most important environmental global contaminants and toxicants, particularly in the developing countries. For decades, very large populations have been and are currently still exposed to inorganic Arsenic through geogenically contaminated drinking water. An increased incidence of disease mediated by this toxicant is the consequence of long-term exposure. In humans chronic ingestion of inorganic arsenic (> 500 mg/L As) has been associated with cardiovascular, nervous, hepatic and renal diseases and diabetes mellitus as well as cancer of the skin, bladder, lung, liver and prostate. Contrary to the earlier view that methylated compounds are innocuous, the methylated metabolites are now recognized to be both toxic and carcinogenic, possibly due to genotoxicity, inhibition of antioxidative enzyme functions, or other mechanisms. Arsenic inhibits indirectly sulfhydryl containing enzymes and interferes with cellular metabolism. Effects involve such phenomena as cytotoxicity, genotoxicity and inhibition of enzymes with antioxidant function. These are all related to nutritional factors directly or indirectly. Nutritional studies both in experimental and epidemiological studies provide convincing evidence that nutritional intervention, including chemoprevention, offers a pragmatic approach to mitigate the health effects of arsenic exposure, particularly cancer, in the relatively resource-poor developing countries. Nutritional intervention, especially with micronutrients, many of which are antioxidants and share the same pathway with Arsenic , appears a host defence against the health effects of arsenic contamination in developing countries and should be embraced as it is pragmatic and inexpensive. (PMID: 17477765, 17179408)
FAPy-adenine
Fapy-adenine is an oxidized DNA base. Oxidized nucleosides are biochemical markers for tumors, aging, and neurodegenerative diseases (PMID 15116424). Oxidative stress damage to DNA bases may contribute to neuronal loss in Alzheimers disease (AD). Increased levels were observed in parietal, temporal, occipital, and frontal lobe, superior temporal gyrus, and hippocampus areas of the brain in patients with AD. (PMID 9109533). Fapy-adenine is an oxidized DNA base. Oxidized nucleosides are biochemical markers for tumors, aging, and neurodegenerative diseases. (PMID 15116424) FAPy-adenine is an oxidized DNA base. Fapy-adenine shows an increased trend levels in the Alzheimer's disease brain. Oxidized nucleosides are biochemical markers for tumors, aging, and neurodegenerative diseases[1][2][3].
Methylarsonate
Methylarsonate is used as a contact herbicide in either the monosodium or disodium salt form. It goes by the trade names Weed-E-Rad, Ansar 170 H.C., Ansar 529 H.C., DiTac and others. Methylarsonate is considered only slightly toxic, having an oral LD50 of 2200 mg/Kg for rats. The inhalation risk is greater with LD50 Rats >20 mg. Long term studies with people exposed to organoarsenicals has shown an increased risk of skin cancer (Spiewak, 2001), lung cancer and some liver cancers, although some recent studies have shown some arsenic containing compounds (specifically Arsine trioxide) may have anticarcinogenic properties (Wang, 2001). In mammals, Methylarsonate is also an intermediate in the detoxification of inorganic arsenic. In the arsenate detoxification I pathway, arsenite reacts with S-adenosyl-L-methionine to produce methylarsonate and S-adenosyl-L-homocysteine. Arsenite methyltransferase catalyzes this reaction. Methylarsonate then reacts with 2 glutathione molecules to produce glutathione disulfide and methylarsonite. This reaction is catalyzed by methylarsonate reductase. Methylarsonate is an organic arsenic compound with adverse effects similar to those of arsenic trioxide. Arsenic is found in the environment primarily as arsenate and arsenite species. Arsenate is reduced to arsenite by arsenate reductase and can be subsequently methylated to Methylarsonate. This is then reduced and methylated to Dimethylarsinate, which can excreted and is considerably less toxic to the organism than any of the previous intermediate compounds. Methylarsonate was formerly included in some vitamin and mineral preparations. It was once used to treat tuberculosis, chorea, and other affections in which the cacodylates were used. Methylarsonate is used as a contact herbicide in either the monosodium or disodium salt form. It goes by the trade names Weed-E-Rad, Ansar 170 H.C., Ansar 529 H.C., DiTac and others. Methylarsonate is considered only slightly toxic, having an oral LD50 of 2200 mg/Kg for rats. The inhalation risk is greater with LD50 Rats >20 mg. Long term studies with people exposed to organoarsenicals has shown an increased risk of skin cancer (Spiewak, 2001), lung cancer and some liver cancers, although some recent studies have shown some arsenic containing compounds (specifically Arsine trioxide) may have anticarcinogenic properties (Wang, 2001). In mammals, Methylarsonate is also an intermediate in the detoxification of inorganic arsenic. D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals
Thiotepa
N,NN-triethylenethiophosphoramide (ThioTEPA) is a cancer chemotherapeutic member of the alkylating agent group, now in use for over 50 years. It is a stable derivative of N,N,N- triethylenephosphoramide (TEPA). It is mostly used to treat breast cancer, ovarian cancer and bladder cancer. It is also used as conditioning for Bone marrow transplantation. Its main toxicity is myelosuppression. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AC - Ethylene imines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000477 - Alkylating Agents
(-)-Aspidospermine
(-)-Aspidospermine is an alkaloid from Aspidosperma quebracho-blanco (quebracho
2-Nitrofluorene
D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D009153 - Mutagens
Methyl-tert-butyl ether
Methyl-tert-butyl ether, also known as tert-butyl methyl ether, methyl t-butyl ether or MTBE, is classified as a member of the dialkyl ethers. Dialkyl ethers are organic compounds containing the dialkyl ether functional group, with the formula ROR, where R and R are alkyl groups. Methyl-tert-butyl ether is considered to be soluble (in water) and basic. It is used as a gasoline additive. Exposure may occur by breathing air contaminated with auto exhaust or gasoline fumes while refueling autos. Respiratory irritation, dizziness, and disorientation have been reported by some motorists and occupationally exposed workers. Acute (short-term) exposure of humans to methyl tert-butyl ether also has occurred during its use as a medical treatment to dissolve cholesterol gallstones. Chronic (long-term) inhalation exposure to methyl-tert-butyl ether has resulted in central nervous system (CNS) effects, respiratory irritation, liver and kidney effects, and decreased body weight gain in animals. United States Environmental Protection Agency has not classified methyl-tert-butyl ether with respect to potential carcinogenicity. (ChemoSummarizer) D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D002273 - Carcinogens
Ascomycin
Ascomycin is a macrolide that is produced by the fermentation of Streptomyces hygroscopicus and exhibits strong immunosuppressant properties. It has a role as an immunosuppressive agent, an antifungal agent and a bacterial metabolite. It is a macrolide, an ether, a lactol and a secondary alcohol. Ascomycin is a natural product found in Streptomyces clavuligerus, Streptomyces hygroscopicus, and Streptomyces ascomycinicus with data available. A macrolide that is produced by the fermentation of Streptomyces hygroscopicus and exhibits strong immunosuppressant properties. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Ascomycin (Immunomycin; FR-900520; FK520) is an ethyl analog of Tacrolimus (FK506) with strong immunosuppressant properties. Ascomycin is also a macrocyclic polyketide antibiotic with multiple biological activities such as anti-malarial, anti-fungal and anti-spasmodic. Ascomycin prevents graft rejection and has potential for varying skin ailments research[1][2].
Monobenzone
Monobenzone is the monobenzyl ether of hydroquinone used medically for depigmentation. Monobenzone occurs as a white, almost tasteless crystalline powder, soluble in alcohol and practically insoluble in water. The topical application of monobenzone in animals increases the excretion of melanin from the melanocytes. The same action is thought to be responsible for the depigmenting effect of the drug in humans. Monobenzone may cause destruction of melanocytes and permanent depigmentation. D - Dermatologicals Same as: D05072
Furan
Furan is a member of the class of compounds known as furans. These are molecules containing a heterocyclic organic group consisting of a five-membered aromatic ring with four carbon atoms and one oxygen. Furan is aromatic because one of the lone pairs of electrons on the oxygen atom is delocalized into the ring, creating a 4n+2 aromatic system similar to benzene. Because of the aromaticity, furan is flat and lacks discrete double bonds. Furan is a colourless, flammable, highly volatile liquid with a boiling point close to room temperature (31 °C). It is soluble in common organic solvents, including alcohol, ether, and acetone, but is insoluble in water. It has a strong ethereal odour. Furan is found in heat-treated (e.g. cooked, roasted, baked, pasteurized, and sterilized) commercial foods and is produced through thermal degradation of natural food constituents (PMID:22641279). It can be found in roasted coffee, instant coffee, and processed baby foods (PMID:22641279). In particular, the highest furan levels can be detected in coffee, with mean values between 42 and 3 660 ng/g for brewed coffee and roasted coffee beans. Furan can also be detected at levels between 0.2 and 3.2 ng/g in infant formula, from 22 to 24 ng/g in baked beans, from 13 to 17 ng/g in meat products, and from 23 to 24 ng/g in soups. In soy sauce, furan is detectable at 27 ng/g (PMID:26483883). Research has indicated that coffee made in espresso makers and, above all, coffee made from capsules, contains more furan than that made in traditional drip coffee makers, although the levels are still within safe health limits. Various pathways have been reported for the formation of furan: (1) thermal degradation and/or thermal rearrangement of carbohydrates in the presence of amino acids, (2) thermal degradation of certain amino acids (aspartic acid, threonine, alpha-alanine, serine, and cysteine), (3) oxidation of ascorbic acid at higher temperatures, and (4) oxidation of polyunsaturated fatty acids and carotenoids (PMID:26483883). Several studies have reported that furan formation occurs to a large extent during the Maillard reaction. The Maillard reaction involves the thermal degradation and rearrangement of carbohydrates (i.e. non-enzymatic browning reactions during food processing and cooking). Reducing hexoses often go through the Maillard reaction in the presence of amino acids and produce reactive intermediates such as 1-deoxy- and 3-deoxyosones, aldotetrose, and 2-deoxy-3-keto-aldotetrose. 2-Deoxy-3-keto-aldotetrose typically goes through retro-aldol cleavage leading to 3-deoxyosone which undergoes alpha-dicarbonyl cleavage, followed by oxidation and decarboxylation to form 2-deoxyaldotetrose, which is a direct precursor of furan. In addition to the formation of furan via carbohydrate degradation, furan can also be formed through thermal degradation of certain amino acids. Specifically, the amino acids that can form acetaldehyde and glycolaldehyde can produce furan by aldol condensation and cyclization (PMID:26483883). Furan is toxic and may be carcinogenic. In particular, furan is a potent hepatotoxin and hepatocarcinogen in rodents, causing hepatocellular adenomas and carcinomas in rats and mice, and high incidences of cholangiocarcinomas in rats at doses ≥ 2 mg/kg (PMID:22641279).
2-Hydroxyfluorene
2-Hydroxyfluorene (2-OHF) is a metabolite of fluorene. Fluorene is one of the most abundant polycyclic aromatic hydrocarbons (PAHs) throughout the gas phase in the environment, especially in tobacco smoke condensate. 2-OHF is an effective biomarker for evaluating the exposure to PAHs from smoking. It has been found in urine [HMDB] 2-Hydroxyfluorene (2-OHF) is a metabolite of fluorene. Fluorene is one of the most abundant polycyclic aromatic hydrocarbons (PAHs) throughout the gas phase in the environment, especially in tobacco smoke condensate. 2-OHF is an effective biomarker for evaluating the exposure to PAHs from smoking. It has been found in urine. CONFIDENCE standard compound; INTERNAL_ID 1094; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4793; ORIGINAL_PRECURSOR_SCAN_NO 4790 CONFIDENCE standard compound; INTERNAL_ID 1094; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4811; ORIGINAL_PRECURSOR_SCAN_NO 4806 CONFIDENCE standard compound; INTERNAL_ID 1094; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4829; ORIGINAL_PRECURSOR_SCAN_NO 4826 CONFIDENCE standard compound; INTERNAL_ID 1094; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4796; ORIGINAL_PRECURSOR_SCAN_NO 4793 CONFIDENCE standard compound; INTERNAL_ID 1094; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4823; ORIGINAL_PRECURSOR_SCAN_NO 4821 CONFIDENCE standard compound; INTERNAL_ID 1094; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4758; ORIGINAL_PRECURSOR_SCAN_NO 4754
Benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide
Benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide, also known as BPDE or benzo(a)Pyrene diol epoxide, is classified as a member of the Pyrenes. Pyrenes are compounds containing a pyrene moiety, which consists four fused benzene rings, resulting in a flat aromatic system. Benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide is considered to be practically insoluble (in water) and relatively neutral. It is a carcinogenic metabolite of benzo[a]pyrene (BaP) which forms adducts with DNA and proteins and is hydrolysed to BPDE tetrols. It is used as a marker for BaP exposure (a surrogate marker for PAHs). D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
Potassium dichromate
D009676 - Noxae > D002424 - Caustics D004396 - Coloring Agents
1,3-Butadiene
1,3-Butadiene is a simple conjugated diene with the formula C4H6. It is an important industrial chemical used as a monomer in the production of synthetic rubber. When the word butadiene is used, most of the time it refers to 1,3-butadiene. 1,3-Butadiene is inconvenient for laboratory use because it is a flammable gas subject to polymerization on storage. 3-Butadiene cyclic sulfone (sulfolene) is a convenient solid storable source for 1,3-butadiene for many laboratory purposes when the generation of sulfur dioxide byproduct in the reaction mixture is not objectionable. Long-term exposure has been associated with cardiovascular disease, there is a consistent association with leukemia, and weaker association with other cancers. Most butadiene is polymerized to produce synthetic rubber. While polybutadiene itself is a very soft, almost liquid material, copolymers prepared from mixtures of butadiene with styrene and/or acrylonitrile, such as acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene (NBR) and styrene-butadiene (SBR) are tough and elastic. SBR is the material most commonly used for the production of automobile tires. Smaller amounts of butadiene are used to make the nylon intermediate, adiponitrile, by the addition of a molecule of hydrogen cyanide to each of the double bonds in a process called hydrocyanation developed by DuPont. Other synthetic rubber materials such as chloroprene, and the solvent sulfolane are also manufactured from butadiene. Butadiene is used in the industrial production of 4-vinylcyclohexene via a Diels Alder dimerization reaction and the vinylcyclohexene is a common impurity found in butadiene upon storage. Cyclooctadiene and cyclododecatriene are produced via nickel- or titanium-catalyzed dimerization and trimerization reactions, respectively. Butadiene is also useful in the synthesis of cycloalkanes and cycloalkenes, as it reacts with double and triple carbon-carbon bonds through the Diels-Alder reaction. The name butadiene can also refer to the isomer, 1,2-butadiene, which is a cumulated diene. However, this allene is difficult to prepare and has no industrial significance. This diene is also not expected to act as a diene in a Diels-Alder reaction due to its structure. To effect a Diels-Alder reaction only a conjugated diene will suffice. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
RUBRATOXIN B
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
Dinophysistoxin 1
Dinophysistoxin 1 is found in mollusks. Dinophysistoxin 1 is a metabolite of Dinophysis fortii. Dinophysistoxin 1 is found in scallops and mussels. Component toxin in diarrhetic shellfish poisonin D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins
2-Deoxy-L-ribono-1,4-lactone
2-Deoxy-L-ribono-1,4-lactone is found in herbs and spices. 2-Deoxy-L-ribono-1,4-lactone is a constituent of the fruit of Foeniculum vulgare (fennel). Constituent of the fruit of Foeniculum vulgare (fennel). 2-Deoxy-L-ribono-1,4-lactone is found in herbs and spices.
ascomycin
5,6-dihydrothymine
Dihydrothymine, also known as 5,6-dihydro-5-methyluracil or 5,6-dihydrothymine, (S)-isomer, is a member of the class of compounds known as hydropyrimidines. Hydropyrimidines are compounds containing a hydrogenated pyrimidine ring (i.e. containing less than the maximum number of double bonds.). Dihydrothymine is soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydrothymine can be found in a number of food items such as hyssop, arrowroot, nopal, and red rice, which makes dihydrothymine a potential biomarker for the consumption of these food products. Dihydrothymine can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human prostate tissue. Dihydrothymine exists in all living organisms, ranging from bacteria to humans. In humans, dihydrothymine is involved in the pyrimidine metabolism. Dihydrothymine is also involved in few metabolic disorders, which include beta ureidopropionase deficiency, dihydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and UMP synthase deficiency (orotic aciduria). Moreover, dihydrothymine is found to be associated with beta-ureidopropionase deficiency and dihydropyrimidinase deficiency. Dihydrothymine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Dihydrothymine is an intermediate in the metabolism of thymine . Dihydropyrimidine dehydrogenase catalyzes the reduction of thymine to 5, 6-dihydrothymine then dihydropyrimidinase hydrolyzes 5, 6-dihydrothymine to N-carbamyl-b-alanine. Finally, beta-ureidopropionase catalyzes the conversion of N-carbamyl-b-alanine to beta-alanine. Accumulation of dihydrothymine in the body has been shown to be toxic (T3DB). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].
Geniposidic_acid
Geniposidic acid is a terpene glycoside. Geniposidic acid is a natural product found in Avicennia officinalis, Gardenia jasminoides, and other organisms with data available. Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
dihydrouracil
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
menadione
A member of the class of 1,4-naphthoquinones that is 1,4-naphthoquinone which is substituted at position 2 by a methyl group. It is used as a nutritional supplement and for the treatment of hypoprothrombinemia. B - Blood and blood forming organs > B02 - Antihemorrhagics > B02B - Vitamin k and other hemostatics > B02BA - Vitamin k D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D050299 - Fibrin Modulating Agents > D000933 - Antifibrinolytic Agents D018977 - Micronutrients > D014815 - Vitamins Menadione is a naphthoquinone that is converted into active vitamin K2 in the body. Menadione is a naphthoquinone that is converted into active vitamin K2 in the body.
Sterigmatocystin
An organic heteropentacyclic compound whose skeleton comprises a xanthene ring system ortho-fused to a dihydrofuranofuran moiety. The parent of the class of sterigmatocystins. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1)
Bisphenol_F
Bisphenol F is a bisphenol that is methane in which two of the hydrogens have been replaced by 4-hydroxyphenyl groups. It has a role as an environmental food contaminant and a xenoestrogen. It is a diarylmethane and a bisphenol. 4,4-Methylenediphenol is a natural product found in Galeola faberi, Xanthium strumarium, and other organisms with data available. 4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1]. 4,4'-Dihydroxydiphenylmethane is a phenolic derivative with antioxidant activities[1].
Terbutylazine
CONFIDENCE standard compound; EAWAG_UCHEM_ID 284 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Geniposidic acid
Geniposidic acid has radiation protection and anti-cancer activity. Geniposidic acid has radiation protection and anti-cancer activity.
Citrinin
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 11 D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Citrinin is a mycotoxin which causes contamination in the food and is associated with different toxic effects. Citrinin is usually found together with another nephrotoxic mycotoxin, Ochratoxin A. Citrinin is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro[1][2].
Deoxyadenosine monophosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056 2′-Deoxyadenosine 5′-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2′-Deoxyadenosine 5′-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage[1]. 2′-Deoxyadenosine 5′-monophosphate, a nucleic acid AMP derivative, is a deoxyribonucleotide found in DNA. 2′-Deoxyadenosine 5′-monophosphate can be used to study adenosine-based interactions during DNA synthesis and DNA damage[1].
2-Deoxyguanosine
A purine 2-deoxyribonucleoside having guanine as the nucleobase. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-Deoxyguanosine (Deoxyguanosine) is a purine nucleoside with a variety of biological activities. 2’-Deoxyguanosine can induce DNA division in mouse thymus cells. 2’-Deoxyguanosine is a potent cell division inhibitor in plant cells[1][2][3]. 2'-Deoxyguanosine (Deoxyguanosine) is deoxyguanosine.
Adenine
COVID info from PDB, Protein Data Bank, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2357 INTERNAL_ID 2357; CONFIDENCE Reference Standard (Level 1) MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GFFGJBXGBJISGV_STSL_0142_Adenine_0125fmol_180430_S2_LC02_MS02_16; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].
Cytosine
(2S)-2-{[(2S)-2-{[(2R)-2-{[(2S)-2-amino-1-hydroxy-3-(C-hydroxycarbonimidoyl)propylidene]amino}-1-hydroxy-3-selanylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-4-methylpentanoic acid is a member of the class of compounds known as oligopeptides. Oligopeptides are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds (2S)-2-{[(2S)-2-{[(2R)-2-{[(2S)-2-amino-1-hydroxy-3-(C-hydroxycarbonimidoyl)propylidene]amino}-1-hydroxy-3-selanylpropylidene]amino}-1-hydroxy-4-methylpentylidene]amino}-4-methylpentanoic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OPTASPLRGRRNAP_STSL_0157_Cytosine_0125fmol_180430_S2_LC02_MS02_96; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2].
Uracil
A common and naturally occurring pyrimidine nucleobase in which the pyrimidine ring is substituted with two oxo groups at positions 2 and 4. Found in RNA, it base pairs with adenine and replaces thymine during DNA transcription. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ISAKRJDGNUQOIC_STSL_0177_Uracil_8000fmol_180430_S2_LC02_MS02_198; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.
5-Methylcytosine
A pyrimidine that is a derivative of cytosine, having a methyl group at the 5-position. 5-Methylcytosine is a well-characterized DNA modification, and is also predominantly in abundant non-coding RNAs in both prokaryotes and eukaryotes. 5-Methylcytosine in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development[1].
thymine
A pyrimidine nucleobase that is uracil in which the hydrogen at position 5 is replaced by a methyl group. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RWQNBRDOKXIBIV_STSL_0176_Thymine_2000fmol_180506_S2_LC02_MS02_138; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.
Dihydrothymine
A pyrimidone obtained by formal addition of hydrogen across the 5,6-position of thymine. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 5,6-Dihydro-5-methyluracil (Dihydrothymine), an intermediate breakdown product of thymine, comes from animal or plants. 5,6-Dihydro-5-methyluracil (Dihydrothymine) can be toxic when present at abnormally high levels[1].
FAPy-adenine
FAPy-adenine is an oxidized DNA base. Fapy-adenine shows an increased trend levels in the Alzheimer's disease brain. Oxidized nucleosides are biochemical markers for tumors, aging, and neurodegenerative diseases[1][2][3].
Cysteine
A sulfur-containing amino acid that is propanoic acid with an amino group at position 2 and a sulfanyl group at position 3. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 18 L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].
Rufloxacin
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors Same as: D02474
4-Nitroquinoline 1-oxide
D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens
patulin
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE standard compound; INTERNAL_ID 5971 D009676 - Noxae > D009153 - Mutagens CONFIDENCE Reference Standard (Level 1) Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].
2-Amino-3-methylimidazo(4,5-F)quinoline
CONFIDENCE standard compound; INTERNAL_ID 2437
2-Deoxyadenosine 5-triphosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
BENZOYLFORMIC ACID
D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].
2-NAPHTHOL
C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent A naphthol carrying a hydroxy group at position 2. 2-Naphthol is a metabolite of naphthalene, catalyzed by cytochrome P450 (CYP) isozymes (CYP 1A1, CYP 1A2, CYP 2A1, CYP 2E1 and CYP 2F2).
Pirod
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA. Uracil is a common and naturally occurring pyrimidine derivative and one of the four nucleobases in the nucleic acid of RNA.
Adenin
COVID info from PDB, Protein Data Bank, COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3]. Adenine (6-Aminopurine), a purine, is one of the four nucleobases in the nucleic acid of DNA. Adenine acts as a chemical component of DNA and RNA. Adenine also plays an important role in biochemistry involved in cellular respiration, the form of both ATP and the cofactors (NAD and FAD), and protein synthesis[1][2][3].
FR-0140
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2]. Dihydrouracil (5,6-Dihydrouracil), a metabolite of Uracil, can be used as a marker for identification of dihydropyrimidine dehydrogenase (DPD)-deficient[1][2].
Thymin
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.
Zytosin
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2]. Cytosine is one of the four main bases found in DNA and RNA. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging[1][2].
Isochamaejasmin
Isochamaejasmin is a biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3. It has a role as a plant metabolite. It is a biflavonoid and a hydroxyflavone. Isochamaejasmin is a natural product found in Brackenridgea zanguebarica, Stellera chamaejasme, and Ormocarpum kirkii with data available. A biflavonoid that consists of two units of 5,7,4-trihydroxyflavanone joined together at position 3 and 3.
thiotepa
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01A - Alkylating agents > L01AC - Ethylene imines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D019653 - Myeloablative Agonists D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000477 - Alkylating Agents
Methylarsonic acid
D010575 - Pesticides > D006540 - Herbicides D009676 - Noxae > D013723 - Teratogens D016573 - Agrochemicals
2-Deoxyinosine
A purine 2-deoxyribonucleoside that is inosine in which the hydroxy group at position 2 is replaced by a hydrogen. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency. 2’-deoxyadenosine inhibits the growth of human colon-carcinoma cell lines and is found to be associated with purine nucleoside phosphorylase (PNP) deficiency.
2-Deoxyguanosine-5-triphosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Imidazolidine-2,4-dione
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Deoxycytidine 5-monophosphate
A pyrimidine 2-deoxyribonucleoside 5-monophosphate having cytosine as the nucleobase. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite.
aspidospermine
An indole alkaloid having the structure of aspirospermidine methoxylated at C-17 and acetylated at N-1.
Oxaluric acid
A 2-oxo monocarboxylic acid that is amino(oxo)acetic acid substituted by a carbamoylamino group at the nitrogen atom.
2-Deoxy-D-ribofuranose 5-phosphate
The furanose form of 2-deoxy-D-ribose 5-phosphate.
O(6)-Methyl-2-deoxyguanosine
O6-Methyldeoxy guanosine; DNA adduct is a purine nucleoside analog. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1].
N-(2,4-diamino-6-hydroxypyrimidin-5-yl)-N-methylformamide
Mycoin
A furopyran and lactone that is (2H-pyran-3(6H)-ylidene)acetic acid which is substituted by hydroxy groups at positions 2 and 4 and in which the hydroxy group at position 4 has condensed with the carboxy group to give the corresponding bicyclic lactone. A mycotoxin produced by several species of Aspergillus and Penicillium, it has antibiotic properties but has been shown to be carcinogenic and mutagenic. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D009153 - Mutagens Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].
Methyl tert-butyl ether
An ether having methyl and tert-butyl as the two alkyl components. D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D002273 - Carcinogens
Bisphenol AF
An organofluorine compound that is bisphenol A with its methyl hydrogens replaced by fluorines. D052244 - Endocrine Disruptors
2-Nitrofluorene
D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D009153 - Mutagens
1-HYDROXYPYRENE
D009676 - Noxae > D009153 - Mutagens 1-Hydroxypyrene, a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs), is analyzed in urine samples. 1-Hydroxypyrene is the major biomarker of exposure to pyrenes[1].
Benzo(a)pyrene diol epoxide
D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens