Deoxyadenosine triphosphate (BioDeep_00000001317)

 

Secondary id: BioDeep_00000416027

human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


({[({[(2R,3S,5R)-5-(6-amino-9H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

化学式: C10H16N5O12P3 (491.0008326)
中文名称: 2'-脱氧腺苷5'-三磷酸
谱图信息: 最多检出来源 Homo sapiens(urine) 0.7%

分子结构信息

SMILES: C1C(C(OC1N2C=NC3=C(N=CN=C32)N)COP(=O)(O)OP(=O)(O)OP(=O)(O)O)O
InChI: InChI=1S/C10H16N5O12P3/c11-9-8-10(13-3-12-9)15(4-14-8)7-1-5(16)6(25-7)2-24-29(20,21)27-30(22,23)26-28(17,18)19/h3-7,16H,1-2H2,(H,20,21)(H,22,23)(H2,11,12,13)(H2,17,18,19)/t5-,6+,7+/m0/s1

描述信息

Deoxyadenosine triphosphate (dATP) is a purine nucleoside triphosphate used in cells for DNA synthesis. A nucleoside triphosphate is a molecule type that contains a nucleoside with three phosphates bound to it. dATP contains the sugar deoxyribose, a precursor to DNA synthesis whereby the two existing phosphate groups are cleaved with the remaining deoxyadenosine monophosphate being incorporated into DNA during replication. Due to its enzymatic incorporation into DNA, photoreactive dATP analogs such as N6-[4-azidobenzoyl–(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (AB-dATP) and N6-[4-[3-(trifluoromethyl)-diazirin-3-yl]benzoyl-(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (DB-dATP) have been used for DNA photoaffinity labeling. When present in sufficiently high levels, dATP can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxyadenosine triphosphate are associated with adenosine deaminase (ADA) deficiency, an inborn error of metabolism. ADA deficiency damages the immune system and causes severe combined immunodeficiency (SCID). People with SCID lack virtually all immune protection from bacteria, viruses, and fungi. They are prone to repeated and persistent infections that can be very serious or life-threatening. These infections are often caused by "opportunistic" organisms that ordinarily do not cause illness in people with a normal immune system. The main symptoms of ADA deficiency are pneumonia, chronic diarrhea, and widespread skin rashes. The mechanism by which dATP functions as an immunotoxin is as follows: a buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges.
Animals obtain their energy by oxidation of foods, plants do so by trapping the sunlight using chlorophyll. However, before the energy can be used, it is first transformed into a form which the organism can handle easily. This special carrier of energy is the molecule adenosine triphosphate, or ATP. The ATP molecule is composed of three components. At the centre is a sugar molecule, [[ribose] (the same sugar that forms the basis of DNA). Attached to one side of this is a base (a group consisting of linked rings of carbon and nitrogen atoms); in this case the base is adenine. The other side of the sugar is attached to a string of phosphate groups. These phosphates are the key to the activity of ATP. ATP consists of a base, in this case adenine (red), a ribose (magenta) and a phosphate chain (blue). ATP works by losing the endmost phosphate group when instructed to do so by an enzyme. This reaction releases a lot of energy, which the organism can then use to build proteins, contact muscles, etc. [HMDB]. dATP is found in many foods, some of which are pepper (c. chinense), squashberry, safflower, and brussel sprouts.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS

同义名列表

20 个代谢物同义名

({[({[(2R,3S,5R)-5-(6-amino-9H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid; 2-Deoxyadenosine 5-triphosphate disodium salt(dATP); 2-Deoxyadenosine triphosphate, monomagnesium salt; 2-Deoxyadenosine triphosphate, p-(32)p-labeled; 2-Deoxyadenosine triphosphate, trisodium salt; 2-Deoxyadenosine triphosphate, 14C-labeled; 2-Deoxyadenosine 5-triphosphoric acid; Deoxyadenosine 5-triphosphoric acid; Deoxyadenosine triphosphoric acid; 2-Deoxyadenosine 5-triphosphate; 2-Deoxyadenosine triphosphate; Deoxyadenosine 5-triphosphate; Deoxyadenosine-triphosphate; Deoxyadenosine triphosphate; 2-Deoxy-5-ATP; 2-Deoxy-ATP; Deoxy-ATP; dATP CPD; dATP; 2'-Deoxyadenosine 5'-triphosphate(dATP)



数据库引用编号

20 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(3)

PlantCyc(0)

代谢反应

132 个相关的代谢反应过程信息。

Reactome(76)

  • DNA Replication: ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
  • Synthesis of DNA: ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
  • DNA replication initiation: RNA primer:origin duplex:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:origin duplex
  • Cell Cycle: 2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
  • Cell Cycle, Mitotic: 2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
  • S Phase: ATP + pre-replicative complex ⟶ ADP + Homologues of p-S,T-ORC1 + pre-replicative complex (Orc1-minus)
  • Chromosome Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Extension of Telomeres: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Extension By Telomerase: TTP + Telomerase RNP Bound and base-paired to the Telomeric Chromosome End + dATP + dCTP + dGTP ⟶ Telomerase RNP:Telomeric Chromosome End with an Additional single Stranded Telomere repeat
  • Telomere C-strand (Lagging Strand) Synthesis: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:G-strand extended telomere
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand (Lagging Strand) Synthesis: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • DNA Replication: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • Synthesis of DNA: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • DNA replication initiation: RNA primer:origin duplex:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:origin duplex
  • Cell Cycle: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • Cell Cycle, Mitotic: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • S Phase: ATP + Q5N897 ⟶ ADP + phospho-p-CDC6
  • Chromosome Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Extension of Telomeres: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand (Lagging Strand) Synthesis: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:G-strand extended telomere
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Chromosome Maintenance: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere Maintenance: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Extension of Telomeres: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand (Lagging Strand) Synthesis: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand (Lagging Strand) Synthesis: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:POLA:primase + TTP + dATP + dCTP + dGTP ⟶ RNA primer:DNA primer:G-strand extended telomere:POLA:primase
  • Cell Cycle: ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
  • Cell Cycle, Mitotic: ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
  • S Phase: ATP + p21,p27 ⟶ ADP + p-T-CDKN1A/B
  • Synthesis of DNA: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:origin duplex ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:origin duplex:PCNA homotrimer
  • DNA replication initiation: RNA primer:origin duplex:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:origin duplex
  • Chromosome Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Maintenance: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Extension of Telomeres: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere Extension By Telomerase: TTP + Telomerase RNP Bound and base-paired to the Telomeric Chromosome End + dATP + dCTP + dGTP ⟶ Telomerase RNP:Telomeric Chromosome End with an Additional single Stranded Telomere repeat
  • Telomere C-strand (Lagging Strand) Synthesis: ATP + PCNA homotrimer + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end ⟶ ADP + RFC Heteropentamer:RNA primer-DNA primer:G-strand extended telomere end duplex:PCNA homotrimer
  • Telomere C-strand synthesis initiation: RNA primer:G-strand extended telomere end:DNA polymerase alpha:primase complex + TTP + dATP + dCTP + dGTP ⟶ RNA primer-DNA primer:G-strand extended telomere
  • DNA Replication: ATP + MCM2-7 ⟶ ADP + p-MCM2-7
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Processive synthesis on the C-strand of the telomere: Processive complex loaded on telomere + TTP + dATP + dCTP + dGTP ⟶ Processive complex loaded on telomere:Okazaki fragment complex
  • Telomere Extension By Telomerase: TTP + Telomerase RNP Bound and base-paired to the Telomeric Chromosome End + dATP + dCTP + dGTP ⟶ Telomerase RNP:Telomeric Chromosome End with an Additional single Stranded Telomere repeat
  • Metabolism: 2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
  • Carbohydrate metabolism: D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
  • Pentose phosphate pathway: ATP + R5P ⟶ AMP + PRPP
  • PRPP biosynthesis: ATP + R5P ⟶ AMP + PRPP
  • Metabolism: 2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
  • Carbohydrate metabolism: D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
  • Pentose phosphate pathway: ATP + R5P ⟶ AMP + PRPP
  • PRPP biosynthesis: ATP + R5P ⟶ AMP + PRPP
  • Metabolism: 1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
  • Carbohydrate metabolism: D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
  • Pentose phosphate pathway: ATP + R5P ⟶ AMP + PRPP
  • PRPP biosynthesis: ATP + R5P ⟶ AMP + PRPP
  • DNA Repair: MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
  • DNA Damage Bypass: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA + POLH
  • Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA template: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA + POLH
  • Translesion Synthesis by POLH: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA + POLH
  • DNA Repair: MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
  • DNA Damage Bypass: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + Homologues of POLH + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA
  • Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA template: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + Homologues of POLH + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA
  • Translesion Synthesis by POLH: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + Homologues of POLH + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA
  • DNA Repair: MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
  • DNA Damage Bypass: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA + POLH
  • Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA template: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA + POLH
  • Translesion Synthesis by POLH: ATP + NPLOC4:UFD1L:VCP:SPRTN:POLH:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-DNA Template ⟶ ADP + NPLOC4:UFD1L:VPC:SPRTN:MonoUb:K164-PCNA:RPA:RFC:(TT-CPD:AA-polydNMP)-Template DNA + POLH

BioCyc(4)

WikiPathways(3)

Plant Reactome(0)

INOH(2)

PlantCyc(0)

COVID-19 Disease Map(1)

PathBank(46)

PharmGKB(0)

5 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Liyan Wang, Hongxin Zhao, Dong He, Yinan Wu, Lihua Jin, Guo Li, Nan Su, Heping Li, Xin-Hui Xing. Insights into the molecular-level effects of atmospheric and room-temperature plasma on mononucleotides and single-stranded homo- and hetero-oligonucleotides. Scientific reports. 2020 08; 10(1):14298. doi: 10.1038/s41598-020-71152-1. [PMID: 32868795]
  • Apurba Sarkar, Shreya Ghosh, Rahul Shaw, Madhu Manti Patra, Fatema Calcuttawala, Noyonika Mukherjee, Sujoy K Das Gupta. Mycobacterium tuberculosis thymidylate synthase (ThyX) is a target for plumbagin, a natural product with antimycobacterial activity. PloS one. 2020; 15(2):e0228657. doi: 10.1371/journal.pone.0228657. [PMID: 32017790]
  • Narendra Tuteja, Mohammed Tarique, Renu Tuteja. Rice SUV3 is a bidirectional helicase that binds both DNA and RNA. BMC plant biology. 2014 Oct; 14(?):283. doi: 10.1186/s12870-014-0283-6. [PMID: 25311683]
  • Yiping Gao, He Zhao, Mengyu Lv, Guozhong Sun, Xueju Yang, Haibo Wang. [A simple error-prone PCR method through dATP reduction]. Wei sheng wu xue bao = Acta microbiologica Sinica. 2014 Jan; 54(1):97-103. doi: . [PMID: 24783859]
  • Gajraj Singh Kushwaha, Nisha Pandey, Mau Sinha, S Baskar Singh, Punit Kaur, Sujata Sharma, Tej P Singh. Crystal structures of a type-1 ribosome inactivating protein from Momordica balsamina in the bound and unbound states. Biochimica et biophysica acta. 2012 Apr; 1824(4):679-91. doi: 10.1016/j.bbapap.2012.02.005. [PMID: 22361570]
  • Stephan Bender, Thomas Rellum, Christine Freitag, Franz Resch, Marcella Rietschel, Jens Treutlein, Christine Jennen-Steinmetz, Daniel Brandeis, Tobias Banaschewski, Manfred Laucht. Dopamine inactivation efficacy related to functional DAT1 and COMT variants influences motor response evaluation. PloS one. 2012; 7(5):e37814. doi: 10.1371/journal.pone.0037814. [PMID: 22649558]
  • Sujatha Ramasamy, Norhanom Abdul Wahab, Nurhayati Zainal Abidin, Sugumaran Manickam, Zubaidah Zakaria. Growth inhibition of human gynecologic and colon cancer cells by Phyllanthus watsonii through apoptosis induction. PloS one. 2012; 7(4):e34793. doi: 10.1371/journal.pone.0034793. [PMID: 22536331]
  • James B Johnston. Mechanism of action of pentostatin and cladribine in hairy cell leukemia. Leukemia & lymphoma. 2011 Jun; 52 Suppl 2(?):43-5. doi: 10.3109/10428194.2011.570394. [PMID: 21463108]
  • Martin Pabst, Josephine Grass, Richard Fischl, Renaud Léonard, Chunsheng Jin, Georg Hinterkörner, Nicole Borth, Friedrich Altmann. Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Analytical chemistry. 2010 Dec; 82(23):9782-8. doi: 10.1021/ac101975k. [PMID: 21043458]
  • Bridget E Bax, Murray D Bain, Lynette D Fairbanks, A David B Webster, Philip W Ind, Michael S Hershfield, Ronald A Chalmers. A 9-yr evaluation of carrier erythrocyte encapsulated adenosine deaminase (ADA) therapy in a patient with adult-type ADA deficiency. European journal of haematology. 2007 Oct; 79(4):338-48. doi: 10.1111/j.1600-0609.2007.00927.x. [PMID: 17680812]
  • Tadeusz Robak, Ewa Lech-Maranda, Anna Korycka, Ewa Robak. Purine nucleoside analogs as immunosuppressive and antineoplastic agents: mechanism of action and clinical activity. Current medicinal chemistry. 2006; 13(26):3165-89. doi: 10.2174/092986706778742918. [PMID: 17168705]
  • Kent Persson, Keith Hamby, Luis A Ugozzoli. Four-color multiplex reverse transcription polymerase chain reaction--overcoming its limitations. Analytical biochemistry. 2005 Sep; 344(1):33-42. doi: 10.1016/j.ab.2005.06.026. [PMID: 16039598]
  • Chun Hung Ma, Joannie Hui, Janet Tsui Ying Tang, Danny Tze Ming Leung, Yiu Loon Chui, Tai Fai Fok, Pak-Leong Lim. Antibodies to guanosine triphosphate misidentified as anti-double-stranded DNA antibodies in a patient with antinuclear antibody-negative lupus, due to buckling of insolubilized assay DNA. Arthritis and rheumatism. 2004 May; 50(5):1533-8. doi: 10.1002/art.20188. [PMID: 15146423]
  • Francis J Giles, Paula M Fracasso, Hagop M Kantarjian, Jorge E Cortes, Randy A Brown, Srdan Verstovsek, Yesid Alvarado, Deborah A Thomas, Stefan Faderl, Guillermo Garcia-Manero, Lisa P Wright, Tom Samson, Ann Cahill, Paula Lambert, William Plunkett, Mario Sznol, John F DiPersio, Varsha Gandhi. Phase I and pharmacodynamic study of Triapine, a novel ribonucleotide reductase inhibitor, in patients with advanced leukemia. Leukemia research. 2003 Dec; 27(12):1077-83. doi: 10.1016/s0145-2126(03)00118-8. [PMID: 12921943]
  • Takashi Koguchi, Hisao Nakajima, Hiromi Koguchi, Masahiro Wada, Yuji Yamamoto, Satoshi Innami, Akio Maekawa, Tadahiro Tadokoro. Suppressive effect of viscous dietary fiber on elevations of uric acid in serum and urine induced by dietary RNA in rats is associated with strength of viscosity. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 2003 Oct; 73(5):369-76. doi: 10.1024/0300-9831.73.5.369. [PMID: 14639801]
  • Kenneth A Jacobson, Michael F Jarvis, Michael Williams. Purine and pyrimidine (P2) receptors as drug targets. Journal of medicinal chemistry. 2002 Sep; 45(19):4057-93. doi: 10.1021/jm020046y. [PMID: 12213051]
  • S G Deeks, P Barditch-Crovo, A Collier, A Smith, M Miller, I McGowan, D F Coakley. Hydroxyurea does not enhance the anti-HIV activity of low-dose tenofovir disoproxil fumarate. Journal of acquired immune deficiency syndromes (1999). 2001 Dec; 28(4):336-9. doi: 10.1097/00126334-200112010-00005. [PMID: 11707669]
  • S Takahashi, K Hori, K Takahashi, H Ogasawara, M Tomatsu, K Saito. Effects of nucleotides on N-acetyl-d-glucosamine 2-epimerases (renin-binding proteins): comparative biochemical studies. Journal of biochemistry. 2001 Dec; 130(6):815-21. doi: 10.1093/oxfordjournals.jbchem.a003053. [PMID: 11726282]
  • A Renz, W E Berdel, M Kreuter, C Belka, K Schulze-Osthoff, M Los. Rapid extracellular release of cytochrome c is specific for apoptosis and marks cell death in vivo. Blood. 2001 Sep; 98(5):1542-8. doi: 10.1182/blood.v98.5.1542. [PMID: 11520805]
  • V Gandhi, W Plunkett, S Weller, M Du, M Ayres, C O Rodriguez, P Ramakrishna, G L Rosner, J P Hodge, S O'Brien, M J Keating. Evaluation of the combination of nelarabine and fludarabine in leukemias: clinical response, pharmacokinetics, and pharmacodynamics in leukemia cells. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2001 Apr; 19(8):2142-52. doi: 10.1200/jco.2001.19.8.2142. [PMID: 11304766]
  • Z Dong, P Saikumar, Y Patel, J M Weinberg, M A Venkatachalam. Serine protease inhibitors suppress cytochrome c-mediatedcaspase-9 activation and apoptosis during hypoxia-reoxygenation. The Biochemical journal. 2000 May; 347 Pt 3(?):669-77. doi: . [PMID: 10769169]
  • S Sauge-Merle, D Falconet, M Fontecave. An active ribonucleotide reductase from Arabidopsis thaliana cloning, expression and characterization of the large subunit. European journal of biochemistry. 1999 Nov; 266(1):62-9. doi: 10.1046/j.1432-1327.1999.00814.x. [PMID: 10542051]
  • D Kumari, K Usdin. Sequencing errors in reactions using labeled terminators. BioTechniques. 1999 Oct; 27(4):648-50. doi: 10.2144/99274bm02. [PMID: 10524297]
  • P Li, D Nijhawan, I Budihardjo, S M Srinivasula, M Ahmad, E S Alnemri, X Wang. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997 Nov; 91(4):479-89. doi: 10.1016/s0092-8674(00)80434-1. [PMID: 9390557]
  • R Hirschhorn, W Borkowsky, C K Jiang, D R Yang, T Jenkins. Two newly identified mutations (Thr233Ile and Leu152Met) in partially adenosine deaminase-deficient (ADA-) individuals that result in differing biochemical and metabolic phenotypes. Human genetics. 1997 Jul; 100(1):22-9. doi: 10.1007/s004390050460. [PMID: 9225964]
  • T M Fletcher, M Salazar, S F Chen. Human telomerase inhibition by 7-deaza-2'-deoxypurine nucleoside triphosphates. Biochemistry. 1996 Dec; 35(49):15611-7. doi: 10.1021/bi961228v. [PMID: 8961922]
  • C Chantin, B Bonin, R Boulieu, C Bory. Liquid-chromatographic study of purine metabolism abnormalities in purine nucleoside phosphorylase deficiency. Clinical chemistry. 1996 Feb; 42(2):326-8. doi: . [PMID: 8595732]
  • S M Trentmann, E van der Knaap, H Kende. Alternatives to 35S as a label for the differential display of eukaryotic messenger RNA. Science (New York, N.Y.). 1995 Feb; 267(5201):1186-7. doi: 10.1126/science.7855603. [PMID: 7855603]
  • M Fujita, K Ito, H Kawamoto, S Kashii, M Norioka, S Monden, M Okuma. Characterization of adenosine deaminase (ADA)-negative B-lymphoblastoid cells cocultured with ADA-positive fibroblasts. European journal of haematology. 1993 Apr; 50(4):200-5. doi: 10.1111/j.1600-0609.1993.tb01921.x. [PMID: 8500601]
  • A Begleiter, R I Glazer, L G Israels, L Pugh, J B Johnston. Induction of DNA strand breaks in chronic lymphocytic leukemia following treatment with 2'-deoxycoformycin in vivo and in vitro. Cancer research. 1987 May; 47(9):2498-503. doi: . [PMID: 3494509]
  • J B Johnston, A Begleiter, L Pugh, M K Leith, J A Wilkins, D J Cavers, L G Israels. Biochemical changes induced in hairy-cell leukemia following treatment with the adenosine deaminase inhibitor 2'-deoxycoformycin. Cancer research. 1986 Apr; 46(4 Pt 2):2179-84. doi: . [PMID: 2418965]
  • F Kappler, T T Hai, A Hampton. Isozyme-specific enzyme inhibitors. 10. Adenosine 5'-triphosphate derivatives as substrates or inhibitors of methionine adenosyltransferases of rat normal and hepatoma tissues. Journal of medicinal chemistry. 1986 Mar; 29(3):318-22. doi: 10.1021/jm00153a003. [PMID: 3950912]
  • A Goday, H A Simmonds, G S Morris, L D Fairbanks. Human B lymphocytes and thymocytes but not peripheral blood mononuclear cells accumulate high dATP levels in conditions simulating ADA deficiency. Biochemical pharmacology. 1985 Oct; 34(19):3561-9. doi: 10.1016/0006-2952(85)90734-8. [PMID: 3876835]
  • J Justesen, H Worm-Leonhard, D Ferbus, H U Petersen. The interferon-induced enzyme 2-5A synthetase adenylates tRNA. Biochimie. 1985 Jun; 67(6):651-5. doi: 10.1016/s0300-9084(85)80207-8. [PMID: 2413907]
  • W Schütz, G Steurer, E Tuisl, H Plass. Phosphorylated adenosine derivatives as low-affinity adenosine-receptor agonists. Methodological implications for the adenylate cyclase assay. The Biochemical journal. 1984 May; 220(1):207-12. doi: 10.1042/bj2200207. [PMID: 6331407]
  • R D Snyder. Deoxyribonucleoside triphosphate pools in human diploid fibroblasts and their modulation by hydroxyurea and deoxynucleosides. Biochemical pharmacology. 1984 May; 33(9):1515-8. doi: 10.1016/0006-2952(84)90421-0. [PMID: 6732868]
  • S Tsuji, K Nakagawa, T Fukushima. Genetically controlled quantitative variation of ornithine transcarbamylase in the chick kidney. Biochemical genetics. 1983 Oct; 21(9-10):857-69. doi: 10.1007/bf00483945. [PMID: 6419722]
  • D A Carson, D B Wasson. Characterization of an adenosine 5'-triphosphate- and deoxyadenosine 5'-triphosphate-activated nucleotidase from human malignant lymphocytes. Cancer research. 1982 Nov; 42(11):4321-4. doi: . [PMID: 6290030]
  • A D Webster. Metabolic defects in immunodeficiency diseases. Clinical and experimental immunology. 1982 Jul; 49(1):1-10. doi: NULL. [PMID: 6290113]
  • H A Simmonds, D R Webster, D Perrett, S Reiter, R J Levinsky. Formation and degradation of deoxyadenosine nucleotides in inherited adenosine deaminase deficiency. Bioscience reports. 1982 May; 2(5):303-14. doi: 10.1007/bf01115116. [PMID: 6980023]
  • H Ratech, G J Thorbecke, R Hirschhorn. Metabolic abnormalities of human adenosine deaminase deficiency reproduced in the mouse by 2'-deoxycoformycin, and adenosine deaminase inhibitor. Clinical immunology and immunopathology. 1981 Oct; 21(1):119-27. doi: 10.1016/0090-1229(81)90200-2. [PMID: 6268339]
  • H Jakubowski. The plant aminoacyl-tRNA synthetases. 2'-DeoxyATP and ATP in reactions catalysed by yellow lupin aminoacyl-tRNA synthetases. Acta biochimica Polonica. 1980; 27(3-4):321-33. doi: . [PMID: 7269975]
  • A Hampton, F Kappler, R R Chawla. Design of species- or isozyme-specific enzyme inhibitors. 1. Effect of thymidine substituents on affinity for the thymidine site of hamster cytoplasmic thymidine kinase. Journal of medicinal chemistry. 1979 Jun; 22(6):621-31. doi: 10.1021/jm00192a005. [PMID: 458818]
  • R A Rauner, J J Schmidt, V A Najjar. Proline endopeptidase and exopeptidase activity in polymorphonuclear granulocytes. Molecular and cellular biochemistry. 1976 Feb; 10(2):77-80. doi: 10.1007/bf01742201. [PMID: 3727]
  • H H Borden, R W Harris, W E Mosher. A waterborne outbreak of gastroenteritis in western New York State. American journal of public health and the nation's health. 1970 Feb; 60(2):283-8. doi: 10.2105/ajph.60.2.283. [PMID: 5460971]